FINITE VOLUME METHOD BASED ON THE CROUZEIX－RAVIART ELEMENT FOR THE STOKES EQUATION＊

LI Da－ming（李大明）
（Dept．of Mathmatics，Zhejiang University，Hangzhou 310027，China）

Received Apr．18，2000；revision accepted Aug．8，2000

Abstract

The author provides a new discretization method－the finite volume method（FVM）．For the Stokes equation the velocity space is approximated by the nonconforming linear element based on the dual partition and the pressure by the piecewise constant based on the primal triangulation．Under the suitable smoothness of the solution，the optimal convergence rate $O(h)$ is obtained，where h denotes the parameter of the space dis－ cretization．

Key words：Stokes equation，finite volume method，Crouzeix－Raviart element Document code：A CLC number：0241．82．

INTRODUCTION

We consider the Stokes equation：

$$
\begin{align*}
& -\Delta \bar{u}+\nabla p=\bar{f} \quad \text { in } \Omega \tag{1}\\
& \operatorname{div} \bar{u}=0 \text { in } \Omega \tag{2}\\
& \bar{u}=0 \quad \text { on } \partial \Omega
\end{align*}
$$

where $\bar{u}=\left(u_{1}, u_{2}\right)^{\mathrm{T}}$ and p denote the velocity and the pressure of the fluid respectively． \bar{f} de－ notes the external body forcing density．Ω is an open bounded and convex polygonal domain．$\partial \Omega$ denotes the boundary of Ω ．

The discrete form for the conservative elliptic equation was recently obtained by FVM．The ba－ sic idea is that after the original continuous prob－ lem is integrated in a box，the integral equation is then discretized．Vanselow Reiner（1998） considered the equivalence between the FVM and the nonconforming Galerkin finite element method（FEM）for the simple Poisson equation． Generally speaking，FVM can be viewed as the Galerkin FEM or Petrov－Galerkin FEM．For ex－ ample in（ Li et al．，1993），FVM based on the box which is obtained by the inner vertex of the triangulation，is regarded as the Galerkin FEM combined with the numerical integration．In （Chatzipanteliols，1993），the FVM based on the box obtained by the inner edge of the triangula－ tion，is regarded as the nonconforming Galerkin FEM combined with suitable numerical integra－
tion．In（Mishev et al．，1999），FVM based on the inner vertex，is regarded as the Petrov－Galer－ kin FEM．For the Stokes equation，FVM can also be used for discretization，especially for the re－ ctangular domain．In（Chou，1998），the veloci－ ty is approximated by the nonconforming rotated bilinear element，and the pressure by the piece－ wise constant．In（Chou，1997），the pressure is estimated by the nonconforming bilinear ele－ ment．

In this paper based on the idea in（Chatzip－ anteliols，1993），we first construct a box based on the inner edge，and the velocity is approxi－ mated by the nonconforming linear element and the pressure by the piecewise constant．Under the suitable smoothness of the solution，the opti－ mal convergence $O(h)$ is obtained，where h is the parameter of space discretization（In this pa－ per，c independent of h ，denotes a general con－ stant but may be different in different places）．

