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Abstract:

Suppose { X, X,;n=1] is a sequence i.i.d.r.v. with EX =0 and EX?> < o . Shao (1995)

proved a conjecture of Révész (1990): if P(X = x1) =1/2, then

i=j+k

1im max max

Furthermore he conjectured that

i=j+k

S
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e dsj<n t<ken-i (2klogn ) T

a.s.
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I < limmax max ——
n—~= Ogj<n lgsksn-j { A}

k
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= K < o a.s.

i=j+l
In this paper we prove that if sbug)P( X=b)= !P( X =0) then this conjecture is ture.
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INTRODUCTION

Suppose 1 X, X,;n=1! is a sequence i.1i.

d.r.v. Let S, = . X; and V2 = > X2. Révész

i=1

i=1
(1990 ) studied the limit behavior of the se-
quence

Lo = o max k™ (Sper = ) o
and proved that if P(X = 1) =—% then
. L,
1 b= lllginfw =
. L,
hrrnljgupm = K < o a.s., (2)

where the exact value of K is unknown (cf.
Révész 1990, pl71). Révész (1990) conjec-
tured that K = 1. Shao (1995) corroborated
Révész conjecture and proved a general result as
follows.

Theorem A . Suppose that EX =0, EX* =
1 and Fe* <  for some t > 0. Let p(x) =

self-normalized, i.i.d.random variables, Chernoff function

0211 .4

}']nge_e"Eeex be the Chernoff function of X. De-

fine

a(C) = suplx;p(x) = e VCI(C > 0),
L X a(x)
I A

Then A =1 and

i=j+k
X

. =+
lim max max ﬁi = A a.s.

e 0<j<n 1sk<n-j (2klogn (3

and, A < o if and only if Ee® < o for some ¢
>0.

Zhang (1998) proved some general results
on the lag sums of i.i.d.r.v.s, his Theorem 5
extended the Theorem A above.

From Theorem A, we see that if we want to
get a finite limit as in (2) for general random
variables we must add a very strong moment con-

dition Ee’X2 < o, which can not be weakened.
But in the past several years, many authors stud-
ied the so-called self-normalized limit theorems.
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For example, Griffin and Kuelbs (1989) ob-
tained the self-normalized law of iterated loga-
rithm, Csorgs and Shao (1994) studied the self-
normalized Erdos-Rényi law of large numbers,
Shao (1997) studied self-normalized large devia-
tions. The previous self-normalized limit theo-
rems show that when the normalizing constants in
the classical limit theorem are replaced by an
appropriate sequence of random variables, a
similar result may still hold under less or even
without any moment conditions. The significance
of the self-normalized limit theorems is obvious.
So, one may ask if the following self-normalized
result related to (3) is true or not: for i.i.d.

random variables { X, X,;n=1}, if £EX =0
and EX? < © then

Si.p = S;
1 < limmax max 1 :

> Ogj<nlighgn—j {(Vz E Vz)(zlogn)}llz -
K < = (4)

a.s.

This was also a conjecture of Shao (1995) .

In this paper we prove that under suitable
conditions this conjecture is true.
Theorem 1.

d _ . 106X - 2(X + 55)2)
Letf(x)——sblig) infEe s

co=1/In(l/P(X=0)),
k(c)=inflx=0;f(x) <e Y} and

Ale) = {k(lc> for

A" = sup Lerle )
= VR J2

If EX=0, EX’T{ 1 X1l <«x}! slowly varies as x
—> o and s[ug)P(Xz b) = P(X =0) then

A < e and

for c > ¢

c 6 [Osc():}’

1 < limmax max Siek = 5 =
n~% O0gj<nlighgn-j { ( V2+JC — V )(zlogn) Ellz

AY  a.s. (5)
Remark. Obviously, if EX? < w, then

EX*I{1 X1 < «! slowly varies as x—> o .

PROOFS

We start the proof with several preliminary
Lemmas.

