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Abstract:

(FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric struc-

This paper discusses the validity of Cadaptive) Lagrange generalized plain finite element method

tures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come
to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric struc-
ture can be accurately determined through the proposed finite element methods. The higher-order Lagrange
FEM proposed for dynamic piezoelectric computation is proved to be very accurate ( prescribed relative error
0.02% —0.04% ) and a great improvement in convergence accuracy over the higher order Mindlin plate ele-
ment method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories.
The converged Lagrange finite element methods are compared with the plate element methods and the computed
results are in good agreement with available exact and experimental data. The adaptive Lagrange finite element
methods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and
recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities
between piezoelectric and seismic wave propagations in layered structures and plates are stressed.
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INTRODUCTION

As we know, the computational piezoelectric
dynamic equations for high frequency acoustic
wave propagations were originally expanded from
the general computational structural mechanics,
and the finite element methods( FEM) initially
from aerospace and civil engineering. Therefore,
the computational dynamics method extended for
computational piezoelectricity still remains to be
valid for low frequency damaging vibrations in
the structures in civil, mechanical, aerospace
and other engineering fields if the electric effect
is ignored.

However, a layered piezoelectric resonator
structure can become smart when it is composed
of certain special smart materials. Among them,
single crystal materials are classed as piezoelec-
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tric quartz crystals because they exhibit the fol-
lowing interesting phenomena: When the quartz
crystal is mechanically strained> or when the
crystal is deformed by the application of external
stress, electric charges appear on certain of the
crystal surfaces. Conversely, when a piezoelec-
tric crystal is placed in an electric field, the
crystal exhibits strain.

In theory and practice, it is an expensive
and challenging task to accurately determine
quantitatively the high-frequency relationship
and design various high quality piezoelectric
BAW and SAW wave devices composed of
layered materials and arbitrarily shaped metal
electrodes( Hossack et al, 1991; Datta, 1986).

Bulk and surface wave modeling analysis has
in-

become an interdisciplinary subject, for

stance, in earthquake and piezoelectric fields.
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The low frequencies are more damaging and the
material properties are usually highly nonlinear
in computational geotechnical engineering me-
chanics( Desi and Zhang, 1998). In piezoelec-
tric BAW and SAW technology, the objective is
to precisely generate and control higher frequen-
cy acoustic waves in piezoelectric anisotropic
elastic substrates where the acoustic fields gener-
ate electric fields and vice versa.

Seiko Epson Corporation conducted expens-
ive experiment on ST-cut SAW motion in the mi-
cro piezoeleciric resonators with quartz crystal
substrates, and we have been trying to develop
accurate finite element methods and reusable
computer programs to guarantee the computation-
al accuracy for various cut angles and increase
savings in memory and storage of computers. Be-
sides the finite element methods needed, an effi-
cient eigenvalue solver is also required for solv-
ing large-scale piezoelectric devices ( Yong et
al.» 1996). The AT-cut results by piezoelectric
plate element method were found to be insuffi-
ciently accurate and inconsistent with analytical
experimental datal Wang et al., 1999), and are
further verified and computationally improved for
ST-cut piezoelectric quartz substrates in this
work. Similar inaccuracies exist in shell ele-
ments( Hong et al., 1999). The inaccuracies
were mainly due to assumptions and corrections
in plate theories( Mindlin, 1955, 1972, 1984).
These errors are not allowed in high accuracy
high frequency piezoelectric acoustic wave analy-
sis.

To improve the past work on piezoelectric
plate element methods, we have recently tried to
use adaptive Lagrange generalized plain strain fi-
nite element methods and to model high-frequen-
cy piezoelectric acoustic waves in micro-resona-
tor structures. The much higher frequencies and
velocities for bulk and surface wave propagations
are further studied and computed on a nano-scale
in this paper with reliably high accuracies.

