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Abstract:

High precision parameter estimation is very important for control system design and compensati-

on. This paper utilizes the properties of chaotic system for parameter estimation. Theoretical analysis and ex-

perimental results indicated that this method has extremely high sensitivity and resolving power. The most im-

portant contribution of this paper is apart from the traditional engineering viewpoint and actualizing parameter

estimation just based on unstable chaotic systems.
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INTRODUCTION

There are many reports (Ott et al., 1990;
Chen, 1993) on chaotic phenomena, but none
on the application of chaotic theory to the prac-
tice of control. The most important characteris-
tics of a chaotic system are the initial value sen-
sitivity and the parameter sensitivity that deter-
mine the instability and inscrutability of the cha-
otic system. One tiny disturbance may trigger a
tremendous change in the state trajectory of the
chaotic system. Pacora, the inventor of chaotic
synchronization, put forward this key problem in
1993 ( Pecora, 1993).

solved so far, there is a long way to go in apply-

But it has not been

ing chaotic theory to practice. It is not an un-
conquerable obstacle; measuring with chaos
(Tong et al., 1999; Tong et al., 2000; Chen
et al.,» 2000 is a good illustration.

The existing methods of parameter estima-
tion> including nonlinear reconstruction, are all
based on the principle of least square; and must
measure abundant data first> then can do estima-
tion> but the error inevitable in the measuring
process will influence the resolving power of esti-
mation .

In this study, the existing engineering meth-
ods for estimating parameters are discarded in fa-
vor of study and analysis of the parameters in an
unstable system, which is a new method for pa-

control system, chaos, parameter estimation, nonlinearity, existing engineering method
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rameter estimation based on chaotic theory. The
control system becomes chaotic by addition of a
nonlinear unit, and then the parameter space is
partitioned based on the distance definition of
symbol space. The search area is shrunk step by
step to get the estimating parameter finally. This
method does not need any measuring instru-
ments, simplifies the estimating process, and
has extremely high sensitivity and resolving pow-
er. So it has a good future as an estimating
method.

REALIZATION OF CONTROL SYSTEM CHAOS

Any control system, without regard to the order
of the system, can reach the chaotic state by addit-
ion of a nonlinear unit (dashed part of Fig.1).

The simplest first order system is used as an

K
Ts+1°

We add a nonlinear unit to the standard first

example (Fig.1), where W(s) =

order system. (dashed part of Fig. 1). The
switch P will connect with the negative input R,
when a new pulse of pulse series § arrives. The
procedure is as follows:
1. After the switch P connects with the initial
value R;» C(t) = Cq) > R, is at equilibrium.
2. When the pulse series § with the period

#  Project supported by the National Natural Science Foundation of China (Nos.59975082 and 69675020 .



Application of chaotic theory to parameter estimation 43

h Csee Fig.1) arrives, the switch P connects
with R,( < 0)Cwhich is equivalent to DC¢) pro-
ducing a negative step change), and makes
CCt) begin to descend (Fig. 2, the segment
C — A). Note: If the value of C(¢) does not
descend to Ry(Fig.2, the point B), the switch
P will R, connect with even if a new pulse
comes .

3. When CCt) = R,(Fig.2, point A,
ECt) changes from a value less than zero to one
greater than zero, and makes N (¢) change,
from —1 to + 1. Then switch P connects with
R, C>0), DCt) produces a positive step
change C(¢), making begin to ascend(Fig.2,
segment A — C¢y) ).

4. When the next pulse series & arrives
(Fig. 2, point C¢;) ) the second period of C
(¢) will begin. Fig.2 shows the behavior of the
system output C(¢) .

Fig.1 The components of a chaotic system

Now we quantitatively analyze the whole pro-
cess.

Assuming Ry = O for the sake of conve-
nience.

When D(t) is a positive step change, as-
suming Ry = 7R(» > 0, R is a positive con-
stant). The initial value of C(ty) = Ry = 0>
then we get

—(/—/0)

C(t):qKR(l—e#). 1

When D(t) is a negative step change, and the
initial value is assumed to be

C( t()) = C(n,)’ R2 =R,
We have

—(l—lo)

C(t)= —KR+(C,) + KR)e T 2>

Assuming that when ¢t = t,, C(t) = R, =0, the
solution of the Eq.(2) is found to be

t, = Tln(6<n,)+1)+t0 (3
Where
Cn) = Clil’{” @

Assuming the ascend-descend period of C ()
can be finished in 1 — 2 pulse period h»> accord-
ing to Egs. (1) and (3), we can get the follow-
ing relation between C¢,) and C(, ..

C(n,+]) =
h_[n

77(1—6_ T )=
—h -k _ _
77[1 —eT —eT C¢,J C»<C,
2h -1t (5)
77(1 —e T ):
—=2h —2h~ ~ ~
77[1—6 T —e T C(,,)] C»<C,
Where C. is as shown in Fig.2.
)
CI“
C.
R .
T
Fig.2 Chaotic orbit diagram
~ h
C(.:(e’l'—l) (6)
C, = KRC, 7

The iteration relation of Eq.(5) is shown in
-h
Fig.3, where C, = 9KR(1-e7 ), C, = c, L1
“h -k
+(1 - ne T de7 ]. It is an inverse saw-tooth

mapping, which is a typical chaotic system

(Hao,> 1989).

