ISSN 1009 - 3095 Journal of Zhejiang University(SCIENCE) V.2, No.4,P.411 - 415, Oct. — Dec., 2001
http: //www . periodicals. com. cn; http: //www. zju. edu. cn;

http: //lib. zju. edu. cn/English; http: //www. zjupress. com 411

VIRTUAL INSTRUMENT SYSTEM SOFTWARE
ARCHITECTURE DESCRIPTION LANGUAGE"

ZHOU Hong(J& ¥4, WANG Le-yuGEAR 59
(Department of Instrumentation Science & Engineering > Zhejiang University> Hangzhou 310027 5 China)

Received June 30, 2000; revision accepted Apr.18,2001

Abstract:

in defining software architectures in terms of abstractions that they find useful, and in making a smooth transi-

In software engineering, an architecture description language (ADL) is intended to aid designers

tion to code. Based on ADL, the concept and models of the Virtual instrument system Software architecture
Description Language (VSDL) is provided in this paper. The VSDL put forward provides a new method for vir-
tual instrument system’s application design and development by describing the virtual instrument system soft-
ware architecture effectively. In this paper; the model description~ component description and line description
are analyzed in detail, and the structure language based on the model is also provided. VSDL provides a
smooth interface to graphic software platform, and has been applied to many virtual instrument systems’ inte-

gration and already yielded good results both in technology and economy.

Key words:

architecture description language (ADL), virtual instrument, software architecture description

language, gTaphic software plathI'm, system integration

Document code: A CLC number:

INTRODUCTION

In order to describe the software architecture
of a system correctly, improve the efficiency of
system software design and development, soft-
ware engineers brought forward many methods for
analysing software architecture and design mode-
ls (Garlan et al., 1992; Le Metayer, 1998;
Ying, 2000). One of the most
methods adopts boxes-lines diagram to develop
abstract description. The box represents system
software component and the line represents the

intuitionistic

connection between the components. The method
of this model is described as Eq.(1).
S= 1By By>>*"» B, Lpp > Lyp "> Ly p }

n-1"n

QP

This method is comparatively intuitionistic,
but is not clear enough in describing either com-
ponent or connection. To the component, it only
gives the abstract concept description without im-
plementation manner. To the connection, it does
not give specific definition. What on earth repre-
sent does the connection is not clearly defined.
It can represent data stream, function stream,

TP311

property inherit, property include and belongs to
process call. Normally, within a system> many
connection manners are included and this makes
the system software architecture very blurred.
Therefore; boxes-lines diagram is only suitable
for primary software analysis work .

With the development of Object-Orient tech-
nology> which has become the popular method of
software design and development, software com-
ponents appear in concept as encapsulation of
class and object> the whole software system is
made up of the integration of many classes and
1986; Coad, 1992; Terry,

1994); communication between the objects is

objects (Booch,

achieved by member functions, which are de-
fined in the class, as shown in Eq.(2).

S: {01’02"“’0"”]]’]2"“’]",} (2)

By the cognizance of the object in the soft-
ware analysis phase, this method confirms the
class and the construction of the class layer in
the problem space. In the design phase, through
definition of the class and organization of class
layer architecture, the method confirms the class

Project(97-772-01-06) supported by “ Ninth-Five” National Important Science & Technology Research Project.

412

ZHOU Hong, WANG Leyu

and class layer construction; and if they exist in
space, confirms the external interface and main
data structure. Compared with abstract diagram
definition, it is more widely applied; all data
structures and operation of class definition can be
implemented in concrete programming language .
But in the concrete virtual instrument system, it
is not easy to cognize the class and the class
layer construction, especially when instrument
engineers are requested to abstract the problem
space to the realizable class (Waheed et al.,
1998; Fu et al., 2000). The workload is enor-
mous. What is more is that because data inter-
face is encapsulated in the classess the commu-
nication between data is indirect. This to some
extent> leads to difficulties in the software design
and program.