FINITE ELEMENT METHODS FOR PIEZOELEC-
TRIC STRUCTURAL DYNAMICS AND ACOUS-
TIC WAVES IN SOLIDS AND PLATES

The piezoelectric dynamic equations
electro-mechanically coupled and the electric po-
tential corresponds to zero mechanical mass, and

are

the dielectric matrix is singular. Therefore,
these piezoelectric dynamic equations require a
special accurate finite element method and a
large-scale eigenvalue solver.

With dielectric effect introduced, the gener-
alized structural dynamic equations for finite ele-
ment computation become piezoelectric dynamic
ones in this discrete form:

QP
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where NVE denotes the total number of elements
» K, » Ky and Ky are the

mechanical mass, mechanical stiffness, piezo-

in a structure, M,
electric coupling and dielectric matrices, respec-
tively, where ¢> ¢, F and Q are the mechani-
cal displacement, electric potential, mechanical
force and electric charge vectors, respectively.

By setting M,

« = 05 the piezoelectric dynamics
relations in Eq. (1) become static piezoelectric
governing equations for surface mount stress pre-
diction.

In the piezoelectric finite element formula-
tion> we have the element mass matrix

[a] = [ Mo 0

ul

I, = [of NTT ¥ 1do
0 O] [
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where [ V] is the element shape function matrix
for the mechanical part, and p is the mass den-
sity of piezoelectric materials like quartz crys-
tals. For quartz crystal, p = 2650 kg/cm?( Dat-
ta, 1986, Valpey-Fisher Corp, 1997)

We also have the finite element stiffness ma-
trix and material stiffness matrix respectively

K K . .
CK1=| ¢ o] = (LT el sl 3
[C,,:|5x5 [P(»:IgXS
Lel= [P Ls LD Loty “

where [ C, Js. s> and [ D, 1,,,[ P, 1,5 denote
the mechanical stiffness constants, piezoelectric
constant and dielectric permittivities, respective-
ly. [ B] is the geometric matrix for the finite el-
ement method( Zhang et al., 1997). For piezo-
electric generalized plain strain finite element
method the matrix is determined by the follow-
ing element field interpolation and its corre-
sponding generalized element strains:
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where V;(i = 1,2, ***nen) are the shape func-
tions of an element with nen( Number of elemen-
tal nodes) nodes, and the generalized element

strains can be expressed as
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where [ D, 1 and [ Dy ] are the differential opera-
tors for mechanical and dielectric parts in gener-
alized plain strain and plate theories omitted here
for simplicity. In the differential operator, the
piezoelectric constraint for the generalized plain
strain constitutive model is given as:

PIED)

dz

(6b)

=0

The complex equations for high order AT-cut
Mindlin plate theory were reviewed by Wang et
al.(1999). However, we can see the difference
between the plain and plate constitutive models
from the 2- D mechanical material stiffness matri-

ces:
1 Y7 0
[c.1=c O 2
sym. —ZH

where £ is Poisson ratio and

Cy= 1 5 for plane theories (8a)
- u
Cy = . for plate problems(8b)
12C1 - #2 )

where E and t are Young’ s modulus and plate
thickness respectively. Of course, the constitu-
tive matrices [ C ] in Eq.(4) and geometric ma-
trix [ B] in Eqs.(3) and (6) are more compli-
cated with dielectric and higher order terms in-
cluded for electro-mechanical or piezoelectric
analysis, and for generalized plain strain and
higher order plate modeling.

From Egs.(1-4) we know that the general-
ized eigenvalue matrix equations for piezoelectric

analysis are

[ olek=wls Qi) @

Because the dielectric matrix Ky is singular and
not on the same scale in value as [ K, 1, and is
[ K] expanded with dielectric part and requires a
huge amount of computer storage and memory in
piezoelectric eigenvalue solution, a special effi-
cient eigen solver is required, as the traditional
static-condensed and perturbation methods do not
provide accurate eigenvalues ( Yong et al.,
1996) .

