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Abstract:

This paper presents a method using a large steady-state engine cperation data matrix to provide

necessary information for successfully training a predictive network, while at the same time eliminating errors
produced by the dispersive effects of the emissions measurement system. The steady-state training conditions of

compound fuel allow for the correlation of time-averaged in-cylinder combustion variables to the engine-out
NO, and HC emissions. The error back-propagation neural network (EBP) is then capable of learning the re-

lationships between these variables and the measured gaseous emissionss and then interpolating between steady-
state points in the matrix. This method for NG, and HC has been proved highly successful.
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INTRODUCTION

Internal combustion engines ( ICEE) have
been subjected
since pollutant emission regulations are becoming
more and more stringent. The trend towards
ower allowable emissions levels appears t©o be
ontinuing with particular emphasis on diesels.

ow to reduce the emissions of diesel engines is
the key of their development in the future. In
the last decades, strenucus efforts were made to
reduce diesel engine emissions. Especially, the
compound fuel Cethanol-diesel) engine was made
to reduce emissions and its all-around effect on
the atmosphere is remarkable.

Neural network architectures have gained
popularity in recent years due to their excellent
recognition and prediction capabilities { Widrow
et al.» 1990). Emissions formation in ICE is
very complex, but the neural network training
does not need the detailed knowledge of the com-
bustion kinetics available only to research labora-
ories with extremely expensive and intrusive
equipments.

This study aims to prove that detailed
knowledge of the emissions from a compound fuel

o emission control techniques

Back-propagation neural network (EBPY, Compound fuel, Emissions, Prediction
CIL.C number:

TK421*.5

Cethanol-diesel 7 engine can be easily obtained
through the application of neural networks using
information from readily available engine sensors
and established methods such as in-cylinder pres-
sure measurement using flush-mounted pressure
transducers.

NEURAL NETWORK ARCHITECTURE AND
I'TS APPLICATIO

There are many different types of neural net-
work architectures based on different targeted re-
sults (Raina> 1994). This study shall focus on a
feed forward network. Specifically, it will focus
on a subset of feed forward networks called Error
Back-Propagation (EBP) networks.

Neural Network Architectures

In the typical neural networks ( Horink et
al. » 1989), the information from the first layer,
the input x» is multiplied by a weight o corre-
sponding to each neuron and distincet for each link
to the hidden layer, and then summed to provide
an intermediate value. This value is then sent
through a non-linear activation function to act as

the hidden layer variable ( Nelless 1997). The
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hidden layer is likewise multiplieds summed and
fed through an activation function to provide the
values of the output ( Widrow et al.» 1990 ).
Thus the two layers are written as:
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where d and 7 represent the number of neurons
in the input and hidden layers respectively. The
terms with the 0 in the subscript representing
offset biases or thresholds used for better differ-
entiation between classes. For some networks,
the classes are large; but for the EBP, there are
many according to the dimensional levels of the
data set. The term g represents the activation
function that can be based on a logistic or hyper-
bolic tangent function or any other non-linear

function between the values of — 1 and 1
(Haykin, 1994).
Once the network has been initialized

through random weight seeding Call w in the
equations above), the process of training begins.
For EBP networks: this involves comparing the
actual measured output values to those predicted
by the network (y,) and then correcting the
weights in all layers accordingly to improve the
prediction. After one pass through the network,
output values are compared to actual values to
produce an error value.

Fig. 1 is the Neural Module network archi-
tecture. The first architecture was a straight 3
layer EBP with a hyperbolic tangent activation
function in the hidden layer and a linear activa-
tion function for the output layer. The second
architecture employed a second hidden layer in
parallel to the first. This second layer uses a dif-
ferent activation function in an attempt to find
patterns in the data not uncovered by the first.
The activation functions for these hidden layers
in the second architecture were the Gaussian and
Gaussian complement while the output activation
function remained linear. Finally, the last archi-
tecture added a third hidden layer. This setup
was basically the same as the second with the
third hidden layer using a hyperbolic tangent ac-
tivation function. Each of the gaseous emissions
(NO,, HC ) predictions was trained with the
three networks.
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Fig.1 'The three different
neural module network architecture