Fig.3 Chaotic mapping
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If the control system is not a first-order sys-
tem but is the second-order or higher order sys-
tems> or a nonlinear system> we can choose the
proper period h of the pulse & to make the as-
cend curve and the descend curve change mono-
tonically. The analyzing process is similar, ex-
cept that there is a minor change for the Eq.

(5.

PARAMETER SPACE,
AND SYMBOLIC SPACE

TRAJECTORY SPACE

Assuming an initial value C(y) > according to
Eq. (5) we can get one trajectory:
Ciyr Ciys Cays Cazyr o= G )
i = O’ 1, 2v b
According to symbolic dynamics ( Hao, 1989,
we can get a symbolic sequence:

507517529'": {SL} Si=OOr1
Where
1, C(i) > C,A
Si = {O, C)>C, (8)

All parameters changed under permitted condi-
tions form a parameter space 1> the initial value
of which is kept constant. Every T& I'5 corre-
sponds to one trajectory b; . Different parameter
corresponds to different trajectory. The set of all
trajectory b; forms the trajectory space (3.

Each trajectory {C(;) can be represented by
a symbol {S; according to Eq.(8); then from
trajectory space 3 we have symbolic space . In
space { there are two symbolic sequences:

and {bl}z bo’ b] y °°°

{ai}= ags> ays """

The definition of distance between them is de-
fined as follows:

a; — bi

dCays by = | > (—1)- i+

=0

9

Obviously, this definition satisfied those three
conditions (Tong et al., 1999). The proof is
omitted .

SINGLE PARAMETER SYSTEM ESTIMATING

We adopt the system shown in Fig.1 as an
example . Here, the parameter 7" needs to be es-

timated. According to Eq.(9), we know that
the distance d = 0 means the superposition of the
two trajectories. If we get the trajectory {a; }»
get {b; } from the assumed parameter 7' by com-
puter simulation> adjust T step by step until d
Cag» by) approach zero infinitely, this value of
T is the estimation we require.

Steps are as follows:

1. We have the peak value sequence C) >
Cayr=tr Cipys =
shown in Fig.1; then get the symbolic sequence
according to Eq. (2). In fact, we can obtain

* by experiment on the system

{a; } directly from the position of switch P in
nonlinear tache and pulse &, without calculating
C.

2. During the process of computer simula-
tion, we choose parameter T arbitrarily, obtain
the symbolic sequence {b; } according to Egs.
(5) and (8).

3. {a;} is compared with {b; } bit by bit.
ay and by are first compared. There are two
states for different values of T': ay = by or ag
by» according to which parameter space I is di-
vided into two parts: I'y and I, (I, U I,) =
I'. We use H, to symbolize the subspace in
which ag = by»> that is to say we assume H; =
I';. Then continue the same process; when a;
and b, are compared; there are also two states:
a; = by or a; # b;. Parameter space H; is di-
vided into two: H,, and H,,CH,yUH, = H,).
by s
and a; = b, repeat this process until {b, } =
{a;}» when H, D H, D Hy; > H,*** D H;. In
theory, under the condition that the digit of {b; }

We assume H, = H;;> in which and a4 =

and {a; } is long enough, H; can converge into
one arbitrarily small region. The parameter in H;

is the estimation we need.

ESTIMATION OF MULTI-PARAMETER SYSTEM
WHICH INCLUDES A DELAY TACHE

The system W(s) in Fig. 1 is a multi-pa-
rameter system with a delay tache. W(s) is de-
scribed as follows:

CC)=aC?C)+ BCCe) + y = KDCt — ) (10D
Where

7 is time delay. K> a» 35 7 are system pa-
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rameters> unchanged with respect to time.

The estimation of system with delay tache is
different in some degree to that of ordinary sys-
tem. The lag of switch P caused by the delay
tache leads to the difference. Let us see Fig.4.
We divide trajectory space and symbolic space
into four cases correspondingly, where the case
(CA) is denoted as 0, case ( B) is denoted as
symbol 2, the case ( C) is denoted as symbol 1,
the case ( D) is denoted as symbol 3. That is to

say » the estimation of this system with a delay

cu dCin)
koL h R
Cul | G
pLI. Cln n \ C("n
\ / L A
R, ~ TR ~ "
(a) {b)
cn AC(H
ok Con retioretin
Co
C(-.in \
A -
Fit < > R >
(<} (d)

Fig.4 The four cases corresponding to the first
order system with a delay tache
(a) symbol 0; (b) symbol 2;
(d) symbol 1; (d) symbol 3

tache corresponding to four symbolic sequences.
The definition of the distance in Eq.(9) remains
the same, except that the values range of a; and
b; change accordingly .

