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Abstract: The author provides a new discretization method-the finite volume method(FVM). For the Stokes 
equation the velocity space is approximated by the nonconforming linear element based on the dual partition 
and the pressure by the piecewise constant based on the primal triangulation . Under the suitable smoothness of 
the solution, the optimal convergence rate O ( h )  is obtained, where h denotes the parameter of the space dis- 
cretization. 
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INTRODUCTION 

We consider the Stokes equation: 

- A ~ +  7 P = f  i n ~  (1)  
d i v e = 0  i n ~  (2)  

= 0 on 3 ~  

where ~ = ( u l ,  u2 )T and p denote the velocity 
and the pressure of the fluid respec t ive ly . . f  de- 
notes the external body forcing density. ~ is an 
open bounded and convex polygonal domain. 3 ~  
denotes the boundary of ~ .  

The discrete form for the conservative elliptic 
equation was recently obtained by FVM. The ba- 
sic idea is that after the original continuous prob- 
lem is integrated in a box, the integral equation 
is then discretized. Vanselow Reiner ( 1 9 9 8 )  
considered the equivalence between the FVM 
and the nonconforming Galerkin finite element 
method(FEM) for the simple Poisson equation. 
Generally speaking, FVM can be viewed as the 
Galerkin FEM or Petrov-Galerkin FEM. For ex- 
ample in (Li et a l . ,  1993) ,  FVM based on the 
box which is obtained by the inner vertex of the 

.triangulation, is regarded as the Galerkin FEM 
combined with the numerical integration. In 
(Chatzipanteliols, 1993) ,  the FVM based on the 
box obtained by the inner edge of the triangula- 
tion, is regarded as the nonconforming Galerkin 
FEM combined with suitable numerical integra- 

tion. In (Mishev et a l . ,  1999) ,  FVM based on 
the inner vertex, is regarded as the Petrov-Galer- 
kin FEM. For the Stokes equation, FVM can also 
be used for discretization, especially for the re- 
ctangular domain. In (Chou,  1998) ,  the Veloci- 
ty is approximated by the nonconforming rotated 
bilinear element,  and the pressure by the piece= 
wise constant. In (Chou,  1997) ,  the pressure is 
estimated by the nonconforming bilinear ele- 
ment. 

In this paper based on the idea in (Chatzip- 
anteliols, 1993) ,  we first construct a box based 
on the inner edge,  and the velocity is approxi- 
mated by the nonconforming linear element and 
the pressure by the piecewise constant. Under 
the suitable smoothness of the solution, the opti- 
mal convergence O ( h )  is obtained, where h is 
the parameter of space discretization(In this pa- 
per, c independent of h ,  denotes a general con- 
stant but may be different in different p laces) .  

DOMAIN PARTITION AND NOTATION 

Denote Th = { K} the regular partition of tri- 

angulation and hi( is the diameter of K.  h = 

max hK �9 Denote E~" the set of inner edges of tri- xE 

angulars. Eh (K)  is the set of edges of K.  Eh 

= U E h ( K ) .  For any K E  Th, we choose an 
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inner point ZK in K.  For any e E E~ n , a box be 
is constructed as follows:suppose e is the com- 
mon edge of two triangulars K i ,  K2 and denote 

Z1,  Z2 the inner points of K1, K2, respectively 

and A,  B denote the end points of e .  We con- 
nect the four points A ,  Z1,  B ,  Z2 and get a box 

b, .  { be }eEE~" is called the dual partition of Th. 

me is the midpoint of e .  For the given domain K 

C R 2 , L 2 ( K )  denotes the set of functions which 
is square integrable in K.  ( "," )~ denotes the 

scale inner product in L 2 ( K ) .  I" I,.K, II " II ,,~ 

denote the seminorm and norm in Sobleve space 

/ P ( K ) , s E N .  We introduce norms {1 �9 I[s,h 

andseminorms I'l~,h depending on the mesh.  

II v II = II v II 2,,K)1/2 . The seminorm 

I "1,.~ is defined analogously. I " I denotes the 

domain area in R 2 o r  the length of segment. For 

the vector function ~ = ( v~, v 2 )T. we can also 

define I ~ I~.K, II v II ( -,- ) ~ analogously. 

