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Abstract:

This paper proposes novel multi-layer neural networks based on Independent Component Analysis

for feature extraction of fault modes. By the use of ICA; invariable features embedded in multi-channel vibra-
tion measurements under different operating conditions Crotating speed and/or load) can be captured together.

Thus, stable MLP classifiers insensitive to the variation of operation conditions are constructed. The successful

results achieved by selected experiments indicate great potential of ICA in health condition monitoring of rotat-

ing machines.

Key words:

Independent Component Analysis (ICA), Mutual Information ( MID, Principal Component

Analysis (PCA), Multi-Layer Perceptron (MLP), Residual Total Correlation (RTC)

Document code: A

INTRODUCTION

Rotating machines such as electromotor, dy-
namotor, turbo compressor, etc. are important
equipments in many industry fields. People had
been paying considerable attention to their con-
dition monitoring and fault diagnosis ( Xu,
1998) . Theoretically, any fluctuation of forces
and/or movements (caused by e.g. shaft imbal-
ance, impacts due to bearing faults etc. ) can be
looked on as a significant source ( Lyon, 1987),
in which valuable information for health condi-
tion monitoring is embedded. Health condition
monitoring of rotating machines can, in essence>
be looked on as a kind of special pattern recogni-
tion,
modes (for example imbalance, misalignment,
loose foundation, etc.) expressed by multidi-
mensional

which involves feature extraction of fault

vibration measurements. However,
fault-related machine vibration is usually cor-
rupted with structural machine vibration and
noise from interfering machinery. Moreover,
sensors that are distributed on the machine cas-
ing will be able to measure only a mixture of the
underlying vibration sources because of spatial

redundancy and diversity: many fault-related
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peaks in the spectrum will be visible at several
sensors at the same time ( Alexander et al.,
20020, which makes effective feature extraction
difficult. Principal Component Analysis ( PCA )
for feature extraction was examined in ( Chakra
and Allan, 2000; Lees> 1999). PCA represents
the data in orthogonal basis determined merely
by the second order statistics, which is adequate
for gaussian data analysis ( Chitroub et al.,
2001 . However; it is well known that incipient
faults in a rotating machine manifest themselves
as impulses in the time signal, e.g. it had been
reported that bearing failure and loose foundation
gave rise to nongaussianity Cincreased kurtosis)
of vibration measurements that contained a lot of
additional information in the higher order statis-
tics ( Alexander et al., 1999). Thus, there is
often urgent requirement for new techniques and
methods for nongaussian data analysis in fault di-
agnosis of machines.

There was recently much interest in Indepen-
dent Component Analysis ( ICAD methods for
sources separation and feature extraction of
speech, image and biomedicine signals ( Porrill,
2000; Vigario et al.> 2000; Hansen, 2000;
Chitroub, 2001; Bell et al.> 1995; Govindan
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et al.» 1998). Especially, it has been applied
to mechanical sources separation of rotating ma-
chines ( Alexander et al ., 1999; 2002; Gelle et
al .> 2000). In fact, ICA is also a powerful tool
for analyzing data, especially nongaussian data.
As the extension of standard PCA to higher order
statistics» ICA imposes statistical independence
on the extracted components and has no orthogo-
nality constraint. Whereas PCA can only impose
independence up to the second order while con-
straining the direction vectors to be orthogonal .
Statistically, ICA is a redundancy reduction
technique that ensures that the Mutual Informa-
tion (MDD between the filtered output channels,
a measure based on all higher order statistics of
the signal, is zero ( Govindan and Deng,
19980, which makes ICA more powerful for non-
gaussian data analysis. In this paper, we will
demonstrate that ICA is potentially a useful tool
in automated health condition monitoring of ro-
tating machines. In section 2, the principle of
ICA> along with an information-maximization ap-
proach for ICA (Bell and Sejnowski> 1995) will
be briefly described. The whole framework of our
new method for health condition monitoring of ro-
tating machines is described in Section 3. It
consists of novel multi-layer neural networks,
which combine several ICA networks for feature
extraction> followed by a Multi-Layer Perceptron
(CMLP) for the final classification. The new
method based on ICA for health condition moni-
toring of rotating machines is examined in Sec-
tion 4. It is shown that ICA can effectively cap-
ture the invariable features hidden in multi-di-
mensional vibration observations. Conclusion
and discussion are given in the Section 5.