In order to describe the software architecture
model better> software engineers put forward a
new concept ~Software Architecture Description
Language ” using construct text to describe mode-
For
example, Rapide based on event model (Luck-
1995), ArTek based on structure
design has already been implemented successful-

Is and connection in software architecture.
ham et al.,

ly in certain systems CAllen et al., 1994) .

PRESENTATION OF VSDL

Virtual instrument system is a typical com-
puter system. It is composed of several modules
following a certain destined goal of information
management and implementing specified infor-
mation test> analysis process and control task.
Virtual instrument system is composed of system
hardware structure and software structure. Vari-
ous interface technologies provide connection and
System hardware
structure has more clear specification, but the

interaction between them.

design of software structure can embody more ca-
pability and flexibility of the whole system;
whose scale and quality depends mainly on soft-
ware structure.

This article presents a new language ”Virtual
instrument system Software architecture Descrip-
tion Language (VSDL) to describe more effec-
tively the virtual instrument system’ s software
structure based on analysis of the system’ s soft-
ware structure features synthetically (Wieder-

hold, 1992; Kerth, 1995; Allen et al., 1994;

Prieto-Diaz et al., 1986).
VSDL is composed of Software Structure
Components and Interface-Module, as shown in

the Eq. (3).
S = {Cl ’ 029 °tcy Cn’ Iclcz ’ ICIC3 s %y Icnil . }
(3>

VSDL is based on the following theoretical
foundation:

The system software structure should have
the following features for processing software
structure description: detachability, indepen-
dence between software structure components,
independence in operation of components. The
virtual instrument system software structure uses
function layers between upper and lower layers,
and left and right layers and adopts a module
scheme. So the whole system can be completely
separated . Data operation proceeds via the inter-
faces of software components which have the uni-
form format.

The virtual instrument system’ s task is defi-
nitely defined and the structure is clear. System
integration engineers can decompose tasks and
functionality easily. The decomposing can result
in description language without class encapsula-
tion, so the design process is comparatively
easy.

Virtual instrument developerss during hard-
ware modules design always use hardware de-
scription language such as VHDL (Berge et al.
1992). VSDL and VHDL are similar in struc-
ture, so it is easy for instrument developers to
learn and master them.

Graphics platform, which is used to develop
system application program, adopts text file for-
mat in internal description. The resulting text,
which adopted VSDL to describe software struc-
ture is very similar to Graphics Platform” s soft-
ware structure description text. The description
result text of VSDL can be used as source code
by the graphics platform after parse.

VSDL itself is not a compilable language . Its
software description text is more abstract than the
description text of the graphics platform. Execut-
able codes are not included in VSDL and execut-
able parts are not included in components. It is
parsing and execution proceed via the definition
of components class. Thus, VSDL only provides
interface between virtual instrument software
structure and graphics platform, and its imple-

Virtual instrument system software architecture description language

413

mentation eventually depends on the special
graphics platform.

COMPOSITION AND CONSTRUCTION OF VSDL

VSDL is composed of module description,
component description and connection descrip-
tion. Component description and connection de-
scription are necessary> while module description
is the extended part which is optional. The
whole language structure adopts structure text.
Program text is composed of a lot of paragraphs.
with each paragraph having a start symbol at the
beginning and stop symbol at the end, and in-
cludes a lot of attribute items. Paragraphs are of
three types: module paragraph, component para-
graph and connection paragraph. In the module
paragraph, basic attribute paragraph, input port
paragraph, output port paragraph, and compo-
nents set paragraph are defined. In the compo-
nent paragraph, basic attribute paragraph, input
port paragraph, output port paragraph and self-
defined attribute paragraph are defined. In the
connection paragraph, the connection relation
between components is defined. The attribute
item is composed of left and right item separated
by the symbol of “ = 7. the left item is the name
of attribute and the right is the value of at-
tribute . The whole construction description lan-

guage is shown in follow Fig. 1.
Application Module Basic attribute
prograrm paragraph paragraph
[nput port

paragraph

Cutput port
paragraph

Compaonent set
paragraph

Basic attribute
paragraph

Coamponent
paragraph

[nput port
paragraph

Output port
paragraph

Self-defined
attribute paragraph,

Attribute
paragraph

Conngetian
paragraph
Fig.1 Construction diagram of VSDL

description language

Module paragraph uses string “ MODULE {”
as paragraph start symbol, and “MOUDLE }” as
end symbol, and includes a series of attribution
paragraph:

Basic attribute paragraph: The paragraph us-
es “BASEATTR {” as paragraph start symbol,
and “BASEATTR }” as paragraph stop symbol.
The main items include the module identifier
which to identify diverse modules and the module
display name used in the flow chart display.