We introduce the finite element spaces V~ 

and M~. For any K E Tn, we define finite ele- 

ment ( K,  ~ K, PK ) where Y] K denotes the free- 

dom degree of the function value at the midpoint 
in the three edges of K and Px is the set of the 

linear polynomial in K .  In fact the element is 
Crouzeix-Raviart element which is not continuous 
in ~ .  We define the following spaces: Sh is the 

set of functions which axe linear in every triangu- 
[ar and continuous at the midpoint of every inner 

edge.  S ~ is the function which belongs to Sh and 

vanishes at the midpoint in every boundary side. 

V~ = S o x S ~ . M~ is the set of functions which, 

are constant in every K and belong to M.  where 
M,  which is defined in the next section, is the 
pressure space. 

DISCRETE FORM 

Integrating (1)  in be and using Green formu- 
la,  we get 

- 3----n + p " n d s  = ds V e  E E~", (3 )  

Integrating (2)  in K and using Green formu- 
la,  we get 

I ~ .  nds  = 0 V K E  Th. (4)  

The discrete form: find ( uh,  Ph ) E Vh x Ma , 
such that 

- On + Ph " ~ d s  = s V e  E E~ n ,  

(5) 

" n d s  = 0 V K E Th. (6)  

The above problem is equivalent to the following 
problem: find ( uh,  Ph ) E Vh • Mh,  such that 

ah(~h ,~ )  + bh(~ ,ph)  = Fh(~)  V ~  E Vh 
( 7 )  

Ch ( Uh , qh ) = 0 V qh E M h  , (8) 

w h e l ~  

Jb Ouh " 
a h ( ~ h , S )  = ~-~S(m,)  - -~-naS (9)  

eE~ , 

bh(~ ,pa)  = ~-~0(me) [ph  " rids (10)  

ch(uh ,qh)  = ~ q h ( Z K ) ~ U h  " rids (11)  
K~ T, ~' h 31( 

F h ( ~ )  = ~--]~(me)~ 'dx (12)  

The standard variational form of ( 1 ) ,  ( 2 )  : find 
( ~ ,  p ) E V x M,  such that 

a ( E , ~ )  + b ( ~ , p )  = F ( V )  V ~  E V ( 1 3 )  

b ( E , q )  = 0 V q E M (14)  

w h e r e  

V =  (H~o(~) )2 ,M = { q E  L2(O) : I q d x  = 0 t  
I1 

_- v v ( 1 5 )  

b ( ~ , p )  = -  ~f][p . ( V  �9 O)dx (16)  
xEr, K . 1  

Obviously, the bilineox forms a and b can 
also be defined in ( V + ( Sh )2 X ( V + ( S h )2 ) 

and ( V + ( Sh )2 ) x M respectively. Sot I ~ 12, h 
= a ( ~ , ~ ) .  
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EXISTENCE AND UNIQUENESS OF THE SOLU- 
TION OF THE DISCRETE FORM 

In order to prove the existence and unique- 
ness of the discrete form, we need the following 
lelnlTla.  

L e m n m  1. For any (v ,  q ) E  Vh X Mh, 
b~ ( v , q )  = - ch ( v , q ) .  

Proof :  For any ( ~ , q ) ~  Vh x M h, 

bh( fa ,q)  = ~ f ~ ( m e ) [ q  " hds  = 

~ ,  ~ (me)  q "  ~ds = 
KE T~ eEEs (K) ab~ )K 

~ q ( Z K )  ~ ~(,m,) �9 ~d~ = 
xE r~ ~E e~ (x)a~. IK 

f f] ,q(ZK) ~ ,  - ~(m~) �9 rids = 
KE T~ eQ- Eh (K)" 

- ~ q ( Z K ) [ ~  �9 rids = -  C h ( V , q ) . Q . E . D .  
~E r~ 

L e m m a 2 .  a h ( K , ~ )  = a ( ~ , V ) ,  for any 

( ~ , ~ ) 6 s ~  x s ~  
The proof is similar to that of Chatzipanteli- 

ols' s(1993) and is omitted. 
L e m m a  3.  b~ ( ~ , q ) = b ( ~ , q ) , for any 