Lemma 2.1. If EX =0 and EX*I{1X | <

x} slowly varies as x> . Then for any 0 < ¢

<%, there exist 0 < § < 1,29 > 1,8y > 1 and
ng such that for any n = ng,xp < x < 6+n and
1<6$00

S, .
'(1“)" /2 < P(—V = x) < e~U-9% 2,
P( max ﬂ = x) < e"(l")x2/2. (6)
n<kgbn Vk

Proof. See Remark 4.1 and Remark 4.2 of Shao
(1997) .

Lemma 2.2. Assume that EX =0 or EX?
= o . Then

S 1/n
hmP(V = x) = f(x) (7)

for x >0, and f(1) =sb\iE)P(X= b),f(x) =P
(X=0) forx>1. B
Proof. See Corollary 1.1 and Lemma 8.1 of
Shao (1997).

Lemma 2.3. Assume that £X = 0 or EX?
= o, Then

S+con S
k+[clogn] — k()as

lim max

> lghksn-{clogn] i= k+( clogn]
J[clogn] Z X?

iz k+l

(8)

for any ¢ > ¢g. Furthermore, if sbug)P(X =b)
= P(X =0) then

Sk+[clogn] S 1

lim max =

n=® lgkgn-{clagn] i = k+[ clogn]
clogn] X

1

+M

i=

(9)

forany O< c<c¢y.

Proof. (8) follows from Theorem 8.1 of Shao
(1997) . If P(X =0) =0 then there is nothing
to prove. Suppose P(X =0) > 0. Noting that

Sk+[clogn] - Sk

i=k+[clogn]

§ clogn] E X%

i=k+l

lim sup max

n—® i kg n-{clogn] =

(= f+clogn]

\/[clogn] > X

i=k+l
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> Ighksn— f(\ogn i= A+LL“logn]
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we only need to prove for any 0 < ¢ < 1

Stalel - S
lim inf max +Lclogn] k

n—>ce 1 ks n—[clogn] i= k+[ clogn]
[ clogn ] E X3

i=k+l

==

1 -—¢ a.s.

Suppose that f(1—¢) > P(X =0). Then there
exists 7 > 0 such that f(1 — ¢) = 5 > exp

1 -
( ——72). Then by Lemma 2.2 for m large

Co
enough
Sjslen] = 5
P( ma fhs j <l- e) -
lgjge —[cm] {(V+ lem] — V?)(Cm)}llz <
5<z+1>[mﬂ = Siam) )
P( I 1-
= I??Xm] 1 (V<1+1) - V%{m})(cm)}uz < ) <
Ste fe"/[em]l-1
P( (1—<)(cm)"2) <
V[crn]

(1 - (f(] - () — n)[fm])[em/[cm]]—l <
(1 - exp(1 - (1 - q)cm/co))[e“/[cmﬂ_l <

exp( - K:;lexp(— (1- 77)cm/co)) <
exp(- Ke™/m) ,
which implies that

Sk+[clogn] - Sk

lim inf max

e L kg n-[clogn] i = k+[clogn] =
[ clogn ] Z X
i=k+1
Sislen] = S
lim inf max Jriem J >
e gjge-lom %(V+[cm] - V?)(cm)}”2
1-¢ a.s.

At last, we need to prove f(1 —¢) > P(X
=0). Since S;,UE)P(X: b)=P(X =0), there

exists b >0 such that P(X =b)=P(X =0).

Otherwise, there would exist a sequence I b; 1
such that P( X = bﬂ;%P(X:O). Then P
(Uix=01) = };P(X: b;) = © which is a
contradiction. Define
(x) = inf Eet(PX-x(X'+5712) , =0,

=0

let ¢, =0 be given by

z(x) = Ee x=0.

It is easy to show that P(bX = x (X + b%)/2)
5« 1. Thus according to lemmas 1 and 3 of Cher-
noff (1952), t, exists and is unique.

