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Abstract:

with a new method. According to the characteristics of VLEM ; only some characterized layer thickness values

The virtual laminated element method ( VLEMD can resolve structural shape optimization problems

need be defined as design variables instead of boundary node coordinates or some other parameters determining
the system boundary. One of the important features of this method is that it is not necessary to regenerate the
FE(finite element) grid during the optimization process so as to avoid optimization failures resulting from some
distortion grid elements. The thickness distribution in thin plate optimization problems in other studies before
is of stepped shape. However; in this paper; a continuous thickness distribution can be obtained after optimi-
zation using VLEM, and is more reasonable. Furthermore, an approximate reanalysis method named "behavior
model technique” can be used to reduce the amount of structural reanalysis. Some typical examples are offered

to prove the effectiveness and practicality of the proposed method.
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INTRODUCTION

In structural design, it is necessary to find
the appropriate configuration of a structure sub-
jected to given loads. Configuration of a struc-
ture includes parameters such as its dimension
its shape, its topology and so on. The object of
optimization often requires that a structure must
have a minimum in weight, reach the maximum
in its strength and stiffness> and reasonable val-
ues in natural frequencies within a specified de-
sign domain.

Shape optimization is much more complicated
than dimension optimization> because the bound-
ary shape is continuously changing in the optimi-
zation design processes so that the description of
boundary shape changes must be taken into ac-
count. Meanwhile we should maintain proper fi-
nite element grid accuracy, thus ensuring sensi-
tivity analysis and proper constraint setting .

When coordinates of boundary nodes of finite
elements are used as design variables ( Zienk-
iewicz et al., 1973), some distortion finite ele-
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ments possibly can lead to failure of optimization
results. Using high order polynomial functions to
describe boundary shape can cause the boundary
to be oscillatory. Thus a modification method is
introduced through using spline combined with
low order polynomial terms, to describe the
boundary shape (Imam, 1982; Sienz et al.,
1997).

However, VLEM provides shape optimization
with a new method.

VIRTUAL LAMINATED ELEMENT

The virtual laminated element method
(VLEM) can be easily applied to laminated
composite material structure problems, The ef-
fectiveness of VLEEM when applied to engineering
can be found in references (Wu, 1997; Ling et
al., 1998; Xu et al., 2001). The basic idea of
VLEM lies in the introduction of the concept of
virtual lamina. The virtual lamina does not con-

tain any real material at all; elasticity tensor E
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can be zeroed; i.e. the lamina is an empty one.
Normal elements could be constructed through
setting up an empty lamina among laminae so
that the same element can be made up of differ-
ent materials. Through iso-parametric element
transformation, any finite element nodes in glo-
bal coordinate system could be defined anywhere
in a real structure, either at its boundary, inside
it> or outside it.
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Sublayer boundary

Fig.1 Virtual laminated element

1. 3D-degenerated solid plate-shell element

The 16-noded plate-shell element shown in
Fig. 2 was degenerated from a 20-noded 3D
brick. Here it is used to construct virtual lami-
nated plate-shell element.

Fig. 2 16-noded plate-shell element degenerated
from 20-noded 3D brick

In Fig. 1, parent element boundaries are
characterized by &> 9> and { = 1. = -1
represents the bottom side of the virtual laminat-
ed plate-shell » and £ = + 1 means the top side
of it. It can be divided into n sublayers between

the sides of = — 1 and { = + 1. Coordinate {
for each of them is marked by {y> 15 ... C,»
respectively. Here suppose n =3.

Coordinate system transformation between the

element and parent element is

x 16 Xi
{y}: Nl(s’ﬁ’g){%}’ (1)
=1 Zi

z

where x;, y;» z; are global ordinates of element
nodes. The form function /V; is the same as that
of 3D solid isoparameter element, i.e.

Ni=%(1+$§i>(1+77775)(14‘551‘)(5& + i
+86 -2 Gi=1,2,,8)
Ni=%<1—52><1+7777i>(1+§§i)
(i=9,10,11,12)

No= - gD+ 88D+ )
(i=13,14,15,16)

In Fig. 2, local coordinate system x’y’z" is
set up to introduce some plate-shell basic hypot-
heses. z’ is directed along the normal direction
of element surface; and x’ and y’ lie on the ele-
ment surface plane.

To construct 3D-degenerated solid plate-shell
element from 3D brick, we need to introduce the
following plate-shell basic hypotheses:

(1) Normam stresses along the direction of
plate-shell thickness can be omitted, i.e. o, =
0.

(2) 6, =0 makes €, not be independent,
consequently the relative deflection Aw” between
the top and bottom sides of the element will also
become not independent and be constrained
away. For Aw’ being a minor one, set the con-
straints

Au/=0 (i:1’2’°"’8)

Therefore, the degree of freedom of the element

will be reduced from 48 to 40.