DOMAIN PARTITION AND NOTATION

Denote $T_{h}=\{K\}$ the regular partition of tri－ angulation and h_{K} is the diameter of $K . h=$ $\max _{K \in T_{h}} h_{K}$ ．Denote $E_{h}^{i n}$ the set of inner edges of tri－ angulars．$E_{h}(K)$ is the set of edges of $K . E_{h}$ $=\bigcup_{K \in T_{s}} E_{h}(K)$ ．For any $K \in T_{h}$ ，we choose an
inner point Z_{K} in K. For any $e \in E_{h}^{i n}$, a box b_{e} is constructed as follows: suppose e is the common edge of two triangulars K_{1}, K_{2} and denote Z_{1}, Z_{2} the inner points of K_{1}, K_{2}, respectively and A, B denote the end points of e. We connect the four points A, Z_{1}, B, Z_{2} and get a box $b_{e} .\left\{b_{e}\right\}_{e \in E_{k}^{\text {in }}}$ is called the dual partition of T_{h}. m_{e} is the midpoint of e. For the given domain K $\subset R^{2}, L^{2}(K)$ denotes the set of functions which is square integrable in $K .(\because)_{K}$ denotes the scale inner product in $L^{2}(K) . \mid \cdot I_{s, K},\|\cdot\| \|_{s, K}$ denote the seminorm and norm in Sobleve space $H^{s}(K), s \in N$. We introduce norms $\|\cdot\|_{s, h}$ andseminorms $|\cdot|_{s, h}$ depending on the mesh.
$\|v\|_{s, h}=\left(\sum_{K \in T_{n}}\|v\|_{s, K}^{2}\right)^{1 / 2}$. The seminorm $1 \cdot I_{s, h}$ is defined analogously. $1 \cdot \mid$ denotes the domain area in R^{2} or the length of segment. For the vector function $\bar{v}=\left(v_{1}, v_{2}\right)^{\mathbf{T}}$. we can also define $|\bar{v}|_{s, K},\|v\|_{s, K}(\because)_{K}$ analogously.

We introduce the finite element spaces V_{h} and M_{h}. For any $K \in T_{h}$, we define finite element (K, Σ_{K}, P_{K}) where Σ_{K} denotes the freedom degree of the function value at the midpoint in the three edges of K and P_{K} is the set of the linear polynomial in K. In fact the element is Crouzeix-Raviart element which is not continuous in Ω. We define the following spaces: S_{h} is the set of functions which are linear in every triangular and continuous at the midpoint of every inner edge. S_{h}^{0} is the function which belongs to S_{h} and vanishes at the midpoint in every boundary side. $V_{h}=S_{h}^{0} \times S_{h}^{0} . M_{h}$ is the set of functions which are constant in every K and belong to M. where M, which is defined in the next section, is the pressure space.

DISCRETE FORM

Integrating (1) in b_{e} and using Green formula, we get

$$
\int_{b_{0}}-\frac{\partial \bar{u}}{\partial n}+p \cdot \bar{n} \mathrm{~d} s=\int_{b_{0}} \overline{\mathrm{~d}} s \quad \forall e \in E_{h}^{i n}
$$

Integrating (2) in K and using Green formula, we get

$$
\begin{equation*}
\int_{\partial K} \bar{u} \cdot \bar{n} \mathrm{~d} s=0 \quad \forall K \in T_{h} . \tag{4}
\end{equation*}
$$

The discrete form: find $\left(\bar{u}_{h}, p_{h}\right) \in V_{h} \times M_{h}$, such that

$$
\begin{align*}
& \int_{d_{b}}-\frac{\partial \bar{u}_{h}}{\partial n}+p_{h} \cdot \bar{n} \mathrm{~d} s=\int_{b_{b}}^{-} \mathrm{d} s \quad \forall e \in E_{h h}^{i n}, \tag{5}\\
& \int_{\partial_{K}} \bar{u}_{h} \cdot \bar{n} \mathrm{~d} s=0 \quad \forall K \in T_{h} .
\end{align*}
$$

