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Abstract: This paper presents the topology optimization design of structures composed of plane stress ele- 
ments. The authors' proposed method of topology optimization by virtual laminated element is based on the 
Evolutionary Structural Optimization (ESO) method of linear elasticity, but dose not require formation of as 
many elements as the conventional ESO method. The presented method has the important feature of reforming 
the stiffness matrix in generating optimum topology. Calculation results showed that this algorithm is simple 
and effective and can be applied for topology optimization of structures. 
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INTRODUCTION 

Bendsoe and Kikuchi initiated the homogeni- 
zation method (Bendsoe et a l . ,  1988) for con- 
tinuous structures. A very important step in the 
topology optimization is the change from skeletal 
structure to continuous structure. Accordingly, 
topology design is changed from defining whether 
there is any node or pole to whether there is con- 
tinuous sub area. The homogenization method is 
carried out by using microstructure cells, and 
through optimization, to calculate and define a 
materials density distribution to obtain the best 
topology structure. 

Xie And Steven presented the evolutionary 
method (Xie  et a l . ,  1993 ) using life evolution 
philosophy for structural topology optimization, 
wherein material element with little contribution 
to the stiffness of the structure is gradually re- 
moved. This method is very simple and effec- 
tive, and had been widely applied for static and 
dynamic problems ( Xie et al.  , 1996) .  

All the above methods require division of the 
structure into a large number of elements. The 
virtual laminated element method applied in this 
paper will partially solve this problem. The fol- 
lowing calculation cases give satisfactory results 
with much fewer elements compared with those 
applied in reference (Xie et al.  , 1993) ,  so ap- 
plication of the virtual laminated element method 

for structural topology optimization is recom- 
mended.  

The virtual laminated element is based on 
the principles of both single lamina theory and 
multiple lamina theory. In order to reduce the 
number of elements, the equivalent numerical 
integration method is applied to integrate multi- 
ply lamina different material into the different 
lamina of the single element.  The reduction of 
the number of elements will effectively reduce 
the scale of the problem to be calculated. This 
improvement will significantly benefit large 
projects such as those in civil engineering, espe- 
cially for the structural topology optimization 
required repeatedly for establishing the stiffness 
matrix. 

VIRTUAL LAMINATED ELEMENT 

The effectiveness of the virtual laminated el- 
ement applied in the engineering field is dis- 
cussed in references ( W u ,  1997; Ling et a l . ,  
1998) .  The basic method is to apply the concept 
of virtual lamina and virtual segment. The virtual 
lamina and virtual segment have no physical ma- 
terial. In order to divide the element easily and 
increase the efficiency of computation, some of 
the material characteristics of the assumed lami- 
na and segment, for example, elasticity tensor 
E ,  G,  etc.  are defined to zero, i . e .  the lamina 
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and segment are empty. Normal elements can 
then be obtained by placing the empty lamina or 
empty segment between the lamina. On one 
hand,  one element can have different material in 
different lamina, and a lamina can be made of 
several materials or nothing. On the other hand, 
application of different lamina and different seg- 
ment inside the element can be used to treat 
structures with complicated geometric figure. 
This method can go around problems created by 
local node connection of the element. 

This article describes the application of the 
plane stress virtual laminated element, which is 
the same as the plane iso-parameter element in 
defining geometric and offset interpolation and in 
calculating strain. In calculating the element 
stiffness matrix, element mass matrix and stress, 
different lamina integration are required for dif- 
ferent dimension and material characteristics on 
different lamina. 

1. Description of the element geometric shape 

Fig. 1 shows the 2D virtual laminated ele- 
ment.  The boundary of the mother element is de- 
fined as ~, ~7 = -+ 1. The number of lamina n 
and number of segment m will be defined for 7~ 
= - l a n d ~ =  + 1 ,  q =  - 1  and ~ =  + 1  ac- 

cording to the actual requirement. 

Fig. 1 
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2D virtual l a m i n a t e d  e l e m e n t  

The correlationship between the mother ele- 
ment and this virtual element is: 

{X}= ~ Ni (~, r l) Ixt- } (1) 
Y i =  1 Y i  

2. Element stiffness matrix 

Since the material modulus matrix Dkt in dif- 

ferent lamina and segment is often different from 
each other, integration in different lamina and 
segment will be required in calculating the ele- 
ment matrix, such as the one below: 

k/j = 

B i D z B j  I J I Wkl ( ~ ,  r /)d~) dr/ 
t 

(2) 
In general,  different lamina can have differ- 

ent number of segments, k and l in the formula 
represent the sequence number of lamina and 
segment, Wkl ( ~, "q) is the thickness of the ele- 
ment at the local coordinate ( $ ,  r / ) .  

In order to apply Gauss integration to every 
lamina and segment, the Eq.  ( 2 )  was linearly 
transformed to : 

- 6-1 + 
F -  2 + 2 

r/k 2 --rA-1-r/' r/k + r/k_t + 
2 

The element matrix (2)  will then be:  

k/j : k~__l~l( ~-~j ~l ~/-1 T B iDI~IBj I J I" 
_ l = 1  - 1  

w z ( ~ , , r y ) d $ ,  ) r/k 2 r l k _ , d r y  (3 )  

Every item in Eq.  ( 3 )  can be obtained by 
Gauss integration. In the following calculation 
examples, the plane stress virtual laminated ele- 
ment has been divided into 2 laminas and 2 seg- 
ments. 