( ~ , q )  ~- Va x M~. 
Proof :  

b a ( V , q )  - b ( ~ , q )  I = 

~ ( r r t e ) s  . Eds + ~r~Iq . ( V - ~ ) d x  = 

~ ~(me) [ q "  ~ds ~_a Iq" ( 7 "  ~)dx  = 
KE r, eE E~ ( K) , KETh" K 

~_~q(ZK)( ~ f ~(m~) "kds+ I:i" rids) , 
KE T~ e K)ob ~ K 

from the proof of lemma 1, 

~ f v ( m ~ ) "  rids + I:~" fids = O" 
e r)ab NK 

This completes the proof. 
T h e o r e m  1. The discrete form ( 7 ) ,  ( 8 ) 

has one and only one solution. 
Proof:  From the coeeivity of a and the fact 

that b satisfies the L-B-B condition and lemma 
1 . 2 . 3 .  ah satisfies coeeivity in Sh x S~ and bh 
satisfies the discrete L-B-B condition. So, the 
problem(7) - ( 8 )  has a solution. In the finite 
dimensional linear system, the existence is 

equivalent to the uniqueness. This proves the 
theorem. 

CONVERGENCE 

Denote I~ff and ~hP the standard interpola- 
nts of ~ and p in Vh and Mh respectively. 

We can prove the following lemma. 
L e m m a  4 .  

I a ( I i ~  - U,Vh) I<~ ch I ~ I2,a I ~h II,h 

V u E ( H 2 ( ~ ) )  2, ~h E Vh 

I b ( ~ h , ~ p  - - p )  I<. eh I p Ii,a I ~h I~,h 

V P  E H I ( & " ~ ) ,  Vh G Vh 
I b ( I ~ E  - ~ , q h )  I<~ ch  I qh 10,n I a I2,n 
V a E ( H 2 ( ~ ) )  2, qh E Mh 
I F(~h)  - Fh(f~h) I<~ c h l ~ h  Ii,h It0>[I 0,a 
V.)  7e ~ ( L 2 ( ~ ' ~ ) )  2 ,  ~h  ~ Vh  

P r o o f :  

l a ( I ~  - u , v h ) l < ~  

I V ( I I ~ -  ~ ) V ~ h d x  ~< 

[ I 1 ~  -- U I1,K I Vh I1,K ~< 
K 

ch~ I ~ I2,K [ Vh I1,K ~< 
K 

ch [ a 12,f~ [Vh [l,h, 
b ( ~)h ' lOhp - -  p) l  = 

- ~ I ( ~ p - p ) 7  "~hdx  <~ 

K 

c h ~  I p Ii,K I ~h I1,K ~< 
K 

ch I p Ii,n I Vh II,h, 
b(Ilhu -- H,qh) l  = 

�9 _ 

~ g 

K 

ch~ II qh I] 0,K I X I2, K ~-~ 
k 

ch II qh II 0 a  I ~ 12a 

r ( ~ ) h )  - -  Fh(~h)l = 

~ v h ( m e ) ~ d x  -- ~x ~ ~  vhdx = 

~ - ] ( ~ f # ~ ( m ~ )  i y d x - ~ "  vhdx)[  = 
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]~  II ~,, (m.)  - ~h II o,~,n,~ II ] II o,~nK I, 
K eEEs(K) 

by the standard interpolant result,  above men- 
tioned formula 

K eEE,(K) 
ch  H ~)h II ,,a II f II 0,~ � 9  

Using the above lemma, we can prove the fol- 
lowing main theorem. 

T h e o r e m  2 .  If the solution of ( 1 3 ) ,  ( 1 4 )  
( ~ , p ) E ( n 2 ( ~ 2 ) )  2 • nl(&"~) and ( U h , P h )  is 

the solution of ( 7 )  - ( 8 ) ,  the following estima- 
tion holds : 

] ~ - ~h 11,~ + II p - Ph It 0, .  < 
ch( II ~ II ~,,~ + II p II , ,~ + It f II o , . )  . 

where c is not dependent on h .  

