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Abstract:

Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite

clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with

respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions

considers two boundary-value problems involving unit point loading and ring loading in the vertical. The solut-

ions are extended to circular distributed and strip distributed normal load. The computation and analysis of set-

tlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are

presented .
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INTRODUCTION

Biot” s consolidation theory was proposed in
1941 medium fundamental
equations. The theory taking into account the

from continuous
coupling between the solid strains and pore pres-
sure dissipation is called “ coupled consolidation
theory”. The solution of governing equations of a
porous solid is more complicated than those in-
volving ideal elastic solids. McNamee et al.
(1960a) presented a solution for plane and axi-
ally symmetric problems in terms of two displace-
ment functions. The general solution for dis-
placement functions is obtained through the ap-
plication of Laplace and Fourier integral trans-
forms for plane problems and Laplace and Han-
kel integral transforms for axisymmetric prob-
lems. Gibson et al. (1970) obtained a solution
for plane strain and axially symmetric consolida-
tion of a clay layer on a smooth impervious base .
Puswewala et al. (1988) presented axisymmet-
ric fundamental solutions for a completely satu-
rated porous elastic solid. Gu et al. (1992) pr-
esented a solution for an axisymmetric vertical

loaded multi-layer base. Huang et al. (1996)
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also obtained an analytical solution for finite
layer through expanding the field of solution.

All the above investigations assumed that the
consolidation layer surface is fully permeable or
impermeable, but that the surface might be af-
fected by geotechnical engineering impediments
such as sand cushion in preloading, replacement
layer of embankment impeding permeation of the
consolidation layer. The impeded layer can be
simplified impeded boundaries of the sub-consol-
idation layer. Xie (1996) studied one dimen-
sional consolidation of layered soils with impeded
boundaries. However results for two-dimensional
problem with impeded boundaries have not been
reported .

This paper deals with the derivation of axi-
symmetric fundamental solutions that are applied
in the consolidation calculations of a finite layer
with impeded boundaries. The derivation of fun-
damental solutions considers two boundary-value
problems involving unit point loading and ring
loading in the vertical direction. The solutions
are extended to circular loading and strip load-
ing. The calculation and analysis of settlements,
vertical total stress and excess pore pressure in
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the consolidation layer subject to circular loading
are presented .

GOVERNING EQUATIONS AND GENERAL SO-
LUTION

Following Biot ( 1941, the displacement
equations for axisymmetric deformations of a
completely saturated isotropic and homogeneous
poroelastic solid in a cylindrical coordinate sys-
tem are expressed in the following:
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In the above equations> u, (7> z, 1) and u,
C(ryz5t) denote displacements in r and z direc-
tions, respectively; p,(r, z, t) is the excess
pore pressure; G and v denote shear modulus
and Poisson” s ratio of the bulk material; £ is the
coefficient of permeability of the medium; e is
the dilatation of the bulk material .

The stress-strain relations are expressed as
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Where G,,(r,z,t), Uoo(r,z,t), azz(r,z,
t) and Gzr( s Z» t) are non-zero stress compo-

nents of the bulk material; €, (r»>z,2), e4(r>

zyt)s €,Cryz,t) and e, Cr, z, t) are bulk
strain components .

Following McNamee et al. (1960b), dis-
placements u,(rs z> ¢t) and u,(rs z> t) and pore
pressure p;(r, z> t) are expressed in terms of
two functions $ and ¢ in the following form:

a¢ X
u, = (7r + z 5 Jr (8)
) Jd¢
uZ=—9—r+z$—¢ (9)
de
po=-26(95 - yvig) QO

It is convenient to dedimensionalize all quan-
tities with respect to length and time by selecting
a certain length “ R” as unity, and “ R*/¢” as a
unit of time, respectively. The substitution of
Egs. (8) — (10) in Egs. (1) — (3)Dyield the
following governing equations for functions ¢ and
¢

I (D

4 2
Vi = ¢

Vi =0 12

Laplace and Hankel transforms of Eqs.(11)
and (12) result in the following two ordinary dif-
ferential equations. Define ¢, and ¢} as zero-
order Hankel transform and Laplace transform of

functions ¢ and ¢, respectively.