Once the finite element computed eigenval-
ues are obtained, i.e. circular frequency w, we
can easily calculate the wave velocity

(10a)

where PT is half wavelength. For computing the

Wave velocity = wPT/7

bulk wave frequency, the spectrum is usually
normalized by the fundamental thickness-shear

7T [ Ce6
600:2_ ?

where cg and p are material stiffness coefficient

frequency:

(10b)

and mass density respectively.

The acoustic surface wave velocity is charac-
terized by being always the same in a free-sur-
face structure of a material for any frequencies.
For piezoelectric quartz material, the ST-cut
SAW wave velocity is always 3158m/s ( Datta,
1986) .

SELECTION OF FINITE ELEMENT TYPES FOR
HIGH-FREQUENCY VIBRATIONS AND ACOUS-
TIC WAVES

The right choice of finite element types,
i.e. [ V], is essential to the accurate modeling
of high frequency piezoelectric acoustic waves.
Ordinary even high order plate elements ( Fig.
la)(Wang et al., 1999;: Hong et al., 1999)
based on the plate theories ( Mindlin, 1955,
1972, and 4-node based finite element methods
for improved stress analysis ( Zhang et al.,
1993, 1997) are numerically proved to be inap-
propriate for piezoelectric acoustic wave compu-
tation. The 9-node Lagrangian finite element
method of quadratic type is appropriate for small
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computers, while the higher order 16-node La-
grangian finite element method can be effectively
applied using Unix workstations( Zhang et al.,
2002), although adaptive third-order element is
rarely adopted in stress prediction( Steward and
Chen, 1997). Adaptive Lagrangian finite ele-
ment methods with inside nodes( Fig. 1b) and er-
ror control should be the first choice for the pi-
ezoelectric acoustic waves in this paper.

(a) (b)

Fig.1 Third-order plate element and lagr-
ange element methods for vibrations
and acoustic waves

(a) DOF per node = 6; (b) DOF per node = 3

Traditionally, the error indicator of the com-
puted stress/strain distribution was adopted in the
adaptive FEA for linear problems. For highly
nonlinear problems, the computational -constitu-
tive adaptive indicator was proposed for the ada-
ptive finite element analysis ( Desai et al.,
1998) . Unlike the stress analysis in SAW devic-
es, there are no stresses and strains to be com-
puted in the SAW eigenvalue analysis, the fre-
quencies and displacement modes are the major
factors involved in this study. Therefore, the
magnitudes of the displacement distributions are
used as the adaptivity indicator> considering the
features of the surface acoustic waves that the
displacements and potentials decay ( to zero)
away from the wave propagating surfaces.

In this paper it is found that the Lagrange fi-
nite element analysis method with a simple adap-
tive mesh generator is very powerful for evaluat-
ing how the metal electrodes affect the SAW
propagating frequencies and velocities in the pi-
ezoelectric substrates on micro- and nano-meter
scales. Numerical and application examples tes-
tify the finite element methods previously de-
scribed in the last section of this paper.

VIBRATION AND SAW WAVE COMPUTATION
AND ITS APPLICATION

The first test problem is a comparative study

to verify the numerical convergence ( rate ) of
generalized plain strain Lagrangian finite element
methods( FEM ) and plate FEM in bulk wave
analysis. Let I h and t be length, height and
thickness respectively, then the test problem is a
big quartz beam substrate (I x h x b = 40m x
2m X 2m ) on macro-scale with free boundary
conditions for computing the bulk wave frequency
spectrum normalized by the fundamental thick-
ness-shear frequency in Eq. (10b). For bulk
wave analysis, two uniform meshes(Cadaptivity r
=1.0) are used for comparing the numerical
convergence accuracies( Fig.2) .

® 1809 mesh
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Fig.2 (a)ST-cut BAW wave frequency spectrums
in a vibrating plate by 3rd order mindlin
plate FEM; (b) ST-cut BAW wave fre-
quency spectrums in a vibrating solid
using 3rd order lagrange generalized

plain strain finite element method; (c)

bulk acousticp-wave propagation in a solid
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Some inconsistent results for AT-cut sub-
strates based on high order piezoelectric plate
theories were given and compared with experi-
mental data by Wang, Yong and Imai>» 1999.
By solving a similar problem of ST-cut quartz
substrates( Fig. 1a), it is found that the plate el-
ement method is not accurate enough to be conv-
ergent for the case of piezoelectric analyses.