2. Laminated plate-shell element stiffness matrix

Because the material elastic modulus matrix
D, is different in each sublayers an element
stiffness matrix is established by being integrated

on each sublayer as follows:

LY S B
ki = Z;Jg“J_J_l B?DkBj i | dedydg
2>

For Gauss integration on each sublayer, Eq.
(2) was changed by the following transforma-
tion:

g: ZNL‘(E,’V,’?)Q; S:

Substituting it into Eq.(2) yields:

n

ZJI-JI_lJl_l B?DkBj L Je LT e

k=

k; =

y =
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d&’dy’ d¢’ 3 Xin <X <Xy L=1525"""51n (5¢)
where Where x =[x, =« x, I's F(x) is
8855’ 88 S, 88 S, objective function; g; (x) are constraint func-
5 877 QC tions. In this paper, objective functions Eq.
) /R P/ B/ R/ (5a) are the minimum weights of a structure.

g dn’ I . 3
ot  ar ot The behavior constraints Eq. (5b) are those of
Jg Ty T stresses, displacements, and natural frequencies
of a structure. The geometric constraints Eq.

1 0 0 ) . .
0 ) 0 3 (5¢) mean those of a structure’ s dimensional
= C, deformation domain.
ag  ar ad¢ | Tat ot : :
9 I, 3t Objective and constraint functions can be ap-
K proximately expressed by a quadratic Taylor se-
Eq. (3) then becomes: ries which, compared to linear expansion,
ky = i J ! J ! J ! B'D, B 1 J, I+ requires a greater ~number of fir{ite e?ement anal-
1Y —1J -1J -1 yses. The quadratic expansion is written as:
a 4 4 “

—Cdédng @ f(x)zf(xk)+Vf(xk)(x—xk)+%(x—

ag

Corresponding the isotropy linear-elastic ma-
terial in the layer, the modulus matrixis D, isCIt
can be kept unified in form by introducing penal-
ty factor A)

Dk=
-1 -
po 1 symmetry
0

E |o 1—p

1—/12 1

0O 0 O 0 5
1—p

_0 0 O 0 0 5]

A penalty factor is introduced into the mate-
rial elastic matrix D), so that A can be zeroed in

the case of calculating stresses on the basis of
strains so as to satisfy plate-shell basic hypothe-
sis Eq.(1), and D, will be given a large value
which makes ¢, tend to zero when composing the

element stiffness matrix to satisfy the plate-shell
basic hypothesis Eq.(2) .

PROBLEM FORMULATION AND OPTIMIZA-
TION METHOD

A shape optimization problem can be math-
ematically generalized as follows:

Minimize F(x) (5a)
Subject to g(x)=0 j=1,2,"">m
(5b>

(6)

X2 Xfn I They
are the initial design points for each cycle or re-
sponding surface. Y/ f(x; ) are gradients of the

xk)TH(xk)(x—xk)

Where x, =[x

objective or constraint functions. To reduce the
number of finite element analysis, H Cx;) is
taken as the Hessian matrix just with diagonal
terms ( without cross-coupling terms ). This
method is called "behavior model technique” .
Once quadratic Eq. (6) approximate func-
tions have been generated, they can be used to
determine the values of objective and constraint
functions at optimization points on each respond-
ing surface during the optimization processes.
By means of Sequential Unconstrained Mini-
mization Technique (SUMT), Egs. (5a-5¢) can

be transformed into

P(x,rk) = F(x)+
TEIZ {min[O,g,-(x)]}2 E = 1,2, (7D

Different penalty factor r, often form differ-
ent corresponding penalty function P (x, r;, D>
with each PCx > r, ) describing a responding sur-
face, so P(x, r;) are called responding func-
tions .

FEM analyses can be carried out using each
perturbation to design points on each responding
surface so as to generate quadratic Eq.(6) ap-
proximate functions. For each response surface,
we can get optimum design points with the New-
ton method during the search for an optimum for
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unconstrained optimization Eq. (7).

RESULTS

To show the effectiveness of the method de-
veloped herein on shape optimization, one dy-
namic problem and two static problems are pre-
sented below.

1. Thickness optimization of a simply supported
square plate with deflection constraints

The first example is to find the minimum
weight of a simply supported square plate with de-
flection constraints shown in Fig.2. It is subject-
ed to a concentrated load of 40 KN at its center
where the maximum admissible deflection is 0.02
m. The material properties are as follows: £ =2.
1x10° MPa, v=0.3, p=7800 kg/m’. The di-
mensions of the plate are assumed to be 10 m x 10
m. The minimum admissible thickness after opti-
mization is set to be 0.005 m.

Using its symmetry characteristics permits
the analysis to be conducted on only a quarter of
the plate> which was divided into 16 3D-virtual
laminated plate elements. The thickness at cor-
ner nodes of the solid layer is taken as the design
variable ( Fig. 3); the number of which is as
many as 25. Table 1 and Fig.5. show the final

design results.

