ISSN 1009 - 3095 Journal of Zhejiang University(SCIENCE) V.2, No.4,P.416 — 420, Oct. — Dec., 2001
http: //www . periodicals. com. cn; http: //www. zju. edu. cn;

416 http: //lib. zju. edu. cn/English; http: //www. zjupress. com
A PREDICTABLE MULTI-THREADED MAIN-MEMORY
STORAGE MANAGER"
SONG Guang-hua(R)”#), YANG Chang-sheng(#14), SHI Jiao-ying(41 B9¢)
(Department of Computer Science and Engineering » Zhejiang University, Hangzhou 310027 > China)
Received Dec.25, 2000; revision accepted Apr. 18,2001
Abstract: This paper introduces the design and implementation of a predictable multi-threaded main-memo-

1y storage manager (CS20), and emphasizes the database service mediator(DSMD, an operation prediction

model using exponential averaging. The memory manager; indexing, as well as lock manager in CS20 are also

presented briefly. CS20 has been embedded in a mobile telecommunication service system. Practice showed,

DSM effectively controls system load and hence improves the real-time characteristics of data accessing.

Key words:

Document code: A CLC number:

INTRODUCTION

Many database applications, such as tele-
communications industry, factory automation,
require high performance and real-time access to
data. DRDBs(Disk Resident Database), howev-
er> are inadequate to meet such requirements
because of high disk access overheads for data
MMDBs (Main-memory
Database)> which are now feasible with the in-

retrieval and update.

creasing availability of large> cheap memory,
can better support these time critical applications
(Son, 1988; Lehman et al., 1992; Ying et
al.» 2000).

Many researches have been made on MM-
DB. For example, Son et al. (1993) introduced
“RTDB”; an MMDB supported by “ ARTS”, a
real-time operating system kernel. Bohannon et
al. (1997) presented “Dali”, former version of
“ DataBitz 7,
based on multi-process architecture where data-

a main-memory storage manager

base files are shared among processes with file
mapping. In the author’s another work (Song et
al.,1999), “ZEDB”, a main-memory storage
manger designed for telecommunication applica-
tions, with multi-process architecture is present-
ed in detail. Despite the fact that data access
may be much faster when dataCor most of the da-
ta) are fit in memory, MMDBs still seem inade-

* Project (60073026 supported by NSFC.

main-memory database(MMDB), database service mediator(DSM), hash indexing, lock

TP311

quate to meet all access requirements when many
applications are requesting for service, especial-
ly in a client/server environment. Therefore ac-
cess control is beneficial for maximal compliance
with time constraints. However, few researches
have been made on access control in MMDBs.

This paper introduces a predictable main-
memory storage manager> CS20, which is based
on multi-threaded architecture and can limit data
access to meet overall data access requirements.
The DSM Can operation prediction facility using
exponential averaging) is presented and will be
discussed in detail. The memory management,
data indexing, as well as lock manager in CS20
are also presented in the following sections.

ARCHITECTURE OF CS20

There are three possible ways for building an
application program using CS20. One way is to
develop a main-memory relational DBMS by pro-
viding a relational Cor object-oriented) data
model and implementing a query processing layer
on top of CS20. The second is to let application
processes make use of the functionality of CS20
by communicating with the CS20 server process.
The third is to provide the functionality of CS20
as a library and to make application programs

A predictable multi-threaded main-memory storage manager

417

linked with the library.

Taking the first way, it is easy to make ap-
plication programs or queries on data because the
system provides a general data model that can be
understood easily by the users. The second alter-
native is effective when an application requires
simple but fast access to database rather than
complex manipulations .

CS20 aims to support all the alternatives.
Currently, the second alternative is implemented
first because many applications require simple
but fast access to the database. Furthermore, it
is feasible to develop a main-memory real-time
DBMS on top of the CS20 when the second way
is running stably .

Fig.1 describes the architecture of the CS20
server process. The server is multi-threaded to
execute multiple actions concurrently and to take
advantage of multi-processor architecture. When
the server process starts up> it creates a pool of
threads. A thread is tied to a particular message
type.

