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Abstract:    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical 
wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using 
spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process 
includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding 
watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological 
connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and 
the robustness of watermarking against attacks. 
 
Key words: Mesh watermarking, Spherical wavelet transform, Spherical parameterization 
Document code:     A              CLC number:    TP309 
 
 
INTRODUCTION 
 

The rapid growth of digital media over Inter-
net provides everybody with the facility of easy 
access, copy, edit and distribution of digital con-
tents such as electronic documents, images, sounds 
and videos. There is urgent demand for techniques 
to protect the copyright of the original digital data 
and to prevent unauthorized duplication or tam-
pering. Digital watermarking or data hiding is one 
solution for the copyright protection of digital data.  

Digital watermarking is a process by which a 
user-specified signal (watermark) is hidden or 
embedded into another signal (cover data). Efforts 
on digital watermarking have been traditionally 
concentrated on media data such as audio, still 
image, and video. Recently, the increased popular-

ity of three-dimensional mesh data has prompted 
research applying this technique to 3D models.  In 
this paper we will describe a new algorithm of 
watermarking on meshes. 

 
Related works on the watermarking 3D models 

The pioneer works of watermarking 3D models 
are due to Dr. Ohbuchi et al.(1997; 1998). In his 
papers, the watermark is embedded into polygonal 
mesh data by modifying either the vertex coordi-
nates, the vertex topology, or both. In order to resist 
attacks of geometrical transform, Ohbuchi et al. 
made use of embedding primitives, which are in-
variant under certain class of geometrical trans-
formation. The embedding primitives can be geo-
metrical or topological ones. The embedding 
primitives can be arranged when embedding and 
extracting watermark so that the watermarking 
algorithm can resist reordering vertex attack. 
Remeshing attack is not taken into consideration in 
this paper. In this case, original model data is not 
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necessary during extracting watermark. It is a blind 
watermarking algorithm.  

Emil et al.(1999) embedded the watermark 
during the construction of progressive meshes (PM). 
A set of scalar basis functions can be computed 
from the PM to determine the weight of the coor-
dinate modification of vertices. Their methods 
included model registration during watermark de-
tection, therefore their algorithm can resist attacks 
of vertices reordering, remeshing, geometrical 
transformation. But its accuracy of watermark de-
tection depends on the accuracy of model regis-
tering. 

While the algorithms mentioned above embed 
the watermark in the spatial domain, there are other 
classes of some 3D model watermarking algorithms 
which operate in the frequency domain. Kanai et al. 
(1998) decomposed a 3D polygon mesh into a 
multiresolution representation by performing lazy 
wavelet transform proposed by Lounsbery et 
al.(1993). The vertices of the coarsest shape of the 
model are unchanged under the linear wavelet 
transform, and only wavelet coefficients are modi-
fied for watermark embedding. As the embedding is 
not global, its watermark capacity is strictly limited, 
and the algorithm cannot effectively resist the at-
tack of mesh simplification. In Eurographics 2002, 
Ohbuchi et al.(2002) also proposed a frequency 
domain approach to watermark 3D shapes. In the 
process, the mesh is segmented first into some 
patches, and then for each patch a spectral analysis 
is conducted; the watermark information is finally 
embedded into the frequency domain at the modu-
lation step. Nevertheless, the patch generation step 
cannot be performed automatically, and manual 
interaction is needed. The remeshing attack coun-
tered by this method necessitates a mesh alignment 
step during the watermark extracting.  The water-
mark extracting process contains mesh alignment 
which was also used by Emil et al.(1999). 

Note that none of the above-mentioned wa-
termarking algorithms exploits the property of HVS 
(Human Vision System). Motivated by many digi-
tal image watermarking algorithms, we present a 
new mesh watermarking algorithm based on sph- 
erical wavelet transform (Schröder and Sweldens, 

1995). We decompose the mesh to get a multi- 
resolution representation consisting of approxima-
tion part and several detailed parts. Then by ex-
ploiting the different visual sensitivity on different 
frequency band, we embed the watermark globally 
and adaptively, which enhances the capacity and 
robustness of watermarking. 