The above problem is equivalent to the following problem: find $\left(\bar{u}_{h}, p_{h}\right) \in V_{h} \times M_{h}$, such that $a_{h}\left(\bar{u}_{h}, \bar{v}\right)+b_{h}\left(\bar{v}, p_{h}\right)=F_{h}(\bar{v}) \quad \forall \bar{v} \in V_{h}$
$c_{h}\left(\bar{u}_{h}, q_{h}\right)=0 \quad \forall q_{h} \in M_{h}$,
where
$\boldsymbol{a}_{h}\left(\bar{u}_{h}, \bar{v}\right)=\sum_{e \in E_{i}^{v}} \bar{v}\left(m_{e}\right) \int_{\partial b_{e}}-\frac{\partial \bar{u}_{h}}{\partial \boldsymbol{n}} \mathrm{~d} s$
$b_{h}\left(\bar{v}, p_{h}\right)=\sum_{e \in E_{k}} \bar{v}\left(m_{e}\right) \int_{\}_{b}} p_{h} \cdot \bar{n} \mathrm{~d} s$
$c_{h}\left(\bar{u}_{h}, q_{h}\right)=\sum_{k \in T_{k}} q_{h}\left(Z_{K}\right) \int_{\gamma_{K}} u_{h} \cdot \bar{n} \mathrm{~d} s$
$F_{h}(\bar{v})=\sum_{e \in E_{k}^{v}} \bar{v}\left(m_{e}\right) \int_{\sigma_{i}} \bar{d} x$
The standard variational form of (1), (2): find $(\bar{u}, p) \in V \times M$, such that
$a(\bar{u}, \bar{v})+b(\bar{v}, p)=F(\bar{v}) \quad \forall \bar{v} \in V(13)$
$b(\bar{u}, q)=0 \quad \forall q \in M$
where
$V=\left(H_{0}^{1}(\Omega)\right)^{2}, M=\left\{q \in L^{2}(\Omega): \int_{\Omega} q \mathrm{~d} x=0\right\}$
$a(\bar{u}, \bar{v})=\sum_{K \in T_{b} K} \int_{K} \nabla \bar{u} \cdot \nabla \bar{v} \mathrm{~d} x$
$b(\bar{v}, p)=-\sum_{K \in T_{A},} \int_{K} p \cdot(\nabla \cdot \bar{v}) \mathrm{d} x$
$F(\bar{v})=\sum_{K \in T_{K}} \int_{K} \bar{f} \cdot \bar{v} \mathrm{~d} x$.
Obviously, the bilinear forms a and b can also be defined in $\left(V+\left(S_{h}\right)^{2} \times\left(V+\left(S_{h}\right)^{2}\right)\right.$ and $\left(V+\left(S_{h}\right)^{2}\right) \times M$ respectively. Set $|\bar{v}|_{1, h}^{2}$ $=a(\bar{v}, \bar{v})$.

EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE DISCRETE FORM

In order to prove the existence and uniqueness of the discrete form, we need the following lemma.

Lemma 1. For any $(\bar{v}, q) \in V_{h} \times M_{h}$, $b_{h}(\bar{v}, q)=-c_{h}(\bar{v}, q)$.

Proof: For any $(\bar{v}, q) \in V_{h} \times M_{h}$,
$b_{h}(\bar{v}, q)=\sum_{e \in E_{h}^{n}} \bar{v}\left(m_{e}\right) \int_{b_{b}} q \cdot \bar{n} \mathrm{~d} s=$
$\sum_{K \in T_{2}} \sum_{e \in E_{h}(K)} \bar{v}\left(m_{e}\right) \int_{\partial b} q \cdot \bar{n} \mathrm{~d} s=$
$\sum_{K \leqslant T_{k}} q\left(Z_{K}\right) \sum_{e \in E_{h}(K)_{子_{b}} b_{\cap K}} \int_{n} \bar{v}\left(m_{e}\right) \cdot \bar{n} \mathrm{~d} s=$
$\sum_{K \in T_{t}} q\left(Z_{K}\right) \sum_{e \in E_{\mathrm{K}_{\mathrm{h}}}(K)} \int_{e}-\bar{v}\left(m_{e}\right) \cdot \bar{n} \mathrm{~d} s=$
$-\sum_{K \in T_{h}} q\left(Z_{K}\right) \int_{\gamma_{K}} \bar{v} \cdot \bar{n} \mathrm{~d} s=-c_{h}(\bar{v}, q) \cdot \mathrm{Q} . \mathrm{E} . \mathrm{D}$.
Lemma 2. $a_{h}(\bar{u}, \bar{v})=a(\bar{u}, \bar{v})$, for any $(\bar{u}, \bar{v}) \in S_{h}^{0} \times S_{h}^{0}$.

The proof is similar to that of Chatzipanteliols's(1993) and is omitted.

Lemma 3. $b_{h}(\bar{v}, q)=b(\bar{v}, q)$, for any $(\bar{v}, q) \in V_{h} \times M_{h}$.