: Database service T
mediatlor

; P HOPOTOR Service threads with '
! priority :

i |Accepted request queuesJ Memory store
H with priority -

sacasan

|Chcckp0int thread| ILog flush thread

H
1
{ Server process
H

Fig.1 Architecture of CS20

If application processes run on the same ma-
chine with the CS20 server process> IPC is em-
ployed, otherwise network IPCCTCP/IP sockets)
is used.

When a request message arrives, it is submi-
tted to the DSM(the database service mediator,
discussed in Section 3). DSM decides whether
the required message can be accepted. If it is
accepted, DSM delivers the request to an appro-
priate action queue. A service thread corre-
sponding to that action queue picks the action
from the queue and executes the action. When it

finishes the action, it places the result on the re-
sponse queue. The service thread runs until is
has to wait for a resource such as lock or sema-
phore, or is preempted by thread scheduling.

The checkpoint thread and log flush thread
deal with I/0 and run asynchronously with action
service threads. The checkpoint thread moves
dirty pages in the primary database to the back-
up> and the log flush thread flushes the hybrid
log (Song et al., 2001) in the system’ s log
buffer in main memory to a nonvolatile log vol-
ume.

DSM: THE DATABASE SERVICE MEDIATOR

1. Purpose of DSM

DSM is an action service mediator. When a
request message arrives; DSM validates it ex-
tracts its arrival time, its message priority ac-
cording its message type> its constrained dead-
line; and then predicts its processing time. If
the message is valid and is predicted capable of
being executed within the required deadline, it
is put into the corresponding action queues oth-
erwise it is rejected.
2. Prediction of message executing time

When a request message arrives at DSM, its
executing time is predicted. A message is sup-
posed to be executable if its allowed execution
time is within the predicted execution time. The
executing time of the next message with priority i
can be predicted with the observation of real exe-
cuting time of previous messages with the same
priority. Here, exponential averaging is exploit-
ed:

PTi<11+]) =a*RT, +(1 - a).Pﬂ(rz,—])

m

QP

where PT); is the predicted executing time of the
Jth message with priority i. RT); is the real exe-
cuting time of the jth message with priority i. «
is a constant weighting factor(0 < a < 1) that
determines the relative weight given to more re-
cent and less recent observations. PT| is initial-
ized as O as no previous message has been exe-
cuted.
The expansion of equation (1) is:
PTi,,»=a*RT, + (1 —a)*RT;,_) + " +
(1 —a)'T,;(",_I) + o+ (1 —0()"'_]'

418

SONG Guanghua, YANG Changsheng et al.

a’Ti1+(1—a)"'PT1 (2)

Because both o and (1-a) are less than 1, each
successive term in Eq.(2) is smaller. The older
the observation, the less it contributes to the av-
erage. Larger value of a results in a more rapid
reaction to the change in the observed value.
When a message arrives, its start time> 73S,
is obtained. Let TC be the current time, then

TL=TC - TS

is supposed to be the latency of message trans-
portation. Assume that the same latency is
required to transport the reply message back to
the application. This implies that the maximum
Callowed) execution time is:

MT = DL -2 TL=DL -2 (CTC - TS),

where DL is the deadline of the message. De-
scription of prediction is as follows:

/* MT; is the allowed maximum execution
time of next message with priority i, PT; is the
predicted execution time of next message with
priority 1 * /.

When a message is received:
{
it (MT; < PT,) {
Abandon the message and acknowledge
the application;
Set PT; =0;
}
else {
Accept the message;
Set TC = current time;
Convert the message into action of the da-
tabase .
Put the action as well as TC to the corre-
sponding action queue.

}

When execution of the message is finished, PT;
is adjusted:

{

Set FT = current time, FC is supposed to be
the finish time of the message;

Set RT; = FT — TC, RT; is the execution
time of the message;
PT; is adjusted:

PTi=a’RTi+(l—a)'PTi

In DSM, after a message is rejected, PT; is
reset, making the successive message accepted.
Hence it avoids abandoning a sequence of mes-
sages after a series of time-consuming actions are
executed .