AN INFORMATION-MAXIMIZATION  ALGO-
RITHM FOR ICA

In ICA, the measured samples Chere multi-
dimension vibration measurements) are thought
to be linear mixtures of some underlying sources
(Bell and Sejnowski> 1995). The goal of ICA is
to try to find how the measured signals x are
formed from the underlying signals s, assuming
that the signals s are statistically as independent
as possible. In practice, the determination of an
ICA-basis leads to an estimation problem

y=s=Wx. 1

but
both the base vector matrix W and the coordi-

Where the observation vector x is known,

nates s are unknown. During the estimation pro-
cedure a large amount of observation vector x
from the data class of interest is needed. As a
measure of statistical independence based on all
higher order statistics, the Mutual Information

I(s) = Jf<s>1ogMds 2

Hfi(si)

or some variant of it is selected as the criterion
function of the estimation problem. Where f(s)
is the joint distribution whose dimensionality is
usually high. The marginal distributions f; (s; )
are the coordinate distributions related to base
vectors b; which form the base vector matrix W.
The cquantity Eq.(2) has the minimum at f(s)

= Hfi(si) » i.e. when the coordinates s; are

statisltically independent. Solving the estimation
problem Eq. (1) as presented above requires the
data to be nongaussian (in the case of gaussian
data PCA gives the desired answer). Indeed,
the linear approach of Eq.(1) often leads to al-
gorithms that maximize nongaussianity of the
recovered components, i.e. the distribution of
the projection of the data onto a vector in the
ICA-basis should be as far from gaussian as pos-
sible. If it cannot be assumed that independent
sources underlie a dataset, ICA may therefore be
regarded as a form of exploratory projection pur-
suit; by which interesting’ structure in the ob-
served space can be sought via nonlinear func-
tions of linear projections, meanwhile, dimen-
sionality reduction is implemented .

The basic problem tackled here is how to
minimize the Mutual Information that the output
y of a neural network processor contains about
its input x . This is defined as

ICy,x)=HCy) - H(ylx). (3>

Where H(y) is the entropy of the output, while
HCy | x) is whatever entropy the output has that
did not come from the input. Bell and Sejnowski
(1995) proposed an ICA algorithm in which they
maximized the joint entropy, H[ g( Wx)J, of
the elements of the linear transform squashed by
a sigmoid function, g(*). This sigmoid function
is the cumulative density function (c.d.f.) of
the signal we are trying to extract. Kven if the
particular ¢.d.f. is unknown, good results have



Extracting invariable fault features of rotating machines

597

been obtained for high kurtosis distributions by
using the logistic function

4>

Where W is the weight matrix for the ICA net-
work, and wg is a bias vector. For maximizing

gluw)=Cl+e ™" u=Wx+w,.

the entropy, weights are updated incrementally
according to the gradient of the entropy. Thus,
the resulting learning rules are

AW o« LW 4+ (1 —2y)x", (5
Awg oc 1 =2y, (6)
For an individual weight, w;, this rule amounts
to
A colWy | e (1_2y0. (D
wijocdetW_'-xj A A

In machine condition monitoring it is not possible
to collect an exhaustive set of measurements from
all possible failure scenarios. Moreover, since a
machine may be used under very different oper-
ating conditions (running speed, load, type of
lubricants) and environmental conditions Cindoor
or outdoor, placed near interfering machinery),
each fault mode actually comprises a set of pat-
terns ( Alexander et al., 2002) . Consequently,
a set of feature vectors have to be used for the
description of a fault pattern, which leads to
high computational complexity and difficulty for
final classification. It will be seen in the next
section that such difficulty can be overcome to
some extent by the use of multi-ICA networks for
the feature extraction.

FEATURE EXTRACTION
TION

AND CLASSIFICA-

The block diagram of our new classification
system is given in Fig. 1. The logic behind our
method is very similar with the one by Govindan
et al.(1998), which applied ICA to Electro-
gram classification during Atrial Fibrillation.
When multidimensional vibration measurements
belonging to one fault class is passed through an
ICA network which has been trained on measure-
ments from that particular fault class, the residu-
al correlation between the output channels would
be less than when it is passed through a network
trained on a different class. three faults
i.e. imbalance,> impact and loose foundation are

Here>

induced to a rotor kit" separately. This experi-
ment setup will be introduced in next section.