Input port paragraph: The paragraph uses
“INPORT {” as paragraph start symbol, and
“INPORT}” as end symbol. The main items in-
clude the input port name, the data structure,
the connection status and the connection name .

Output port paragraph: The paragraph uses
“OUTPORT {” as paragraph start symbol, and
“OUTPORT}” as end symbol. The main items
include the output port name, the data struc-
ture> the connection status and the connection
name .

Component set paragraph: The paragraph us-
es “INCOMSET {” as paragraph start symbol,
and “INCOMSET }” as end symbol. The main
items include all components’ identifier in the
module .

Component paragraph uses character string
“ COMPONENT {” as paragraph start symbol,
and “ COMPONENT }” as paragraph end symbol,
in which is a series of attribution paragraph.

Basic attribute paragraph: The paragraph us-
es “BASEATTR {” as paragraph start symbol,
and “BASEATTR }” as paragraph end symbol.
The main items include component identifier,
component display name, component type iden-
tifiers component display size and display posi-
tion.

Input port paragraph: The paragraph uses
“INPORT {” as paragraph start symbol, and
“INPORT}” as end symbol. The main items in-
clude the input port name, the data structure,
the connection status and the connection name.

Output port paragraph: The paragraph uses
“OUTPORT {” as paragraph start symbol, and
“OUTPORT}” as end symbol. The main items
include the output port name> the data struc-
ture, the connection status and the connection
name .

Self-defined attribute paragraph: The para-
graph uses “ SELFATTR {” as paragraph start
symbol, and “ SELFATTR }” as end symbol.

414

ZHOU Hong, WANG Leyu

The main items include defined related specified
attributes of components, such as limited value
of thermometer.

Connection paragraph uses “ LINE {7 as
paragraph start symbol, and “LINE }” as end
symbol, in which is a series of attribution para-
graph:

LINENAME: Connection name

LINEFROMUNIT: Connection start module
or component

LINETOUNIT: Connection terminate module
or component

LINEFROMPORT: Connection start port

LINETOPORT: Connection terminate port

Application of VSDL
When using VSDL for program descriptions
the top-down method is adopted. The module
paragraph is first defined, then the module unit
is decomposed to yield detailed component para-
graph definition. The module paragraph can be
nested. Connection paragraph aims at both mod-
ule and component. Ultimately the program is
implemented by component types’ identifiers
which are defined in the component paragraph.
The construction of the whole program is shown
in below:
MODULE {
BASEATTR {
NAME = MODULEL1
DISPLAYNAME =
BASEATTR }
INPORT {
PORTNAME =
PORTTYPE =
PORTSTAT =
LINENAME =
INPORT }
OUTPORT {
PORTNAME =
PORTTYPE =
PORTSTAT =
LINENAME =
OUTPORT}
INCOMSET {
NAME1 = COMNAMEL1
NAME2 = COMNAME?2

INCOMSET }

MODULE }

COMPONENT {
BASEATTR {
NAME = COMNAME1
DISPLAYNAME =
TYPE = VI-TEXT
LEFT =
TOP =
WIDTH =
HEIGHT = BASEATTR }
INPORT {
PORTNAME =
PORTTYPE =
PORTSTAT =
LINENAME =
INPORT }
OUTPORT {
PORTNAME =
PORTTYPE =
PORTSTAT =
LINENAME =
OUTPORT}
SELFATTR {

SELFATTR }
COMPONENT }

LINE {

LINENAME =
LINEFROMUNIT =
LINETOUNIT =
LINEFROMPORT =
LINETOPORT =
LINE }

After system software architecture description
is put in VSDL description format, the descrip-
tion text parser developed in this project is used
to process the decompose step to VSDL text. The
parse arithmetic separates paragraphs from VSDL
text, assigning texts which belong to different
paragraph to different parse subprogram. After