EXPERIMENTAL SETUP

Generally, the most informative signal readi-
ly available from an ICE comes from the in-cylin-
der pressure profile ( Atkinson et al.,» 1998 ).
Since this signal reflects the actual conditions of
the engine operations it can potentially provide a
plethora of pertinent information concerning the
characteristics and overall behavior of an engine.
The main drawbacks to gathering this informa-
tion are the invasive nature of the required sensor
and the relative lack of robustness of most of such
sensors. Therefore widespread adoption of the
in-cylinder pressure transducer for engine control
and diagnostics has not yet occurred. As a re-
search tools these drawbacks can be negligible as
compared to the usefulness of the information
provided. For this study, the pressure transduc-
ers were flush mounted in cylinders “37. The
TDC position of cylinder “1” was then deter-
mined using standard methods with motoring
traces recorded for closer analysis.

One selected DI diesel engine using com-
pound fuel Cethanol-diesel) provided the data for
this study. Fig.2 and Fig. 3 are the typical pres-
sure profile and heat release profile at 2000
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r/min. And Fig. 4 shows the relationship be-
tween speed and power of this diesel engine. The
data were acquired for network training purpos-
es. For each dataset point the engine was
brought to the appropriate speed and power and
allowed to reach steady state in order to prevent
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Fig. 2  In-cylinder pressure parameters taken from a
Cethanol + diesel) engine 2000 r/min, 35.9 kW
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Fig.4 Speed and power map for the Cethanol + diesel)

engine

Once all the parameters had achieved a
steady-state conditions data acquisition was initi-
ated. After a set number of revolutions, another
trigger initiated the acquisition using an ADC
board. With the pressure signals from two cylin-
ders and the top dead center ('TIDC) phasing sig-
nal being recorded ( Watanabe et al.,» 1996 ),
the ADC was capable of acquiring complete pres-
sure histories for 64 combustion events.

Neural network selection and training

Each combustion event was analyzed and
confirmed using the phasing signal after TDC.
The combustion related parameters ( Table 1)

transience in operating conditions and to provide
steady emissions production. The experiment
setup is shown in Fig 5. Here the Engine Con-
trol Box consists of the dilution tunnel system,
exhaust system and analyzers.

= 0 A
R i

Lrank angleq AN

Fig.3 'lypical heat release from an (ethanol + diesel )
engine: 2600 r/min
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Fig.5 Schematic of emissions measurement system for
an (ethanol + diesel) engine

Table 1 Variable Combinations for network inputs

Input variables
PPV, CD, IMEP. 1D, MBR. MHR, MP
PPV, LPP, CD, 1D, MHR, MP

Emission gas
NO,
HC

were taken from the pressure curves. The mean-
ing of each parameter is shown in the Appendix.
All these varibles affect the engine torgues the
specific fuel consumption and the emissions
(Hafner et al. » 2000). Each test point provided
the 64 combustion events. All parameters were
averaged for each test point and the result used to
represent that point on the test matrix. Theoret-
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ical considerations were given to the selection of
the inputs that were tc be used for training.
Some inputs were chosen for their representation
as direct measures of the formation rates of the
gaseous emissions while others, although pos-
sessing a linear relationship with the emissions,
were only loosely related to the formation rates.
For instances the peak pressure is a more or less
direct measure of the in-cylinder temperatures
and thus the NO, formation rate» while the
IMEP: because it reflects the amount of work
being done, indicates the amount of fuel being
combusted and gives a more general indication of
the NO, formed.