 
 

OVERVIEW OF OUR APPROACH 
 

In order to make full use of the HVS property 
of different visual sensitivity on different frequency 
band, we must transform the mesh into a frequency 
domain. Fig.1 illustrates the outline of the proposed 
watermarking method. Our basic idea is to decom- 
pose the original mesh into some detailed parts and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.1  Overview of our approach 
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an approximation part by using sphere wavelet 
transformation proposed by Schröder and Sweldens 
(1995). Then watermark was embedded into both 
the detailed parts and the approximation part. 
Sphere wavelet transformation requires that the 
mesh must have the following properties: (1) Each 
vertex of the mesh must have its sphere coordinate. 
(2) The mesh be uniformly sampled. The first pro- 
perty means that we must first perform global 
sphere parameterization on the original mesh. So 
our method consists of the following steps: 

1. Watermark embedding process: 
Step 1: Perform global spherical parameteri-

zation. Spherical parameterization is mapping a 
mesh into a sphere such that the 3D model can be 
defined as spherical signals. This step requires that 
the mesh is homeomorphic to sphere. We will dis-
cuss this step in Section 3. 

Step 2: Perform uniform spherical sampling. 
Spherical wavelet transform requires geometrical 
signals to be uniformly sampled over the sphere. 
We discuss this step with Step 1 in Section 3. 

Step 3: Perform sphere wavelet forward trans- 
form. This step and Step 5 are inverse operations to 
each other; and they are discussed in detail in Sec-
tion 4. 

Step 4: Embed watermark. 
Step 5: Perform inverse spherical wavelet trans- 

form. 
Step 6: Resample the watermarked mesh to re- 

cover the topology connectivity of the original model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Watermark detecting process: 
The countering of the remeshing attack on the 

watermarked model requires a step of alignment or 
model registration. The steps of watermark detec-
tion are as follows. 

Step 1: Perform mesh alignment. 
Step 2: Perform Step 1 and Step 2 of water-

mark embedding process on both the original mesh 
and the watermarked mesh. 

Step 3: Perform spherical wavelet forward tr- 
ansform on the two outputs of the previous step. 

Step 4: Extract watermark information and 
compare the results. 

 
 

GLOBAL SPHERICAL PARAMETERIZATION 
AND SAMPLING 
 

Parameterization is crucial to many applica-
tions such as texture mapping, morphing and geo-
metric signal processing. Several methods were 
developed for parameterization over the unit sphere 
(Alexa, 2002; Zhou et al., 2002; 2003; Kent et al., 
1992; Haker et al., 2000; Quicken et al., 2000). We 
use the algorithm developed by Zhou et al.(2002). 
Here, we describe it briefly as follows. Readers 
looking for more details can refer to Zhou et 
al.(2002; 2003). 

As illustrated in Fig.2, the method involves 
two steps: 

1. Generate a progressive mesh representation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.2  Global spherical parameterization 
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with local parameterization information. Edge co- 
llapse operation is iteratively performed until the 
mesh is simplified into a convex polyhedron. For 
each edge collapse, the two decimated vertices are 
parameterized over the resultant simplified mesh. 
The local parameterization information is recorded 
in the PM. 

2. Start with the initial spherical mesh yielded 
by projecting the base mesh in the PM onto the unit 
sphere; the sequence of vertex split operations in 
the PM is performed progressively. For each vertex 
split, the two split vertices are positioned on the 
unit sphere using the recorded connectivity and 
local parameterization information. The procedure 
of edge collapse with local parameterization is in 
Fig.3.  

 
 
 
 
 
 

 
 
 

 
Sampling and precision control    

We obtained the geometrical signal on the unit 
sphere in the previous section. In order to perform 
spherical wavelet transform over  the  geometrical 
signal we need to sample the signals regularly over 
the sphere. As illustrated in Fig.4, we first perform 
recursive 1-split-to-4 subdivision of the tetrahedral 
base shape (or other Platonic Solid) as used by 
Schröder and Sweldens (1995), then we sample the 
signals at the vertices of the subdivision spherical 
mesh. In practice, we wish that the generated 
regular mesh approximates the original mesh with a 
given tolerance ε. Let M be the original mesh and 
SM is the sampled mesh. We perform inverse 
sampling an SM to get mesh M'. The 1-to-4 subdi-
vision is recursively performed until the following 
equation is satisfied 

 
( , ) max

M
i ii v

d M M = || v - v ||< ε
∈

′ ′ , 

where ε  is a user-specified error threshold, vi and  

iv ' are vertices on M and M'  respectively. In our 
current implementation, the initial subdivision 
level is five. 
 