Proof:

$$
\begin{aligned}
& \left|b_{h}(\bar{v}, q)-b(\bar{v}, q)\right|= \\
& \left|\sum_{e \in E_{h}^{\prime \prime}} \bar{v}\left(m_{e}\right) \int_{J_{b}} q \cdot \bar{n} \mathrm{~d} s+\sum_{K \in T_{K}} \int_{K} q \cdot(\nabla \cdot \bar{v}) \mathrm{d} x\right|= \\
& \left|\sum_{K \in T_{A}} \sum_{e \in E_{k}(K)} \bar{v}\left(m_{e}\right) \int_{\partial b_{\cdot} \cap K} q \cdot \bar{n} \mathrm{~d} s+\sum_{K \in T_{n}} \int_{K} q \cdot(\nabla \cdot \bar{v}) \mathrm{d} x\right|= \\
& \left|\sum_{K \in T_{h}} q\left(Z_{K}\right)\left(\sum_{e \in E_{A}(K)} \int_{\partial_{b}, \cap K} \bar{v}\left(m_{e}\right) \cdot \bar{n} \mathrm{~d} s+\int_{\partial K} \bar{v} \cdot \bar{n} \mathrm{~d} s\right)\right|,
\end{aligned}
$$

from the proof of lemma 1 ,
$\sum_{e \in E_{h}(K)^{\prime} b_{,} \cap K} \int_{\cap K} \bar{v}\left(m_{e}\right) \cdot \bar{n} \mathrm{~d} s+\int_{\partial K} \bar{v} \cdot \bar{n} \mathrm{~d} s=0$.
This completes the proof.
Theorem 1. The discrete form (7), has one and only one solution.

Proof: From the coecivity of a and the fact that b satisfies the L-B-B condition and lemma 1.2.3. a_{h} satisfies coecivity in $S_{h} \times S_{h}$ and b_{h} satisfies the discrete L-B-B condition. So, the problem (7) - (8) has a solution. In the finite dimensional linear system, the existence is
equivalent to the uniqueness. This proves the theorem.

CONVERGENCE

Denote $I_{h}^{1} \bar{u}$ and $I_{h}^{0} p$ the standard interpolants of \bar{u} and p in V_{h} and M_{h} respectively.

We can prove the following lemma.

Lemma 4.

$\left|a\left(I_{h}^{1} \bar{u}-\bar{u}, \bar{v}_{h}\right)\right| \leqslant c h|\bar{u}|_{2, \Omega}\left|\bar{v}_{h}\right|_{1, h}$
$\forall \bar{u} \in\left(H^{2}(\Omega)\right)^{2}, \bar{v}_{h} \in V_{h}$
$\left|b\left(\bar{v}_{h}, I_{h}^{0} p-p\right)\right| \leqslant c h|p|_{1, \Omega}\left|\bar{v}_{h}\right|_{1, h}$
$\forall p \in H^{1}(\Omega), \bar{v}_{h} \in V_{h}$
$\left|b\left(I_{h}^{1} \bar{u}-\bar{u}, q_{h}\right)\right| \leqslant c h\left|q_{h}\right|_{0, \Omega}|\bar{u}|_{2, \Omega}$
$\forall \bar{u} \in\left(H^{2}(\Omega)\right)^{2}, q_{h} \in M_{h}$
$\left|\boldsymbol{F}\left(\bar{v}_{h}\right)-\boldsymbol{F}_{h}\left(\overline{\boldsymbol{v}}_{h}\right)\right| \leqslant \operatorname{ch}\left|\bar{v}_{h}\right|_{1, h}\|\bar{f}\|_{0, \Omega}$
$\forall \bar{f} \in\left(L^{2}(\Omega)\right)^{2}, \bar{v}_{h} \in V_{h}$

Proof:

$\left|a\left(I_{h}^{1} \bar{u}-\bar{u}, \bar{v}_{h}\right)\right| \leqslant$
$\sum_{K}\left|\int_{K} \nabla\left(I_{h}^{1} \bar{u}-\bar{u}\right) \nabla \bar{v}_{h} \mathrm{~d} x\right| \leqslant$
$\sum_{K}\left|I_{h}^{1} \bar{u}-\bar{u}\right|_{1, K}\left|\bar{v}_{h}\right|_{1, K} \leqslant$
$\operatorname{ch} \sum_{K}|\bar{u}|_{2, K}\left|\bar{v}_{h}\right|_{1, K} \leqslant$
$c h|\bar{u}|_{2, \Omega}\left|\bar{v}_{h}\right|_{1, h}$,
$b\left(\bar{v}_{h}, I_{h}^{0} p-p\right) \mid=$
$\left|-\sum_{K} \int_{K}\left(I_{h}^{0} p-p\right) \nabla \cdot \bar{v}_{h} \mathrm{~d} x\right| \leqslant$
$\sum_{K}\left\|I_{h}^{0} p-p\right\|_{0, K}\left|\bar{v}_{h}\right|_{1, K} \leqslant$
$\operatorname{ch} \sum_{K}|p|_{1, K}\left|\bar{v}_{h}\right|_{1, K} \leqslant$
ch $|p|_{1, \Omega}\left|\bar{v}_{h}\right|_{1, h}$,
$\left|b\left(I_{h}^{1} \bar{u}-\bar{u}, q_{h}\right)\right|=$
$-\sum_{K} \int_{K} q_{h}\left(\nabla \cdot\left(I_{h}^{1} \bar{u}-\bar{u}\right)\right) \mathrm{d} x \mid \leqslant$
$\sum_{K}\left\|q_{h}\right\|_{0, K}\left|I_{h}^{1} \bar{u}-\bar{u}\right|_{1, K} \leqslant$
$c h \sum_{k}\left\|q_{h}\right\|_{0, K}|\bar{u}|_{2, K} \leqslant$
$\operatorname{ch}\left\|^{k} q_{h}\right\|_{0, \Omega}|\bar{u}|_{2, \Omega}$
$\left|\boldsymbol{F}\left(\bar{v}_{h}\right)-F_{h}\left(\bar{v}_{h}\right)\right|=$
$\left|\sum_{e} \bar{v}_{h}\left(m_{e}\right) \int_{b_{e}} \bar{f} \mathrm{~d} x-\sum_{K} \int_{K} \bar{f} \cdot \bar{v}_{h} \mathrm{~d} x\right|=$
$\left|\sum_{K}\left(\sum_{e \in E_{h}^{n}} \bar{v}_{h}\left(m_{e}\right) \int_{b, \cap K} \bar{f} \mathrm{~d} x-\int_{K} \bar{f} \cdot \bar{v}_{h} \mathrm{~d} x\right)\right|=$
$\left|\sum_{K} \sum_{e \in \bar{E}_{h}(K)} \int_{)_{b} \cap K}\left(\bar{v}_{h}\left(m_{e}\right)-\bar{v}_{h}\right) \cdot \bar{f} \mathrm{~d} x\right| \leqslant$
$\left|\sum_{K} \sum_{e \in \bar{E}_{4}(K)}\left\|\bar{v}_{h}\left(m_{e}\right)-\bar{v}_{h}\right\|_{0, b \cap K}\|\bar{f}\|_{0, b, \cap K}\right|$,
by the standard interpolant result, above mentioned formula
$\leqslant \sum_{K} \sum_{e \in E_{E_{0}}(K)} c h_{K}\left|\bar{v}_{h}\right|_{1, b_{e} \cap K}\|\bar{f}\|_{0, b_{e} \cap K} \leqslant$ ch $\left\|\bar{v}_{h}\right\|_{1, h}\|\bar{f}\|_{0, \Omega} \cdot$ Q.E.D.
Using the above lemma, we can prove the following main theorem.