(2205
azz_C—P (722_

§2)¢h1=0 (13)

14>

(az C2)¢h"0

where p is Laplace transform parameter; ¢ is

Hankel transform parameter; ¥ =+ £ + p.
Solution of the above two equations are

s[)h] = A( C,p)e_z§ + B( E,p)e_zy —+

CC¢rple® + DCEsple”

Sbh] = E( C)e_zc + F( g)ezZ

Based on Eqs.(4) — (16), general solutions for

displacements, excess pore pressure and stresses

for axisymmetric deformations of a completely

saturated porous elastic solid can be written as

15>
(16)

follows:

e = J: Cl(rOltAe® + yBe ™ — (Ce® —
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yDe” — (z{ + DEe® + (28 — DFe®* 1dg
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u, = JO C5HGOLAe? + Be™™ + Ce® +
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pr = ZGJ: §]0(r§)[77pBe_zy + ypDe” +
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where the superposed bar denotes the Laplace
transform of the relevant quantity .

Combining the above general solutions with
different boundary conditions, fundamental solu-
tions can be obtained.

FUNDAMENTAL SOLUTIONS

1. Fundamental solutions subject to point loading

H » Impeded layer
« .’(l
’
o
I Consolidation layer
kye.Gv
4

Fig.1 Axisymmetric point loading

In Fig.1, H denotes the thickness of the im-
peded layer; h is the thickness of the consolida-
tion layer; k; denotes the coefficient of perme-
ability of the impeded layer; £, is the coefficient
of permeability of the consolidation. It is as-
sumed that permeation only takes place vertically
in the impeded layer not considering the vertical
deformation of the impeded layer and shearing
stress over the plane (z = 0). Following Terza-
the

boundary conditions for the surface of the consol-

ghi one dimensional consolidation theory,

idation layer are derived in the following forms.

Ips

by S =k (z=0) (22)
o,=0 (z=0) (23)
6. =pod(r)/Qur) (z2=0) (24>

In the meantime> it is assumed that the base
of the consolidation layer rests on a smooth, rig-
id and impervious medium, so that, over this

plane
o, =0 (z=h> (25>

I,
Fr-o (z=h) (26)

z
u, =0 (z=h) Q7>

By Laplace transform and the zero order Hankel
transform, the boundary conditions are as fol-
lows:

I, .
kzai;f:kl% (2=0) (28)
c;,z =0 (z=0) (29)
o.. = pol/(2mp) (z=0) (30>
6,.=0 (z=h) 31
I,
oo (2= 1) (32)
V4
u. =0 (z=h) (33>

Base on Eqgs. (17) — (33D, the fundamental so-
lutions in the Laplace domain can be obtained in
the following form.

(1) Displacement in the radial direction:

Po
~ 16Gpw

u, =
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34

2) Displacement in the vertical direction:
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3) Vertical total compressive stress:
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4) Shearing stress:
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5) Excess pore-water pressure:
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where
ayp = — kl + HkZC
a, = kl + HkZC
as =— ky + Hkyy
ay = ki + Hk,Y

B = pp(2h — 2D

2. Fundamental solution subject to ring loading

The system under consideration is shown in
Fig. 2. Application of Laplace transform and
Hankel transform yields the following boundary
conditions over the plane (z =0):

Impeded layer

Consolidation layer
k,c, G

Fig.2 Axisymmetric ring loading

In. .
ky apz-’ = k % (39)

6, =0 (40)
o. = RJ,CRE) (41D

Only change Py/27 in the fundamental solu-
tion for point load into RJ,C R)> and the fun-
damental solution for ring load can be obtained.
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SOLUTIONS FOR OTHER DISTRIBUTED LOAD

1. Solutions for circular loading

The system under consideration is shown in
Fig. 3. Use of lLaplace transform and Hankel
transform yields the following boundary condi-
tions over (z =0):

. q Impeded layer
H } k
. 1
; 111y r
R 'R
B Consolidation layer
k,c,Gv
1
{ Z

Fig.3 Axiymmetric circular loading

dn, .
by 32 =k (42)
o, =0 (43)
6. = qRJ,CROICpE (44)

Only change Py/27x in the fundamental solu-
tion for point loading into gRJ,C R¢J/¢> and the
fundamental solution for ring loading can be ob-
tained .

2. Solutions for strip loading

The system subject to strip loading is shown
in Fig.4. Based on the fundamental solutions for
point loading, the infinite integration in the y
direction and finite integration in the x direction
of the fundamental solutions yields the solution of
point M in the medium for strip loading.