We now show that for 0 < x < 1, ¢, is finite,

1 (bX-x(X"+5°)/2)

Put x’ =%(x + 1) . Note that

Eet(bX—x(XJerz)/Z) -

=

[
J . et(by—x(y +b )/Z)dF(y) >
by-«'(y +b)/250

fF-DP(bX — 2/ (X2 + b2)/2 > 0) =
e%(l-x)P(x_lZ(l _\/1———902) < X <
L viIE):

50-2) _
ez P(X =b) =
which implies the finiteness of ¢,
<1, if ¢, =0 then

2= P(X = 0),
. Now for O < «

(x) = et (X=X +6)12)
if t, > 0 then

:1>P(X:O);

(%) = Fot (bX-x(X +6)12) = e%(l—x)P(X - 0)
> P(X = 0) .
Hence for O< x <1,

F(x) = supinfEel. -+ 02 5 p(X = 0) .

The proof of Lemma 2.3 is now complete.
Remark: If one could prove that f(x) is
strictly decreasing for 0 < x <1, then the condi-

tion S}EPP( X =5b)=P(X =0) is superfluous.

Proof of the Theorem 1
Step 1. For any ¢ >0, then we have for ¢,

large enough,

| Sir = S |
li
U o oreran.j [(V - V2)(210gn)}1/2 =

1+¢ a.s. (10)
Proof. By Lemma 2.1, for ¢, large enough and

then large enough,

( | Sir = S5 | )
P| max = max_ =1+ <

(Vi - 1/2)(2m)€”2 =

max
b ke, md

O<}<e‘ [N mkse

max max
Plogjc log( ™" /e, m)

Osi= lug€

+1

| Sﬁk ; | =1+ )
[(Vik - v2><2m)%”2 S
Ke™m

- [ Sk [
. max
clmd\gkgcl mBM Vk

Kmemexp( (1 + ¢)m) = Kme

= (1+002m)" <

——

mlaxP(
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It follows that

o«

A max max
pl max,
<jse o mshkge
m=1
| Sie = S |

[z, ;1+()<°°,
it

which implies

- VH(@2m)i"?

| S — S |
Vz)(Z )

| Sy — S |
max -
merer (VL = V) (2m) |17

lim supmax max
n+ o p0<1<n ¢ logngksn—j % ( V§+

lim sup max

sl
m>® Ogjse

<= 1l+¢ a.s.
Step 2. It is easy to see that for ¢ small
enough,

lim sup max max
n>w Ogj<n tshg(n-;) Alclogn)

| Sivr = S; |
%(V2+k _ Vz)(2logn)}”2 =

lim sup max max
n—>w Osgj<n lskg(n-j)Alclogn)

{(V2 _ V2>k}1/2
(Ve = VD) (logm) |12 <
= % < . (11)
Step 3. For any 0< ¢ < ¢; < ®© we have

lim supmax m Sisr = 5
n—= p0<j<nc]1gn<lss ¢, logn {(V2+k - V )(210gn>%1/2 =

Vad (x)
/2
Proof. For % > 0 small enough such that 7c <1

by Lemma 2.3 we have

(12)

sup

cgrge +1

lim sup max max

n->o Ogj<n clgngkse logn

Sk = S;

J

[(V, - V) (2logn)? =

lim sup max max max
n>® ¢ —c Ogj<n (I+lpelogng ks (14+(L+1)9) clogn

Oglg———

S]+k - S i
{(Vz*)'i’f - V )(210gn)}1/2 = max lm sup

max

Ogj<n

0<[<—
S

Sj+(1+lvy)Llogn - S
{ ( V j+(1+m)clogn — V )(210gn) } 12

max lim sup max max
— n>w Os/i<n (I+l;})«.logz<k<(I+(l+1)1))£logn

Ogigt

I S - Sj+(l+17])clogn | -
{(Vﬂk - V) (2logn) 12 =

max V(1 + lzz)c;t((l + lg)c) .
i %

max lim sup max max
-c - Osj<n (I+lp)clogng k< (14 (1+1) ) clagn

(k — (1 + l?})clogn)m
(210gn)1/2 =

VaA(x) . (
J2

which implies (12) immediately .
Step 4. We have

O<lisg

0<l<

nel2)'?,

sup

cgxgC +[

lim inf max max Sive = 5 =
nr%  Ogjen leken-j {(V?+k _ V?)(Zlogn) jin =
AT a.s. (13)

Proof. For any ¢ >0, by ILemma 2.3 we have

lim inf Siex = 5,

lr,{lin ggﬁ’i,gﬁlﬁ, {(V§+k _ VZ)(210gn)%1/2 =

lim inf max Slelogn) = 5,

V) (2logn )}

n>®  Ogj<n-[clogn) % ( V j+leclogn] —
VeA(e)

J2
which implies (13) immediately .