Theorem 2. If the solution of (13), (14) $(\bar{u}, p) \in\left(H^{2}(\Omega)\right)^{2} \times H^{1}(\Omega)$ and $\left(\bar{u}_{h}, p_{h}\right)$ is the solution of (7)-(8), the following estimation holds:

$$
\begin{aligned}
& \left|\bar{u}-\bar{u}_{h}\right|_{1, h}+\left\|p-p_{h}\right\|_{0, \Omega} \leqslant \\
& \operatorname{ch}\left(\|\bar{u}\|_{2, \Omega}+\|p\|_{1, \Omega}+\|\bar{f}\|_{0, \Omega}\right),
\end{aligned}
$$

where c is not dependent on h.
Proof: Denote $\bar{e}_{h}=I_{h}^{1} \bar{u}-\bar{u}_{h}, \lambda_{h}=I_{h}^{0} p-$ p_{h} then $\left(\bar{e}_{h}, \lambda_{h}\right) \in V_{h} \times M_{h}$ satisfies
$a_{h}\left(\bar{e}_{h}, \bar{v}_{h}\right)+b_{h}\left(\bar{v}_{h}, \lambda_{h}\right)=$
$a_{h}\left(I_{h}^{1} \bar{u}, \bar{v}_{h}\right)+b_{h}\left(\bar{v}_{h}, I_{h}^{0} p\right)-F_{h}\left(\bar{v}_{h}\right)=$
$a_{h}\left(I_{h}^{1} \bar{u}, \bar{v}_{h}\right)+b_{h}\left(\bar{v}, I_{h}^{0} p\right)-F_{h}\left(\bar{v}_{h}\right)+$
$F\left(\bar{v}_{h}\right)-F\left(\bar{v}_{h}\right), \forall \bar{v}_{h} \in V_{h}$.
Multiply both sides of (1) by \vec{v}_{h} and integrate the formula in K and sum with K, to obtain
$F\left(\bar{v}_{h}\right)=a\left(\bar{u}, \bar{v}_{h}\right)+b_{h}\left(\bar{v}_{h}, p\right)+$
$\sum_{K}\left(\int_{\partial_{K}} p\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s-\int_{\partial K} \frac{\partial \bar{u}}{\partial n} \cdot \bar{v}_{h} \mathrm{~d} s\right)$.
Substitute this formula into (18) and use lemma 1 and lemma 2, to get
$a_{h}\left(\bar{e}_{h}, \bar{v}_{h}\right)+b_{h}\left(\bar{v}_{h}, \lambda_{h}\right)=$
$a_{h}\left(I_{h}^{1} \bar{u}-\bar{u}, \bar{v}_{h}\right)+b\left(\bar{v}_{h}, I_{h}^{0} p-p\right)+F\left(\bar{v}_{h}\right)-$ $F_{h}\left(\bar{v}_{h}\right)+\sum_{K}\left(\int_{K} \frac{\partial \bar{u}}{\partial n} \cdot \bar{v}_{h} \mathrm{~d} s-\int_{\gamma_{K}} p\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s\right) \equiv$
$\boldsymbol{R}\left(\bar{v}_{h}\right), \forall \bar{v}_{h} \in V_{h}$.
$b_{h}\left(\bar{e}_{h}, q_{h}\right)=b_{h}\left(I_{h}^{1} \bar{u}, q_{h}\right)-b_{h}\left(\bar{u}_{h}, q_{h}\right)=$
$b\left(I_{h}^{1} \bar{u}-\bar{u}, q_{h}\right), \forall q_{h} \in M_{h}$.
We estimate two terms $(1) \equiv \sum_{k} \int_{\partial k} p\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s$ and (2) $\equiv \sum_{K} \int_{\partial_{K}}-\frac{\partial \bar{u}}{\partial n} \cdot \bar{v}_{h} \mathrm{~d} s$. Denote $I_{K}^{0} p$ the piecewise constant interpolant of p in ∂K, i.e,