 
 
 
 
 
 

Fig.4 Spherical meshes subdivision. The subdivided 
meshes are used for sampling 
 
 
SPHERICAL WAVELET TRANSFORM 
 

Wavelets are basis functions which represent a 
given function at multiple levels of detail. Due to 
their local support in both spatial domain and fre-
quency domain, they are suited for sparse ap-
proximations of functions. In the real number field, 
wavelets are defined as the dyadic translation and 
dilation of one particular, fixed function and in 
multi-dimension Euclidean space tensor-produ- 
ction wavelet is usually adopted. But in 2S  space, 
the translation invariance is no longer true, and 
wavelet cannot be represented as translation and 
dilation of one function. In this paper, we adopt the 
spherical wavelet proposed by Schröder and 
Sweldens (1995) and select the linear lifting 
wavelet transform in particular. We describe it 
briefly as follows: For general wavelet transform, 
Analysis: 
 
   , , , 1, , , , 1,

( ) ( )
, j k j k l j l j m j m l j l

l K j l M j
h gλ λ γ λ+ +

∈ ∈

= =∑ ∑         (1) 

 
Synthesis: 
 

1, , , , , , ,
( ) ( )

j l j k l j k j m l j m
k K j m M j

h gλ λ γ+
∈ ∈

= +∑ ∑               (2) 

 
When λn,• (n is finest resolution level) is given, we 
can recursively perform the above analysis process 
(forward transform) to get γj,• the wavelet coeffi-
cients at the current level, and the coarsest ap-
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Fig.3  Edge collapse with local parameterization



Jin et al. / J Zhejiang Univ SCI   2004 5(3): 251-258 255

proximation part λn−i,• after performing the de-
composition i  times. Similarly, if we have λn−i,• 
and γj,• (j=n−i, n−i+1, ..., n−1), we can perform the 
synthesis process (inverse transform) recursively to 
get the λn,•. Different h, ,h g, g denote different 
wavelet basis function. In Euclidean space we have 
hj,k,l= hl−2k (the same with , )g g , but in general 
manifold they are dependent on scale and position. 
Now we concentrate on spherical wavelet transform. 
In Eqs.(1) and (2), M(j) and K(j) are abstract sets; 
we will make these index sets concrete in sphere. A 
diagram is given in Fig.5. The mesh including 
dashed edges in the figure is assumed as resolution 
j+1 level. K(j) denotes the point set of the inter-
section points of the solid lines and M(j) denotes the 
set of the intersection points of the dash lines. And 
their union K(j)∪M(j)=K(j+1). We will compute 
the λj  and γj approximation part and detailed part, 
by single decomposition in the neighborhood of m.  
Three transform methods: Lazy, Linear, Linear 
lifting are briefly investigated. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Lazy: The Lazy wavelet does nothing but 
subsampling. The result of the analysis and syn-
thesis steps become: 
Analysis:        λj,k=λj+1,k,  γj,m=λj+1,m , 
Synthesis:      λj+1,m=γj,m,  λj+1,k=λj,k , 
where  k∈K(j), m∈M(j). 

Linear: The scaling coefficients (approxima-
tion part) are subsampled and kept unchanged, the 
coefficients of finer resolution are predicted by 
linear interpolation:  

Analysis:       λj,k=λj+1,k  

1 2, 1, 1, 1,1/ 2( )j m j m j v j vγ λ λ λ+ + += − +  

Synthesis:     λj+1,k=λj,k  

1 21, , , ,1/ 2( )j m j m j v j vλ γ λ λ+ = + +  

Linear lifting: Update the scaling coefficients 
by using the wavelet coefficients of linear wavelet 
transform to assure that the wavelet has at least one 
vanishing moment: 
Analysis:   

1 2, 1, 1, 1,1/ 2( )j m j m j v j vγ λ λ λ+ + += − +  

, 1, ,( )
1/ ( )j k j k j j mm k

sλ λ γ+ ∈
= + ∑ N

 

Synthesis:  1, , ,( )
1/ ( )j k j k j j mm k

sλ λ γ+ ∈
= − ∑ N

 

1 21, , , ,1/ 2( )j m j m j v j vλ γ λ λ+ = + +  

where sj must be chosen to ensure that the resultant 
wavelet has a vanishing moment (Schröder and 
Sweldens, 1995). In our experiments, tetrahedron 
was chosen as the original subdivision mesh. In this 
case s1=1/5, s2=1/6, and sj≈1/8 when j≥5. In our 
watermarking algorithm, linear and linear lifting 
are adopted. And the two transform methods were 
compared in our experiment which will be shown in 
Section 7.  