Now noting that

lim inf max max Sjek = Sj
> Ogj<n ¢logngkgn—j {(V2+k — V )(ZIOgn) %1/2

=
- Sjiletogn] = 5
lim mf max *

n—>o Oscj< n—Le, logn] {(V+[L Iogn] - V )(210%71)}1/2 =

«/?1/\(01)
_*—‘fz s

thus by Step 1, we know that for ¢, large enough

\/—C_]A(Cl)
V2
Then, combining Step 1,

Step 4 implies (5) .

Since k(c¢) < ks;(c) for any ¢ >0 and ¢ >
0, where k(c¢) =inf {x=0;f(x) < e Y and
£ (x) = sup ilgofe(za)z/z Eet (X = 2(X +67)12) . we have
forO<c<ec < ®

\//'x k‘( x )’ < Ssu
«/5 =

cgrKe

=1+ ¢ (14)

Step 2, Step 3 and

Vacks (%)
7 < o (15)

by the fact that k;(c) is continuous (cf.Lemma
8.1 of Shao (1997)). Hence by (11), (14)
and (15) we know A" < o .

sup

cage
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On the other hand, noting that by Lemma
(2.1), for ¢; > 0 large enough and then m
large enough

P( m Yelemd = 1
ax -
ezt tom 1V ) - VO@m)IE S TS

P( max S0tably m ~ Sl <1- e) <

Osi<d /e m)-1 {(V%m)[clmj - V§[Cl,n])(2m)§l/2 = =
Sio (e m])-1

P( V[clm] < (1- e)(Zm)”Z) <

(1 = exp(= (1 = Om))Le/amll-1 o
exp(— Ke™/m) ,

we have
by S: [ 1 - S: )
A Jttc, m! gl
P max —s5———— 53— ——p<l- <
MZJ (Usise’"/[c‘m] {(Vﬁ[clmj - emi ‘

@,

which implies

«/_C_lk(cl)
J2

= lim max

> Oxj<n-[c logn]
Sj+[cllogn:f - Sj
=
{ ( V12'+[c]logn] - V?)(ZIOgn) ;1/2
S, S,

]+[clm} -

lim inf max =
m® ()sj(e""{clm] {(V?+[C]m} — VJZ)(ZIOgn) }1/2

1 -«
So A" =1. The proofs are now complete.
Similarly, we can prove:
Theorem 1’. Assume that there exist 0 < a <2,
c1=0,¢;,20,¢; + ¢, >0 and a slowly varying
function h(x) such that

a.s.

cp + O(l)h(x)

P(X;x) = a
x
and
1
P(X<—-—x) = 52—-F—(fi—)h(x) as x —> ®
x

Moreover, assume that EX =0 ifl<a <2, X

is symmetric if @ =1 and that ¢; >0 ifO0O< a <
1. Furthermore, assume that sbuPP( X=b)=P

(X =0). Then (5) holds and 1//28(a,cic;5)
=A<,

where B(a, ¢y, c;) is the solution of I'(B,a) =
0 and

T(B,a) =

1+ 2x — (25310
CIJ a1 dx +
0 x
2
. Joo 1 -2x — e(—2x—x /ﬂ)d
X,
2 0 xa+1
f 1< a«<?2,
® 0 _ pQu-dIp) L (-20-2"I)
c 3 dx,
0 x
if a=1,
© 1 _ e(2x—x2/}3) ) 1— e(»2x—x2/ﬂ)
CIJO — g dx + czjo —————x"” dx,

f 0<ax<l.
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