RESULTS OF COMPUTER SIMULATION

We use the first-order system with a delay
tache as an example to simulate. For conve-
nience in discussion, we fix the value of ¥ and
7> choose a> 3 as the parameters to be estimat-
ed.

We assume h = 1.5s, Time delay 7 =
0.3s, ¥ =0.5. We first choose one group of
parameters « = 0.1100, B = 0.5040, then ap-
ply them to the system. By calculating, we ob-

{ai }

{a; } =000001110011111111111011111111
a

tain the symbolic sequence

Now we begin to estimate o and 8. The pro-
cess of finding a,> 3, is the process for finding
the value of the required parameters. We adjust
a;s f3y» to make the first symbol obtained by
simulation equal to the first symbol of {a; }.
This means that the parameters we choose lie in
the range of H;. Then we continue to adjust « >
B,» to make the second one equal to the second
symbol of {a; }» which means that the parame-
ters lie in the range of H,. By repeating this
process> we can get the value of o, and B,. We
draw the suitable region H; in Fig.5 so as to see
conveniently. As the symbolic sequence is too
long to draw out> we only give several simple di-
agrams to explain this question.

L =tH
—

% . Z ——— i
0.500 0.508 0.500 “0.508

0.11 0.1101e

® )=

{H={H,)00 ¢H, ) T

0.1099
0.508 0.5039

(c) {d)

0.10:
0.500

0.5041

Fig.5 The diagram of the principle
of parameter estimating
(a) the region of H;; (b) the region of Hy:
(¢) the region of Hyy; (dD the region of H,,
(Where {H,} presents the first i-bit symbolic

sequence corresponding to the range of H,)

{b, }, obtained by simulation, is compared
with {@; }. The first seven bits are the same, as
shown in Fig.5, where H,; is the region after 21
times comparison between symbols. We can con-
clude from the figure that H, D Hg D H\y D H>; .
When the sequence is long enough ( {4, } —
{a; }>, H; will be a small enough range. The
value in H; is the estimation.

When we choose the length of symbolic se-
quence as bits, the range of Hj is Cas 8) =
(0.1099982 — 0. 1100015, 0. 5039994 -
0.5040009) . This is the estimation of the sys-

The . .

tem. estimating precision of a is
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+ 0.00000015> that of 3 is + 0.0000009.

The example above is the estimation of two
parameters. They can be shown in one plane.
When the number of the parameter a needed to
be estimated is more than 2, we can divide the
n-dimension space to complete the multi-param-
eter estimation. The problem can be solved by
the same method. In the example above, we ex-
plain the estimating process by shrinking the
searching area, but in practice we need not do
so much computing, we can choose optimizing
method to find the result.

ESTIMATING PRECISION

Precision is related to the length of the se-
quence in theory without respect to the error from
calculation. When the length of the sequence
tends to infinity, the estimating error is zero.
Under the conditions of our experiment, if we
choose the length of the sequence as 30, the
precision can reach to 107°.

The calculation ability for a computer com-
monly should be of higher precision to satisfy the
requirements of engineering. The largest error in
simulation is the experiment error. As a result of
various kinds of interference during the experi-
ment, trajectory excursion occurs, then the sym-
bolic sequence is influenced, and the precision
of parameter estimating consequently influenced .

Therefore; we define a value for trajectory
excursion.

If we repeat the experiment> we can get many
symbolic sequences under interference. We cal-
culate the distance between every two sequenc-
es> which is d] ’ d29 d3 ’ "t di st

The definition of trajectory excursion of a
system 1is:

F:maX{dlydzydg""’di"“} 12>

The system error of experiment is less than or
equal to F. The smaller the F'5 the smaller the
excursion between the experiment trajectory and
the trajectory without interference.

If we get the average of the points of these
trajectories in symbolic space, the average repr-
esents the trajectory, which is the closest one to
the true trajectory. Estimation using by this se-
quence can yield higher precision. We will dis-
cuss this aspect in another paper.

CONCLUSIONS

We can find the characteristics of this meth-
od, from the simulation results above.

1. The most important contribution of this
paper is apart from the traditional engineering
viewpoint and actualizing parameter estimation
just based on unstable chaotic systems. The tra-
ditional engineering viewpoint is a linear view-
point. It emphasizes stability, equilibrium, or-
dering and consistency. We can not imagine how
to apply the unstable system to engineering.
Howevers chaotic system is nonlinear system.
The important characteristics of chaotic system
are instability, imbalance and inconsistency.

2. If only the changes of the peak of chaotic
trajectory do not span the critical point C,(Fig.
2), the symbol will keep unchanged, which
means that the trajectories in our method are per-
mitted to change in some certain region with the
symbolic sequence and the distance unaffected.
Then parameter estimation is not influenced.

3. The sequences obtained by experiment
directly apply to estimation in our method. Here
is no need to do any measuring instrument. Thus
the measuring error is avoided.

In the end, we must say this work is only a
preliminary study of application of chaotic theory
to parameter estimating.
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