N
ode of the lement Node of the solid layer

Thickness nodes
?\ol’the solid layer

Fig.3 Thickness optimization at the corner nodes of
the element

I

Fig.4 Plate section of stepped shape

Table 1 Comparison of the final data with deflection

constraint

Deflection( mm)

Weight (kg)

(Fleury et al.,1983) 7180 19.89
(Kang et al.,1986) 6960 <20.00
Method presented 6599 19.80

It is worth pointing out that the introduction
of VLEM here makes thickness in the same ele-

ment be different so that the obtained thickness

/ Simply supported
boundary

Symmetry line of the plate

Fig.5 Thickness distribution of the plate after opti-
mization with deflection constraints

distribution of the thin plate after optimization
than that of the
stepped shape ( Fig. 4) in other researches
(Fleury et al., 1983; Ramana et al., 1993 ).
Fig. 6 shows the resulting thickness values of sol-
id layers at element nodes after optimization us-
ing virtual laminated element.

becomes more reasonable

Central point
of the plate

~~0.081 0.078 0.058 0.035 0.037

0.0Y8 0.476 0.

X, ~ X

38 0.006 04024

X Xy

0.058 0.038 0.p16 0.008 0032

X~ X

0.035 0.006 0.p08 0.020 0}045

X Xy

0.037 0.424 0.832 0.p45 0J054

T Xy Xy

Fig.6 Thickness data distribution of the plate after
optimization with deflection constraints( dimensions in
millimeters)

2. Thickness optimization of simply supported square
plate with frequency constraints

The second example is concerned with the mini-
mum weight design of a plate subjected to a natural
frequency constraint. The dimensions of the plate are
25.4 emx25.4 ems and its assumed material prop-
erties are: £ =2.1x 10 MPa, v =0.3, p =730
kg/m’, and under the constraints of both admissible
minimum fundamental frequency assumed to be f =
11.2 Hz and admissible minimum thickness values
(T,.,0—-0.2% cm> 0.127 cm and 2.54 % 1073 cm
respectively. 1o find the minmimum weight of the
plate (the example cited from Fleury et al.(1983) in
British units of its origin, was changed here into
metric system). The initial design corresponding to a
uniform thickness a” =0.305 cm.



206

LI Fang, XU Xing et al.

Table 2 Comparison of the final data with frequency constraint

Tin =0.254cm

T, =0.127cm T, =2.54%x10cm

min

weight (kg)  frequency(Hz) weight (kg) frequency(Hz) weight (kg) frequency(Hz)
g g q Y g g q Y g g quency

(Fleury et al., 1983) 0.341 11.20 0.262 11.30 0.236 11.30
Method developed herein 0.343 11.20 0.261 11.24 0.226 12.10
The finite element grid remains the same as
CONCLUSIONS

that of the first example. Table 2 and Fig. 7
show the final design results. When the admissi-
ble minimum thickness became small, the weight
of the plate we obtained became even smaller.
Fig.7 shows the 3D structural schematic diagram
of the plate in one of the above three cases with
a constraint of admissible minimum thickness to
be 2.54 x 107 cm . The other two cases yield-
ed similar results.

Symmetry
line

Simply supported
boundary

Fig.7 Thickness distribution of the plate after opti-
mization with frequency constraints

Central point of the plate

— T .=2.54
3.607 2.794 2540  2.540 2.540 T o=
3.523 /2997 1270 1270 1270 /w127
2.438 2.144 1.524 0.026 0.026 —T7,,=2.54X107
2.794 2.540| 2.540| 2.540 2.540| 7 T s
2.997 2,692 1.270 1.270 1.270
2144 | 1.605| 0.267) 0.048) 0787 _ .
2.540 2.540| 2.540] 2.540 2.540
1.270 1.270 1.270 1.397 1,803
1.524 0.267] 0.196| 2.205 3.155(_ P
2.540 2.540) 2.540, 2.540 4.216
1.270 1.270 1.397| 4.699 4.826
0.026 0.048] 2.205] 5.093 5.725

— X Xy
2.540 2.540| 2.540| 4.216 4953
1.270 | 1.270] 1.803| 4.826| 6.325
0.026 | _0.787| 3.155] 5.725| 7.158 . .
Fig.8 Thickness data distribution of the plate after

optimization with frequency constraints ( dimensions
in millimeters>

The above results show that if the weight of a
plate does not change, distributing more material
over both near center locations and near corners
can raise the minimum fundamental frequency of
the plate.

1. The virtual laminated element method
(VELM) achieves shape optimization with a new
method. According to the characteristics of this
element, the original FE data structure need not
be changed, i.e. there is no need to regenerate
FE grid.

2. Using " behavior model technique” with
the linear and diagonal terms in the Hessian ma-
trix can fully resolve nonlinear optimization prob-
lems with adequate accuracy. Also, the tech-
nique can substantially reduce the number of fi-
nite element reanalyses required.

3. In this paper; the initial penalty factor is
assumed to be 1.0, and decay factor to be 0.25.
Generally, calculation can achieve convergence
after going through 5 — 8 responding surfaces.
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