P roo f :  Denote eh = I ~  -- Uh, )th = ~hP - 

ph then (~h,  2h ) E  Vh X M h satisfies 
ah ( ~ h ,  ~ ) + b~ ( ~ ,  ;t~ ) = 
ah ( I l  u , vh ) + b, ( vh ,10~p ) - Fh ( vh ) = 

ah ( Ilhu , Vh ) + bh ( v ,10hp ) - Fh ( ~)h ) + 

F ( v h )  -- F ( v h ) ,  VVh E Vh. ( 1 8 )  
Multiply both sides 

grate the formula in K 
tain 

F(1)h )  = a ( u , ~ )  h ) 4" 

of ( 1 )  by ~h and inte- 

and sum with K ,  to ob- 

bh (~)h ,p)  + 

~ ( f p ( n  " ~h)d,  - I,~ a~ �9 ~ d s ) .  

Substitute this formula into (18)  and use lemma 
1 and lemma 2,  to get 

ah ( eh , v~ ) + b~ ( vh , Ah ) = 

ah(  I~h~ - U,Vh)  + b(vh,10hp - - p )  + F ( v h )  - 

F ~ ( ~ ) + ~  - ~ d ~ -  ( n - ~  = 

R ( v h ) ,  V v h  E Vh.  ( 1 9 )  

bh ( e.h , qh ) = bh ( I~h~ , q~ ) - bh ( Uh , qh ) = 

b ( l ~  - u , q h ) ,  ~ qh E ' M h .  ( 2 0 )  

W e  est imate  ( 1 )  = 

and (2)  ---- ~ - �9 ~hds . Denote 10KP the 

pieeewise constant interpolant of p in 8 K ,  i .  e ,  

1010o le = p ( m e ) ,  V e E E h ( K ) .  (21)  

(1) ,~< ~ [ ( p - 1 0 x p ) ( n . ~ h ) d s  + 

K 

~ c h  [ p [l12,0K [I ~)h [I 112,3K < 
K 

~ c h  I p I,,,~ I1 ~ II ~,~ ~< 
K 

ch II p II 1,12 [I Vh [I 1,ft <~ ch IIp II 1,o I] vh II 1,h, 
(22) 

where we use 

trace theorem. 

( 2 )  I <  

~ fK10Kp( K " vh ) d s  

ch ~n ln.~K 

a ~  11 ~h II t,K ~< ch -~n 1,~ 

K 
r II ~ II 2,fl {I ~h II 1,h, 

by ~f10K{30-~gn)o ~hd, = 

theorem. 

-~n " vh ds <~ 

- ) .  + 

-l12,0K 

0 and 

= 0 a n d  

(23)  

trace 

From ( 2 2 ) ,  ( 2 3 )  hnd lemma 4 ,  set vh = eh 

in (19)  to get I R ( ~ n ) l  ~<cT I[ ~h II 1,h, where 

T = h( II ~ I[ 2,. + II p II 1,. + II f I[ 0,~) , 
and 

a h ( e h , e ,  h ) + bh(~h ,2 th)  = R ( ~ h )  (24 )  

From (20)  and lemma 4 we get 

I bh ( e h ,  2h ) I = I b ( l a h ~  - ~ ,  )th ) I <~ 

ch II Rh II 0,a II ~ II 2,n- ( 25 )  

From (24)  and ah = a in Vh, we get 
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, ~ t ~ ch ll a~ ll II~l l  l ,h  -- 0,~2 2,12 

cT II ~h II ,,h, (26)  

From the fact that bh satisfies the discrete LBB 
condition and ah = a in Vh, we get 

bh (~h,  Ah ) 
c l l a h l l 0 , ~ < s u ~  I~h ILh - 

R(~h) -- a h ( ~ h , ~ h )  
~ I Uh I , , h  

g u g ( c r  + c II,h) ~ c ( Z + l  ~'h II ,h) ,  

(27)  

By substituting (27)  into ( 2 6 ) ,  we get 

I eh 121,h <~ cTI ~h II,h + ch II ~ II z , a ( T +  
[E 'h  I I , h )  ~< 

c I ~h I i , h ( T +  h II ~ II 2,a) + c h  II ~ II = ,aTe< 
c I eh I I,h T + cT2 <<. 

1 
--~ I e-h 12,h + c T  2 + c T  2 ,  

s o  

l e/~ I i , h  ~< c T .  

Subst i tut ing this formula into ( 26 ) ,  we 
II ah II o,a ~< c T .  

From the standard interpolant result, 

] ~ -  llUll,h + lip -  ptl0,  ~< 

get 

ch(I ~ I-2,a +1 p I i ,a) �9 

We comple te  the proof.  
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