Multi-channel vibration measurements

[ ]
[ ]
ICA ICA ICA
network-1 network -2 network -3

MLP CLASSIFIER
1 | 1

Classified fault patterns

Fig.1 Block diagram of the compound ICA-MLP
networks inspired by Govindan et al . (1998)
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Feature extraction with multiple layer ICA

We select data segments from each fault
class under different running speed and load to
build up the training set which was used to batch
train three ICA networks, each one being trained
on one class of data. The ‘total correlations’ at
the output of the three ICA networks, when a
data segment was presented at the input, formed
the feature vector for that data segment> which
was used to train a Multiple Layer Perceptron
(MLP), which performed the final classifica-
tion. The ‘total correlations’ at the output of
one ICA network can be defined as follows:

(Govindan and Deng, 1998)

N
totalcorrelation = \/ Zl corcoeﬁ”icient%j . (8
e

Where corcoefficient; is the correlation coefficient
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at zero lag between the i output channel and the
j output channel. To test the algorithm, each
data segment from the test set was presented at
the input of the three ICA networks. The output
of the MLP indicates which ICA network gave
the minimum residual correlation between chan-
nels; which in turn indicates the fault class to
which the vibration measurements belongs. The
total procedure of ICA feature extraction can be
described in Fig.2, where (O and I stand for
the training set by which the ‘independence’ of
data is found and the trained ICA network, re-
spectively. X is the data segment to be tested,

and L1, 12...L14 stand for different shaft ro-
tating speeds from 500r/min to 7000r/min. At
last, a feature vector ( f1, f2, f3) can be ex-
tracted for every data segment obtained at certain
rotating speed when it is passed through the cor-
responding trained ICA network .

EXPERIMENT

The setup used for fault simulation and signal
acquisition is described in the Fig.3.

Fig.3 The Bently rotor kit

By the use of the AC transducer in Fig. 3,
the motor can be made to run at several shaft-ro-
tating speeds (from 200r/min to 8000r/min). A
number of faults, for example Imbalance, Im-
pact and lLoose Foundation, etc. were induced
and vibration was measured
with two accelerometers fixed on the plank in two
directions X and Y. Both normal and faulty be-
havior was measured at several speeds. Howev-
er> only the fault observations from 500 r/min to

in this rotor kit,

7000 r/min shaft-rotating speeds were used in
this paper. The strategy of sampling the vibration
signals is equiv-cyclic by means of the phase sig-
nal collected by the speed sensor.

In order to evaluate clearly and synthetically
the capacity of multi-ICA networks for feature

extraction, vibration signals were recorded in two
channels from every fault pattern Ci.e. Imbal-
ances Impact and Loose Foundation) under dif-
ferent rotating speeds ranging from 500 r/min to
7000 r/min. The vibration data were filtered us-
ing band-pass amplifiers and digitized at 64
spectral bins. Every fault observation at every
rotating speed consists of one hundred data seg-
ments, each segment 512 samples long. We an-
alyzed these data using the information-maximi-
zation approach for ICA by Bell and Sejnowski
(1995) and Netlab toolbox, which is available
free at web-address: hitp: //www. nerg. aston.
ac.uk/netlab. The first fifty data segments from
each fault class were selected to build up the
training set used to batch train three ICA net-
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works, each one being trained on one class of network 3 (trained by loose Foundation sam-

data. By this way, the results of training three
ICA-networks can be obtained as shown

Fig.4.

in

ples) . It can be seen that every curve fluctuates
violently, which implies that the inherent data
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Fig.4 The RTC of three ICA-networks trained by
the training set from 500r/min — 7000r/min

In Fig.4, the solid> dashed and dotted line;
respectively, stands for the variation of Residual
Total Correlation (RTC) of the trained ICA net-
workl Ctrained by Imbalance samples), ICA
network 2 (trained by Impact samples) and ICA

(a)

structure captured by ICA varies with respect to
the different shaft-rotating speed under which
different training segments were collected by ac-
celerometers. Subsequently, we presented the
training set (i.e. the first fifty data segments in
every observation) and the test set (i.e. the re-
maining fifty data segments in every observation)
as the input of the three trained ICA-networks
one by one,> so that a three dimensional feature
vector (1, 2, f3) was outputted (See Fig.
2). According to the logic interpreted in Section
3, one can directly classify a data segment into
one of the three given faults from the quantity of
every variable in the feature vector extracted by
the three ICA networks. As a result, we can ob-
tain the classification error of the training set and
test set in Fig.5. It can be noticed that all data
segments of both the training and the test set are
classified to some extent, even though there ex-
ists such violent variation in the data structure
(See Fig. 4). Thus, we can also say that the
invariable feature embedded in every fault mode

is extracted to some degree by the multi-ICA-
networks .
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Fig.5 Classification error for the train and test segments only by the trained ICA-networks
(a) with the training segments from 5001/min — 7001/min; (b) with the test segments under 10001/ min, 30001/ min,