Virtual instrument system software architecture description language

415

text is separated, the description text can be
conveniently used by software developers to
choose corresponding graphics platform environ-
ment. Now HP VEE developed by HP in USA
and VPP developed by Digital Technology and
Instrument Institute in Zhejiang University are
recommended. Parser encapsulates parse result
with VEE or VPP description text automatically .
The module description will be converted into
UserObject unit in graphics platform. The de-
scription text can be directly called by the graph-
ics platform and be converted into graphical
source codes> with the results stored in graphic
platform .

CONCLUSIONS

Use VSDL to describe virtual instrument sys-
tem software construction yields excellent results
in structure and description, and easy interaction
with graphics software platform. But unfortunate-
ly, if the application program is developed under
text language platform> VSDL only provides a
system description definition, and can’ t yield
compatible result for language platform. This is
VSDL’ s limitation. VSDL can now only be used
to describe the virtual instrument system standard
model> not the extend model, and system scale
is limited too. At the same time; it is also influ-
enced by defined component types. In some cas-
es, the text described can’t be completely con-
vert into source code for graphics platform. So it
needs further modificationCon the aspects of po-
sition and size of components, etc) .

VSDL as a new system software construction
description method, provides a new way to en-
hance the efficiency of virtual system instrument
software architecture, especially in the design
and development of application program. VSDL’
s practicability resulted in its steady implementa-
tion in several virtual instrument system integra-

tion projects.

References

Allen, R., Gralan,D., 1994. Formalizing architectural con-
nection. In: Proceedings of the Sixteenth International
Conference on Software Engineering, p.340 — 348.

Berges J. M., Fonkoua, A., Maginot> S. et al., 1992.
VHDL Designer’ s Reference. Kluwer Academic Publish-

Booch, G., 1986. Object-oriented development. IEEE
Trans. on Software Engineering, SE — 12(2): 211 —
221.

Coads P., 1992. Object-oriented patterns. Communications
of the ACM . 35(9):153 - 159.

Fu Lieyong> Gu Zhongwen, 2000. The Development of simu-
pro series operator training systems for complicated indus-
trial processes, Journal of Zhejiang University (SCI-
ENCE), 1(4):377 - 380.

Garlan, D., Kaiser, G. E., Notkin, D., 1992. Using tool
abstraction to compose systems. [EEE Computer, 25
(67:30 - 38.

Kerth, N. L., 1995. Caterpillar’ s fate: A pattern language
for the transformation from analysis to design. In: James
Coplein and Douglas Schmidt, eds., Pattern Languages
of Program Design, Addison-Wesley, p.293 —320.

Le Metayers D., 1998.
styles using graph grammars. IEEE Trans. On Sofiware
Engineering, 24(7):521 - 533.

Luckham, D. C., Augustin, L. M., John, J. K. et al.,

1995. Specification and analysis of system architecture

Describing software architecture

using Rapide. I[EEE Trans. on Software Engineering,
Special Issue on Software Architecture, 21 (4): 336 —
355.

Prieto-Diaz; R. > Neighbors; J. M., 1986. Module intercon-
nection language.
(45:307 - 334.

Terry, A.» 1994. Overview of Teknowledge’ s domain-specif-
ic software architecture program. ACM SIGSOFT Software
Engineering Notes> 19(4):68 - 76.

Waheed, A., Rover; D. T., Hollingsworth, J. K., 1998.
Modeling and evaluating design alternatives for an On-

Journal of System and Software, 6

line instrumentation system: A case study. [EEE Trans.
on Software Engineering, 24(6):451 — 470.
Wiederhold, G., 1992. Mediators in the architecture of fu-
ture information systems. IEEE Computer, 25(3):38 —
48.
Ying Jing, He Zhijun, Wu Minghui, 2000. Evolution-based
software developing environment, Journal of Zhejiang

University (SCIENCE), 1(4):381 —383.