MEMORY MANAGEMENT WITH PARTITIONS

1. Memory partitioning

User data in CS20 are stored in partitions. A
partition is a fixed-length contiguous memory
block, which can store a definite number of user
tuples. Let the system contain N partitions, with
P; the ith partition. The data set in P; is pre-
sented as DP; . Then the total data set in CS20
(DU is:

N
Dy = L_J] Dp s and Dp = @, for all i, j such that
l<irj< N and i#].

The partition information in CS20 are main-
tained in the PDTCpartition directory table) .
2. User data indexing

User data indexing in CS20 is implemented
as2-level separated hashing.

PDT P,
Prefix [Pno | 7TTTTTTTTTTC > <uple>
?
PIT, PIOT, PFT.
<key, ptr> | nxt <key, ptr> | nat L
e N - o
ittt .- -

Fig.2 Partition-based 2-level hashing

A predictable multi-threaded main-memory storage manager

419

Let K be the key word of a user tuple, with
its length Ly . The prefix of K is the most signif-
icant of Lp bitss denoted as PCKD; The suffix
of K is the least significant of Lg bits> denoted as
SCK). Here Lp = fCLg)s Lg=g(CLg)> and
Lp + Ls< Lg> f and g are a priori. Every par-
tition has a PFT(partition free tuple list table),
a PITCpartition indexing table)and a PIOT(par-
tition index overflow table) . The first level hash-
ing function, F;, is used to index a partition
where user tuple will be fit. While the second
hashing function> F,, is exploited to index a tu-

ple in the partition.
LOCK MANAGER

The Lock Manager in CS20 is a thread to
manager locks. CS20 exploits one granule of
lock: record level lock. Hence it improves the
level of parallelism. Deadlock is avoided be-
cause “ priority abort” and “deadlock detection”
is employed in the lock manager.

When a transaction wants to aquire a lock on
a tuple that is already locked by another transac-
tion> conflict occurs. If the former has higher
priority over the latter> the latter is aborted. If
the former has lower priority than the latter, it is
aborted. If two transactions have equal priority,
deadlock detection is made. If deadlock occurs,
the former aborts, otherwise, it is blocked until
the lock is released.

Deadlock detection in CS20 exploits the
checking of circular wait. If circular wait exists
when the lock requirement is granted, deadlock
may occurs otherwise, deadlock may not occur.

Every partition includes a partition lock table
(PLT) which maintains every lock in the parti-
tion. Each lock is a tuple < TID; Transld, Lock-
Count > > where TID is the tuple-IDCor key) of
the tuple, Transld is the identifier of the trans-
action that owns the lock. LockCount is a
counter that reflects the relative elapsed time
since the lock was made. Lock Manager periodi-
cally scans every PLT of the partitions, incre-
If LockCount
reaches to a pre-determined limit, it is supposed
that the lock is too old. Unlock its and abort the
transaction.

ments every LockCount by 1.

PERFORMANCE ANALYSIS OF DSM

The performance of CS20 with and without
DSM has been tested in HLR subsystem, most
important in the mobile telecommunication ser-
vice system where frequent access to subscriber
information is required. The test was carried out
on a HP LH3 server, with 1 Pentium- Il proces-
sor of 500 MHZ, and 256 MB main memory run-
ning Windows NT4.0. In the test» 30 thousand
pieces of mobile subscriber profile information
were stored, each occupying 256 bytes of memo-
ry space. The experiment was implemented this
way: each test contained 100 000 lookup-and-
modify operations> the most frequent operation
type in HLR. Each test time value was the mean
of the 100 000 operation time measurements .
Eight groups of test results were recorded. Each
group corresponded to the number of application
processes that invoked such operations, ranging
from 1 to 8, respectively. Table 1 compares time
with and without
DSM. Fig.3 compares the operation miss rate,

measurements of operation,

i.e.»> the rate of the operations that miss their
deadline constraints compared to the accepted
operations, with and without DSM. Fig.4 is the
abandon rate when using DSM> i.e.> the rate of
the operations that are abandoned since they are