$I_{K}^{0} p I_{e}=p\left(m_{e}\right), \forall e \in E_{h}(K)$.
|(1) $\left|\leqslant\left|\sum_{K} \int_{\partial_{K}}\left(p-I_{K}^{0} p\right)\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s\right|+\right.$
$\left|\sum_{K} \int_{\partial_{K}} I_{K}^{0} p\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s\right|=$
$\left|\sum_{K} \int_{\delta_{K}}\left(p-I_{K}^{0} p\right)\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s\right| \leqslant$
$\sum_{K}\left\|p-I_{K}^{0} p\right\|_{-1 / 2, \partial K}\left\|\bar{v}_{k}\right\|_{1 / 2, \partial K} \leqslant$
$\sum_{K}^{K} \operatorname{ch}|p|_{1 / 2, \partial K}\left\|\bar{v}_{h}\right\|_{1 / 2, \partial K} \leqslant$
$\sum_{K}^{K} c h|p|_{1, K}\left\|\bar{v}_{h}\right\|_{1, K} \leqslant$
$c h\left\|_{p}\right\|_{1, \Omega}\left\|\bar{v}_{h}\right\|_{1, \Omega} \leqslant c h\|p\|_{1, \Omega}\left\|\bar{v}_{h}\right\|_{1, h}$,
where we use $\left|\sum_{K} \int_{\partial_{K}} r_{K}^{0} p\left(\bar{n} \cdot \bar{v}_{h}\right) \mathrm{d} s\right|=0$ and trace theorem.
| (2) $\left|\leqslant\left|\sum_{\bar{K}} \int_{\partial_{K}} \frac{\partial \bar{u}}{\partial n} \cdot \bar{v}_{h} \mathrm{~d} s\right| \leqslant\right.$
$\left|\sum_{K} \int_{\partial K}\left(\frac{\partial \bar{u}}{\partial n}-I_{K}^{0}\left(\frac{\partial \bar{u}}{\partial n}\right)\right) \cdot \bar{v}_{h} \mathrm{~d} s\right|+$
$\left|\sum_{K} \int_{J_{K}} I_{K}^{0}\left(\frac{\partial \bar{u}}{\partial n}\right) \cdot \bar{v}_{h} \mathrm{~d} s\right|=$
$\left|\sum_{K} \int_{J_{K}}\left(\frac{\partial \bar{u}}{\partial n}-I_{K}^{0}\left(\frac{\partial \bar{u}}{\partial n}\right)\right) \cdot \bar{v}_{h} \mathrm{~d} s\right| \leqslant$
$\sum_{K}\left\|\frac{\partial K}{\partial n}-I_{K}^{0} \frac{\partial \bar{u}}{\partial n}\right\|_{-1 / 2, \partial K}\left\|\bar{v}_{h}\right\|_{1 / 2, \partial K} \leqslant$
$\sum_{K} \operatorname{ch}\left|\frac{\partial \bar{u}}{\partial n}\right|_{1 / 2, \partial K}\left\|\bar{v}_{h}\right\|_{1, K} \leqslant$
$\sum_{K} c h\left|\frac{\partial \bar{u}}{\partial n}\right|_{1, K}\left\|\bar{v}_{h}\right\|_{1, K} \leqslant$
$\sum_{K} \operatorname{ch}|\bar{u}|_{2, K}\left\|\bar{v}_{h}\right\|_{1, K} \leqslant$
$c h\|\bar{u}\|_{2, \Omega}\left\|\bar{v}_{h}\right\|_{1, h}$,
by $\left|\sum_{K} \int_{\partial K} I_{K}^{0}\left(\frac{\partial \bar{u}}{\partial n}\right) \cdot \bar{v}_{h} \mathrm{~d} s\right|=0$ and trace theorem.