By proposing the high order Lagrange finite
element methods in this paper, the FEM results
in this paper converge well and fast with high ac-
curacy(Fig. 1b), the prescribed relative error of
this bulk wave analysis can be very small and
less than 0.002% .

Bulk acoustic waves( BAW) are a mixture of
p-wave> and shear and bending waves. P-wave
propagation is shown in Fig.2.

The second application problem is to analyze
a practical SAW resonator with layered materials
and interfaces between quartz substrate and alu-
minum electrodes( Fig.3) . The quantitative re-

Micro-Interfaces
H 4 Aluminum oxide
= \ A h Pure aluminum glectrode
H 3 | AR
' L, |
H —r
Quartz substrate Surface mount interface
T

I}' e L (m) .l
x
- _ @

)

Fig.3 Amplified cross view of a periodical SAW res-
onator SMT structure with interfaces between
surface mounted piezoelectric substrate, met-
al electrodes and aluminum oxide wear layers
(a) a period of resonator structure;

(b) deformed FEM mesh for half period

lationship between them is to be computationally
studied, as the accurate experimental results are
hard to acquire for this case.

The finite element boundary conditions for
half-wavelength ( PT ) analysis of SAW wave
propagation in x direction have to be correctly
enforced and are given as follows,

WMCx = %) = u(x = x, + PT) =0,

Us V> 1,0,¢

(1

The geometry and mesh of a periodical resonator
structure are given in Fig.3 and Fig.4 respec-
tively .

Half wavelength PT=5

* Substrate thickness /=400

Fig.4 Half period adaptive lagrange finite element
mesh for a tiny surface acoustic wave device
with sloped metal electrodes

Fig.3(a) is a periodical part of a piezoelec-
tric SAW resonator to be designed originally with
micrometer dimensions. This resonator structure
is reduced to nanometer scale for computational
investigations here .

Fig.3(b) and Fig.5 show clearly similarities
of piezoelectric and seismic surface wave propa-
gations in SAW resonator structures and vibrating
buildings in the earthquake.

Now with uniform meshing in the x direction
of SAW propagation, the mesh enrichment or
remeshing formula along the depth(y ) direction
is given and reviewed here by using a simple
geometric progression:

dy 0= 0

y1 =1 +dyo

y2 =1 +dy

where

dy, = (1 + r)dy,

dy; = (1 + r + r*)dy,

where the common ratio r is used as the local
mesh enrichment indicator. When r = 1.0, the
mesh is uniform. This simple mesh enrichment is
found to be surprisingly effective and easy to use
if appropriate finite element methods are selected
for h-adaptive analysis of surface acoustic wav-
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es.

In Figs.3 and 4, the electrodes will affect
the SAW frequencies and velocities in the sub-
strates and the FEA codes are very useful for an-
alyzing the relationship between the SAW veloci-

ties and the geometric and material characteris-
tics of the electrodes( Tables 1 and 2), which is
an advantageous alternative over the analytical
and experimental approaches for this resonator
case.

Table 1 Computed nanometer scale lower and upper limit frequencies & SAW
velocities in piezoelectric quartz substrate with metal electrodes
Wave length(nm) No. of found eigenvalues Substrate elements Electrode elements SAW mode
1.00000F + 01 2 400 4 displacements
SAW wave mode Normlized frequency(Hz)  Actual frequency(GHz)  SAW wave velocity(m/s) u v w
1 0.7550678E + 01 0.311616E + 03 0.311616E + 04 28.6 69.9 1.5
2 0.7627985E + 01 0.314806E + 03 0.314806E + 04 16.6 81.7 1.7

Table 2 Computed SAW velocities vs cut angle on nano-scaled free quartz
substrate surface( prescribed relative error<0.04% )