D H=5
-0.5 2 H=2
: @ H=1
-0.6 @ H=0.1
x BH=0
= =0.7r @
S -08}
[a\]
-09F
0.001 001 01 1 10
T=cy/R’
(a)
Fig.5

map for the position of calculation point

v ‘Impeded layér
bh__ b ¥y

‘?||%‘ x

(7]

Consolidation 1ayer

Fig.4 Strip loading

NUMERICAL COMPUTATION AND ANALYSIS
(CIRCULAR LOADING)

All the above solutions should be evaluated
the quadrature
scheme> all infinite integrals with respect to the
Hankel transform parameter { are evaluated us-
ing the Simpson rule ; and time domain solutions
are computed using the approximate Laplace in-

numerically. In numerical

verse formula suggested by Schapery (1962) .

1. The settlement at the center of the loaded area

As shown in Fig. 3, for k1/k2=1, R=h
=1Im, ¢=IN/m*s v=0, H from O mto5 m,
the effect of the impeded layer thickness on the
progress of settlement at the center of the loaded
area is shown in Fig. 5. The results have been
plotted in the form of curves of 2Gu../qR against
ct/R*. It is apparent that the impeded layer
thickness has an important influence. When the
impeded layer thickness is zero, the boundary is
fully permeable.

2. The top surface settlement of consolidation layer
For k1/k2=1, R=h=1m, H=1m, ¢ =

IN/m?, v =0, when the impeded layer thickness

is 1m, the top surface settlement of the consoli-

z

(b)

(a) Effect of the impeded layer thickness on settlement at the center of the loaded area; (b) sketch
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dation layer develops with time as shown in Fig.
6. There are some slight upheavals beyond the
loaded area.

-0.2
i i p] 3 7 3 5
= 4]
=
g 02 —— 7=0.001
& 0.4 —— 7=001]
S 0.64 ——T7=0.]
E o8 —*—T=1
g 1 —¥*—7=10
& —e—7 =100
1.2
Radial (/R)

Fig.6 The development with time of the top surface
settlement of the consolidation layer

© H=0
@ H=0.1

1.06 ® @ H=

05 @ GH=2

T @ & H=5
> 1.04
b 1.03
1.02
1.01

0.00001  0.001 0.1 10

T=ct/R’
(a)

Fig.7

map for the position of calculation point

4. Excess pore pressure

For k1/k2=1, R=h=1m, g = IN/m*, v
= 0, the changing with time of excess pore pres-
sure at 0.5 m under the center of the loaded area
is shown in the Fig. 8 . The results have been

0.5

0.4
= 0.3
0.2
0.1

0.00001 0.001
T=ct/R

(a)

Fig.8
position of calculation point

3. Total compressive stress at 0.5m under the center
of the loaded area

For k1/k2=1, R=h =1m, ¢ = IN/m*, v
= 0, the changing with time of vertical total
compressive stress at 0.5m under the center of
the loaded area during consolidation is shown in
the Fig.7 .The results have been plotted in the
form of curves of o./q against ct/R*. The
thicker the impeded layer, the smaller the
change range of the total stress. It is clearly
shown in Fig. 8 that the change of vertical total
stress is related to the change of excess pore pre-
ssure.

O.SHJ

z

(b)

(a) Effect of the impeded layer thickness and time on vertical total compressive stress; (b) sketch

plotted in the form of curves of p,/q against ct/
R?. Mandel-Cryer effect is obvious for H = 0.
Mandel-Cryer effect is weakened with thickening
of the impeded layer.

2 —

Im

z

(b)

(a) Effect of the impeded layer thickness and time on excess pore pressure; (b) sketch map for the
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CONCLUSIONS

Explicit solutions for Laplace transforms of
displacements, tractions, pore pressure ware de-
rived for a finite layer with impeded boundaries
and subjected to axisymmetric point loads and
ring loads. The Laplace and Hankel transforms
utilized in this paper are efficient.
are extended to circular distributed and strip dis-
tributed normal loadings.
gent and satisfactory .

The solutions
The result is conver-

As a result of the calculation and analysis, it
is apparent that the thickness of the impeded
layer has an important influence on settlement,
vertical total stress and pore pressure of the con-
solidation layer. The vertical total stress is time-
dependant during consolidation. The thicker the
impeded layer is, the smaller the changing range
of the vertical total stress and the weaker the
Mandel-Cryer effect. The impeded layer delays
the settlement progress of the consolidation
layer.
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