EVOLUTIONARY METHOD FOR THE TOPOLO- 

GY OPTIMIZATION 

The stress distribution of a structure can be 
obtained after applying finite element analyses, 
which, however, cannot be efficiently applied to 
some material. Based on full stress theory, re- 
jection can be applied according to certain stress 
criterion. Material block with little stress will be 
gradually rejected,  if the element satisfies the 
Eq.  ( 4 ) .  The rejection of the block can be re- 
peated using the same RRi until there is no more 

rejectable block existing in the current step. Af- 
terwards, evolution ratio ER is added to the re- 
jection ratio RRi .  This starts again a new round 

of rejection until a proper topology structure is 
obtained. This is the main philosophy of the evo- 
lution method. 

Since the process of optimization is depen- 
dent on the stress distribution characteristics for 
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a specific ease, the Eq. ( 4 )  does not use the 
maximum stress cr of all material blocks but uses 
the average stress of all material blocks. The for- 
mula is given below: 

I o "~ I~< R R  i x l  a I ( 4 )  

R R  i = R R i _  1 + ER (5)  

In the above formula, a~ is the block stress, 
cr is the average stress of all material blocks, 
RRi is the rejection ratio and ER is the evolution 

ratio. 
shall apply different stress criterion with 

different characteristics of the material. In this 
article von Mises stress criterion is applied in 
case 1 and case 2; while the first main stress 
criterion is applied in case 3. 

CASE STUDY OF OFHMIZATION 

1. Case 1 

Fig. 2 shows a short cantilever. A vertical 
force P acts on the center of the free end. The 
design domain is 16 x 10 cm, the number of ele- 
ments divided is 32 x 20 (Evolution method, 
number of elements 64 x 40,  Xie et a l . ,  
1993).  The Young'  s modulus E = 100 GPa, 
Poisson' s ratio v = 0 . 3 .  Fig. 3 shows the results 
of optimization that is the same as those given in 
Suzuki et al. ( 1991)  applying homogenization 
method. 

16 cm 

Fig.2 Design d o m a i n  f o r  t h e  s h o r t  c a n t i l e v e r  

Fig.3 Optimum configuration f o r  the  

s h o r t  c a n t i l e v e r  

2. Case 2 

Fig. 4 shows a design domain 30 x 15 cm. A 
vertical force P acts on the center of the bottom 
boundary. The two corners at the bottom are as- 
sumed fixed. The number of elements is 40 x 
20, (50 x 25 for Evolution method, Xie et a l . ,  
1993) .  The characteristics of the material are 
the same as those in case 1. The results of the 
reference (Xie et al. , 1993) have four bars un- 
der the arch. Our result shown in Fig. 5 is closer 
to the analytical solution of the Michell structure 
(Hemp,  1973) shown in Fig. 6.  

+. 30 cm 

A 

Fig.4 Design d o m a i n  f o r  t h e  n i c h e ,  type s t r u c t u r e  
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F i g . 5  O p t i m u m  c o n f i g u r a t i o n  f o r  t h e  M i c h e l l  

type s t r u c t u r e  

]Fig.6 A Micheli type s t r u c t u r e  

3. Case3 

Fig. 7 shows a cable-stayed bridge model. 
The dark area is not design domain and the rest 
is the design domain. E = 210 GPa, v = 0 . 3 ,  p 
= 7 . 8  x 10-3 kg/cm 3 " Element dimension is 25 
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• 25 cm and has a total of 924 elements (3696 
elements Guan et a l . ,  1999) .  Two cases were 
studied for the topology optimization. Fig. 8 is 
the result of the structure under only its gi'avity 
load. Fig. 9 shows the result of applying a uni- 
formly distributed load of 1 . 0  N/cm. Both cases 
give the same results as those in reference (Guan 
et al, 1999) .  

~ 1600 " /~e t, 
4 r ,  

Fig.7 Cable-stayed bridge model(m) 
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F ig.8 Under gravity load 
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Fig.9 

I 
Under uniformly distributed load 

CONCLUSIONS 

The above cases studied led to the following 
conclusions : 

1. Plane stress was applied in all the above 
cases.  Apparently it can be extended to general 
two-dimensional and three-dimensional prob- 
lems. 

2 .  Generally speaking, every rejection ratio 
can reach a steady state after 5 to 10 times itera- 
tion. At the beginning, the rejection ratio should 
not be too large so we selected 6 % ,  the evolu- 
tion ratio should also not be too large. A large 
rejection ratio and evolution ratio cannot produce 

a satisfactory topology structure. However,  if we 
select too small a ratio, it will take too much 
computing time. According to our experience, in 
the beginning we can apply a larger evolution ra- 
tio and reduce the evolution ratio after certain it- 
eration. In this article we used 2 %  to 6 % .  

3. Evolution method can provide a proper op- 
timization scope and structure shape in the initial 
stage of engineering. It is limited to the estab- 
lishment of topology structure. For the final en- 
gineering details, such as dealing with the accu- 
rate location and dimension of the bar in the to- 
pology structure, a strict shaping optimization 
method can be applied. However,  the shaping 
optimization method cannot define the topology 
structure. Therefore , a complete structural opti- 
mization problem can be solved by combining 
both methods. 

4 .  This is the first time that the virtual lami- 
nated element is applied in the structural topolo- 
gy optimization. This method is very effective for 
solving topology optimization design problems 
specially in areas such as civil engineering, 
where many elements are applied and needed for 
establishing the stiffness matrix repeatedly. 
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