From (22), (23) and lemma 4, set $\bar{v}_{h}=\bar{e}_{h}$ in (19) to get $\left|R\left(\bar{e}_{h}\right)\right| \leqslant c T\left\|\bar{e}_{h}\right\|_{1, h}$, where $T=h\left(\|\bar{u}\|_{2, \Omega}+\|p\|_{1, \Omega}+\|\bar{f}\|_{0, \Omega}\right)$, and
$a_{h}\left(\bar{e}_{h}, \bar{e}_{h}\right)+b_{h}\left(\bar{e}_{h}, \lambda_{h}\right)=R\left(\bar{e}_{h}\right)$
From (20) and lemma 4 we get
$\left|b_{h}\left(\bar{e}_{h}, \lambda_{h}\right)\right|=\left|b\left(I_{h}^{1} \bar{u}-\bar{u}, \lambda_{h}\right)\right| \leqslant$
ch $\left\|\lambda_{h}\right\|_{0, \Omega}\|\bar{u}\|_{2, \Omega}$.
From (24) and $a_{h}=a$ in V_{h}, we get

$$
-1+20
$$

Abstract

$\left|\bar{e}_{h}\right|_{1, h}^{2}-c h\left\|\lambda_{h}\right\|_{0, \Omega}\|\bar{u}\|_{2, \Omega} \leqslant$ $c T\left\|\bar{e}_{h}\right\|_{1, h}$,

From the fact that b_{h} satisfies the discrete LBB condition and $a_{h}=a$ in V_{h}, we get
$c\left\|\lambda_{h}\right\|_{0, \Omega} \leqslant \sup _{\bar{v}_{h} \in V_{h}} \frac{b_{h}\left(\bar{v}_{h}, \lambda_{h}\right)}{\left|\bar{v}_{h}\right|_{1, h}}=$
$\sup _{\bar{v}_{i} \in t_{k}} \frac{R\left(\bar{v}_{h}\right)-a_{h}\left(\bar{e}_{h}, \bar{v}_{h}\right)}{\left|\bar{v}_{h}\right|_{1, h}} \leqslant$
$\sup _{\bar{v}_{k} \in t_{k}}\left(c T+c\left|\bar{e}_{h}\right|_{1, h}\right) \leqslant c\left(T+\left|\bar{e}_{h}\right|_{1, h}\right)$,

By substituting (27) into (26), we get
$\left|\bar{e}_{h}\right|_{1, h}^{2} \leqslant c T\left|\bar{e}_{h}\right|_{1, h}+c h\|\bar{u}\|_{2, \Omega}(T+$
$\left.\left|\bar{e}_{h}\right|_{1, h}\right) \leqslant$
$c\left|\bar{e}_{h}\right|_{1, h}\left(T+h\|\bar{u}\|_{2, \Omega}\right)+\operatorname{ch}\|\bar{u}\|_{2, \Omega} T \leqslant$
$c\left|\bar{e}_{h}\right|_{1, h} T+c T^{2} \leqslant$
$\frac{1}{2}\left|\bar{e}_{h}\right|_{1, h}^{2}+c T^{2}+c T^{2}$,
so
$\left|\bar{e}_{h}\right|_{1, h} \leqslant c T$.
Substituting this formula into (26), we get $\left\|\lambda_{h}\right\|_{0, \Omega} \leqslant \boldsymbol{c} \boldsymbol{T}$.
From the standard interpolant result,
$\left|\bar{u}-I_{h}^{1} \bar{u}\right|_{1, h}+\left\|p-I_{h}^{0} p\right\|_{0, \Omega} \leqslant$
$\operatorname{ch}\left(|\bar{u}|_{2, \Omega}+|p|_{1, \Omega}\right)$.
We complete the proof.

ACKNOWLEDGEMENTS

The author is grateful to professor Jiang Jingshen and Chen Xiaoliang for very inspiring discussions of this work.

References

Chatzipanteliols Panagiotis, 1993. A finite volume method based on the Crouzix-Raviart element for the elliptic PDE's in two dimension. Numer. math. 82: 409432.

Chou S.H., 1998. A covolume element method based on rotated bilinears for the general stokes problem. SIAM.J. Anal. 33(2) : 499-507.
Chou, S.H., 1997. Analysis and convergence of a MAClike scheme for the generali-zed stokes problem. Numer. method for PDE . 13: 147-162.
Li Cai., Song Wang, 1993. The finite volume method and application in combination. Jour of Comp and Appli Math. 106: 21-53.
Mishev Liya, D., 1999. Finite Volume Element methods for non-definite problem. Numer. math. 83: 162-175.
Vanselow Reiner, 1998. Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer method for partial diff equ. 14: 213 231.