Hydrocarbon formation in the diesel engine is
heavily influenced by the amount of oxygen
available and the rate of combustion of the fuel
injected. Tor the latter reason» MHR,> combus-
tion duration, and the peak pressure were chosen
as inputs to the training networks. A misfire
ondition or a delayed start of combustion could
be measured by a low value for the maximum
heat release rate as compared to more normally
high values associated with good combustion.
Similarly, a very long or abnormal short combus-
tion duration could indicate poor performances
especially in combination with the peak pressure.
In either case; complete combustion is question-
able and the hydrocarbon emissions should show
the effect accordingly. The phasing of the pres-
sure and volume of the cylinder have an effect on
combustion and hence the location of pealk pres-
sure; and the ignition delay may indicate the
-ombustion quality. Finally, the direct measures
of possible hydrocarbon formation were consid-

ered. Since post oxidation of the fuel heavily in-
fluences the amount of hydrocarbons escaping
down the exhaust pipe.

Neural Module supplies the option of applying
multiple regression analysis to a dataset in order to
return the statistical indicator R?» which is defined

as: R2=1 *:SSSSIL s where SSE(Sum of Squares o
Yy

Errors) = Z(y—j/)andSSyy = Z(y*&y ,
where y is the actual value, vy is the predicted val-
ue of v and vy is the mean values of all the y's. An

R? value was determined for both the training set
and the test set data. A good network should give
high results Capproaching to 1.0 for both sets.
These results were analyzed for the best R? value
averaged between the test set and training set; the
corresponding inputs: number of hidden-layer
nodes, and architecture were recorded. Typically »
the R? values reached a relative maximum for a
given number of nodes in the hidden layer. The
reason for the hidden node sweep is that there is
no general theory governing the correct number o
nodes necessary for good neural network predic-
tion.

Training Results

In order to demonstrate whether variables
derived from pressure profiles were more or less
efficient for use in a neural networlk, sixty-four,
thirty-twos eight, and four pressure
points taken from set intervals from the average
pressure trace from each speed and power are
used as input. The results of Neural Network
Tiaining are shown in Table 2.

sixteens

Table 2 Network results from sets of pressure points from sampled average pressure

Sample pressure trace

In-cylinder pressure variables

Inputs Hidden R? test R? wrain R? Hidden R? test R? wrain R?
number neurons set set average neurcns set set average
NG,
64 40 0.9932 0.9864 0.9966
32 20 0.9875 0.9925 0.9900
16 16 0.9772 0.9862 0.9817
8 12 0.9695 0.9861 0.9778
4 10 0.9742 0.9912 0.9827 20 0.9927 0.9954 0.9941
HC
64 40 0.9965 0.9926 0.9613
32 20 0.9924 0.9945 0.9935
16 16 0.9886 0.9789 0.9838
8 12 0.9913 0.9945 0.9929
4 10 0.9892 0.9869 0.9881 15 0.9980 0.9960 0.9975
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NG, AND HC PREDICTION RESULTS

Figs.6,7,8,9,10 and 11 compares the net-
worls prediction results and the actual test results

the full load state respectively. The average rela-
tive errors of HC and NO, between predictive
and actual values are 5.11%, 3.11%, 4.86% »
6.71%,> 3.59%, and 6. 57% respectively.
That is» the predictive results and trend are in
good agreement with the actual test results.
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lidity of the theory proposed in this paper.
CONCLUSIONS 2. The in-cylinder pressure information tak-

1. The successful prediction of the NO, and
HC by using EBP networks demonstrates the va-

en during steady-state operation of engine could
be used successfully in the neural network to pre-
dict in cylinder NO, and HC emissions levels.
Since emissions formation is a complex function
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of the in-cylinder combustion processess these
processes can be interpreted through the thought-
ful use of in-cylinder pressure. The variables cal-
culated from in-cylinder pressure have high cor-
relation to the levels of the gasecus emissions
generated. This study proved that these variables
are well suited to neural network applications to
predict NG, and HC emissions levels produced by
an engine.

3. This systemm may be as a foundation {o
real-time engines-out emissions sensing and pre-
diction.
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Combustion derived parameters

Parameter abbreviation

Explanation

PPV
IMEP
LPP
D
CD
MBR

Peak Pressure Value

Indicated Mean Effective Pressure
Location of Peak Pressure

Ignition Delay

Combustion Duration

Maximum Burn Rate
Maximum Power

Maximum Heat Release