—e—With DSM
10F —a—Without DSM

Miss rate(%)

2 3 4 5 & 7 3
Na.af Application processes’ #

Fig.3 Miss rate with and without DSM

‘n

in

—]
< =
_—

=
< o
— ——

—4

Abandon ratc(%)

23 4 5 6 7 8
No. of Application processes’ #

Fig.4 Abandon rate with DSM

420

SONG Guanghua, YANG Changsheng et al.

predicted to be possible of missing their deadline
constraints. In the experiment, the constant a

was 0.5, and messages had same time con-
straints in each case.

Table 1 Time measurements of 100 000 Lookup-and-Modify operations

Without DSM With DSM
Nulr{ber‘ of Access time (ps) . . Access time (ps) . . Abandoned
application . Missed operations . Missed operations .
of an operation of an operation operations
processes
Min. Max. Avg. Total % Min. Max. Avg. Total % Total %
1 807 4641 2722 0 0 918 4652 2766 0 0 0 0
2 926 4731 2796 0 0 940 4869 2890 0 0 0 0
3 1139 6210 3210 995 1 1025 5420 2930 0 0 305 0.3
4 1320 6630 3652 1528 1.5 1102 5530 2988 0 0 690 0.7
5 1526 7012 4020 2216 2.2 1325 5730 3100 0 0 1100 1.1
6 1728 8320 4520 3630 3.6 1520 6110 3410 812 0.8 1362 1.4
7 2130 12020 5420 6140 6.4 1722 6214 3632 1140 1.1 1732 1.7
8 2530 15232 6210 9849 9.8 2122 6320 3787 1627 1.6 2184 2.2
The experiment showed that, with the in-
creasing of application processes, the miss rate References

with DSM is much lower than that without DSM,
while the abandon rate was acceptable. It is
valuable sacrificing a small percentage of opera-
tions to gain overall performance as a real-time
application database supporter.

CONCLUSIONS

This paper presents CS20, focusing on its
ability to predict message execution time using
exponential averaging. The advantage of predic-
tion is distinct when many applications access
the database.

CS20 has been embedded in a telecommuni-
cation application system and has proved its good
access performance over conventional DBMSs.
However, CS20 can only support simple data op-
erations. Many sophisticated database opera-
tions, such as projection and join, have not been
achieved. It is our major work currently to im-
plement a query processing layer on top of CS20
to support those complicated operations and pro-
vide better user interface.

Bohannon, P., Lieuwen,D., Rastogi> R.,1997. The Archi-
tecture of the Dali Main-Memory Storage Manager. Bell
Labs Tech. J., 2(1):36 —47.

Lehman, T., Shekita, E.J., CabreraE.J., 1992. An eval-
uation of Starburst’ s Memory-Resident Storage Compo-
nent. IEEE Trans. On Knowledge and Engineering, 4
(6):555 - 566 .

Song, G. H., Yang, C.S., 2001. Recovery subsystem in
main-memory database based on hybrid logging. Journal
of Zhejiang University(science edition), 28(2): 164 —
168Cin Chinese) .

SUl’lg’ CH » Yang, CS » Shh J Y » 1999 ZEDB: a ma-
m-memory database system for real-time message pro-
cessing applications. Proc. of the 6th intl. conf. on
CAD&CG(CAD/CG’99), Shanghai, P. R. China, p.
238 —242.

Son,S.H., 1988. ACM SIGMOD Record 17, 1. Special Is-
sue on Real-Time Database Systems.

Son,S.H., George;D.W., Kim,Y.K., 1993. Developing
a Database System for Time-Critical Applications. IEEE
Intl. Conf. on Database and Expert Systems Applica-
tions (DEXA " 93), Prague, Czech Republic, ILecture
Notes in Computer Science # 720, Springer-Verlag, p.
313 - 324.

Ying, J.» He, Z.]J., Wu, M. H., 2000. Evolutionbased
software developing environment. Journal of Zhejiang

University(SCIENCE), 1(4):381 — 383.