50001/min and 7000r/min

Ideally, the output of the ICA networks
should have three patterns corresponding to the
three fault classes. But in practice,; some vibra-
tlon measurements gave minimum total correla-
tion at the output of ICA networks not trained on

its class. Also, the overlap between different
fault classes is inevitable. Thus, minimum re-
sidual correlation cannot always be obtained by
some test samples even if the ICA network had
been trained by other samples that belong to the
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same class as the test set. So further classifica-
tion by a MLP became necessary. We trained a
two-layer perceptron using the feature vectors ex-
tracted by the fifty data segments in the training
set. Here, the scaled conjugate gradient algo-
rithm and a log-sigmoid transfer function were
used for both layers with the number of neurons
in the hidden layer being ten. Experimentally,
the convergence of the MLP was obtained after
less than 50 iteration steps. To test our method,
each data segment from the test set was present-
ed at the input of the three ICA networks. Also,
we compared this method with one MLP classifier
based on FFT features.
faults in rotating machines will be visible in the

It is well known that

acceleration spectrum as increased harmonics of
running speed or presence of sidebands around
characteristic  ( structure-related ) frequencies .

We focused on relatively low feature dimension-
ality (64 spectral bins) during FFT feature ex-
traction. The whole performance of our method
can be summed as Table 1. Clearly, notable im-
provement was obtained by the use of the ICA-
MLP classifier. Also, the feature dimensionality
used in our ICA-MLP classifier is three, just
equal to the amount of the faults (i.e. Imbal-
ance> Impact and Loose Foundation) to be rec-
ognized. By means of the multi-ICA networks>
the hidden fault information in vibration observa-
tions under different shaft-rotating speed was ef-
fectively extracted, and expressed with very low
feature dimensionality. Thus, a robust MLP
classifier was constructed using the training set
with relatively small size> which is, clearly, im-
portant for health condition monitoring of rotating
machines.

Table 1 The whole performance of ICA-MLP compared with FFT-MLP

Imbalance Impact Loose Foundation
ICA-MLP trained by samples under 1000x/min 90% 86 % 92%
ICA-MLP trained by samples under 3000r/min 84% 78% 96 %
ICA-MLP trained by samples under 5000r/min 78 % 82% 94 %
ICA-MLP trained by samples under 70001/ min 84 % 88 % 92 %
FFT-MLP using samples under 50001/ min 76 % 80 % 88 %

DISCUSSION AND CONCLUSION

In this paper> we used compound ICA-MLP
networks for health condition monitoring of rotat-
ing machines. Usually, high spectral resolution
may be required for adequate fault identification
due to overlap in the series of harmonic compo-
nents and noise. This may lead to difficulties be-
cause of the curse of dimensionality: one needs
large sample sizes in high-dimensional spaces in
order to avoid overfitting of the training set.
Such problem can be remedied by the use of
multi-ICA networks for feature extraction. First,
the multi-ICA networks can directly classify
three fault modes to some extent, which implies
the ability of ICA to capture the inherent features
hidden in multi-dimensional vibration data. Sec-
ond, satisfactory fault identification can be im-
plemented using the MLP classifier trained by
the

ICA-networks during the faults classification. It

3-dimensional feature vectors from three

is remarkable that the classification accuracy for
three fault modes by using the trained ICA-MLP
classifier is insensitive to certain a shaft-rotating
speed> that is, the ICA-MLP trained by the
samples under one running speed is able to clas-
sify with considerable accuracy the test set under
another running speed, which shows that invari-
able features in a certain fault mode under differ-
ent running speed can be extracted by multi-ICA
networks together.

In a rotor kit, different fault modes often
manifest themselves as strong nonlinear vibra-
tion. Theoretically, ICA implements feature ex-
traction by finding the direction of the meaningful
structure in data, which is usually constrained to
‘independence’ and ‘ nongaussianity’ of data.
And, conventional ICA assumes that observa-
tions are linear mixtures of some underlying
sources, and that there is no additive noise just
in (1). Indeed, some of the constraints are vio-
lated in practical applications. As a matter of
fact> many faults of rotating machines (for ex-
ample imbalance, oil whirl and shaft crack) of-
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ten manifest themselves as strong nonlinear be-
haviors ( Alexander et al., 2002). In order to
relax the assumptions> new ICA mixtures need to
be used. Fortunately, nonlinear ICA methods
that involve nonlinear unmixing or inference so-
lutions have been developed (Lee, 2000; Luis>
1999). It is hoped that more novel and signifi-
cant features buried in multi-dimensional vibra-
tion measurements from a rotating machine can
be extracted by means of appropriate nonlinear
ICA algorithms>

searched in future.

all of which are to be re-
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