16-node FEM 9- or 16-node FEM Free surface/No electrodes
Computed Computed Exact( Datta, 1986) Experimental( Zhang, 1998)
Cut angle
Piezoelectric Mechanical Pi lectri Mechanical
SAW velocity(m/s) SAW velocity(m/s) rezociectne echamiea
90.00 3262.04 3261.46
50.00 3173.11 3165.98
33.00 u 3147.65%
(ST-cut) 3159.14 3147 14° 3158.00 3149.70

" using a uniform mesh of 2000 nine-node Lagrange elements

#

From Table 1, an interesting phenomenon is
shown that when there are interfaces between
substrates and electrodes interfering with the
wave propagation, the SAW velocities will de-
crease and there are two SAW velocities of a
stopband, rather than one standing-wave velocity
in the case of no electrodes. The above accurate
quantitative and qualitative relationship discov-
ered by finite element computation is essential in
actual micro resonator design in the future
(Zhang, et al., 2002).

Both lower and upper limit velocities for St-
cut angle tend to be 3158m/s as the electrode
decreases in size and weight. The third bench-
mark test problem is to numerically compute the
high frequency surface acoustic wave( SAW) ve-
locity in a quartz crystal substrate without elec-
trodes on the nanometer level, so as to compare
the computed results with the exact solution; The
studies for piezoelectric microstructures on the
micrometer level were also carried out in a relat-
ed paper. The results are given in Table 2 and
Fig.5.

using an adaptive mesh of sixteen-node Lagrange elements or a uniform mesh of sixteen-node elements

6.E-03r
4E-03}

2.E-03¢

0.E+H00 [ -0
1234567 9
—2.E-03}

Displacement & Potential

—4,E-03}

-6.E~03

Node location

Fig.5 Piezoelectric finite element computed top

displacements( z, v, w) and potential (a-
mplified) of high-frequency surface acou-
stic wave propagation in a nano-scaled
resonator structure with metalized ele-
ctrodes

Table 2 shows that the adaptive 16-node
FEM for piezoelectric and mechanical SAW wave
analysis is accurate and much more efficient and
75% cost saving in the number of elements than
the ordinary uniform meshing method.

The new computed SAW displacements and
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potential on the nanometer level are described in
Fig.5. Check the p-wave and SAW displace-
ment distributions on the Saw propagating surface
in Figs.5 and 2 with existing acoustic wave theo-
ries without electrodes; it can be seen the piezo-
electric finite element computed results and
methods in this paper are concrete and correct,
and are providing a more convenient and accu-
rate alternative than the costly high-resolution
experimentation ( Hesjedal and Chilla, 1997) for
this case of high frequency data acquisition> and
will be a new trend in solving the related can-
not-see difficult problems in theory and practice.

CONCLUSIONS AND DISCUSSIONS

1. The proposed higher order adaptive La-
grangian generalized plain strain finite element
methods and new computer programs are found to
be very effective for the analysis of periodical
SAW and BAW resonator structures, and very
useful for discovering the relationship between
the mechanical and electric fields.

2.1t is essential to select the right computing
methods for the accurate analysis of high fre-
quency acoustic waves in a structure. It has been
found in this paper that neither the lower order
FEM and higher order plate element method is
accurate enough> but the proposed higher order
Lagrange finite element method is proved to be
sufficiently accurate for GHz high-frequency
acoustic waves in the structures with layered ma-
terials and nano-interfaces .

3.The discussed adaptive finite element ap-
proach has to be further modified for full-scale
piezoelectric analysis of high frequency piezo-
electric resonator structures> and new finite ele-
ment program SAWOFEAP for piezoelectric and
seismic SAW waves are developed for one-period
of accurate wave analysis. However; because of
the generality characteristics of finite element
theories originally developed in civil and aero-
space engineering, the developed finite element
methods and computer programs with a special
eigenvalue solver available have great potentials
and can be applied and extended to solve related
problems in dynamic vibrations and wave propa-

gations in macro, micro and nano structural en-
gineering respectively .
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