Other transform methods: in Schröder and 
Sweldens (1995), Quadratic, Butterfly transform 
methods are also given. In these methods, ei, fi 

shown in Fig.5 must be used. 
 
 

EMBEDDING WATERMARK 
 

In the previous section, we decomposed the 
geometric signal of the approximation part and 
detailed parts. Large coefficients of detailed parts 
correspond to some local bumpiness. Since the 
human vision is not sensitive to minor geometric    
modification in bumpy areas, we can embed suffi-
cient energy of watermark into these areas. On the 
other hand, the coefficients of low frequency de-
termine the rough shape of the 3D mesh and they 
possess larger magnitudes than those of the high 
frequency. We can adaptively embed more water-
mark information into the approximation part than 
in the detailed parts. The above adaptive watermark 
embedding can be described by the following 

e1 f1 e2

v1 v2 

e3e4 f2

m

Fig.5  Spherical wavelet transform: neighbors used in our 
bases 
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mathematical formula. 
 

( )j j j
i i j i iv v g f v w′ = +  

 
where j

iv  is the ith vertex of M and belongs to band 

j. w is watermark. Function f(•) computes the 
weight of embedding intensity, which is related 
with the band j. And gj is used to control the global 
intensity of the watermark and is only related with 
band j. In our current implementation, function f is  
 

(1/ )   if band  is one of detailed parts( )
log      if band  is an approximation part

j
j i

i j
i

j v jf v
v j

= 


 

 
 
MESH ALIGNMENT AND WATERMARK DE- 
TECTION 
 

In modeling or rendering, it is common to 
apply a geometric transform such as: translation, 
rotation, scaling, reordering vertex, remeshing and 
simplification on a 3D model. Such a transform 
often breaks information synchronization. In order 
to extract the watermark, we must perform a mesh 
alignment (mesh registration) in the watermark 
extraction process. 

Several methods were developed for mesh 
alignment (Besl and Mckay, 1992; Chen and Me-
dioni, 1992). In this paper, we adopt the algorithm 
developed by Chen and Medioni (1992). It is an 
iterative algorithm. In the algorithm, only rotation 
and translation are considered, but it is easy to 
incorporate one additional degree of freedom: un-
form scaling of the mesh into the alignment process. 
Human interaction is required to provide a reasona- 

 
 
 
 
 
 
 
 
 
 

ble initial condition in most cases. 
Note that after the mesh alignment, remeshing 

is not required because we will resample the mesh 
after the spherical parameterization. 

After mesh alignment, we conduct a uniform 
spherical sampling and then spherical wavelet for-
ward transform on the two meshes. We then extract 
the watermark through comparison of these two 
meshes. There are two ways to determine whether 
the extracted watermark corresponds to the original 
watermark: the first, to calculate the correlation 
coefficient between them, and the second, to count    
the total bit error rates. We use the latter in our 
experiments. Table 1 reports our experiments re-
sults. 
 
 
EXPERIMENTS AND RESULTS 
 

In our implementation, we took {0,1} se-
quence which was generated randomly as water-
mark conducted wavelet decompositions of linear 
and linear lifting wavelets respectively. We tested 
the robustness of our algorithm under several at-
tacks: reordering vertex, mesh simplification and 
noise imposition attack, as illustrated in Fig.6. The 
initial results showed that linear lifting is better 
than linear in perceptual invisibility and capacity of 
embedding. This is because when performing linear 
lifting, the error resulting from watermark embed-
ding can be better spread around neighboring ver-
texes compared with the linear transform. The 
evidence become apparent when watermark is 
embedded into scaling coefficients. Table 1 shows 
the ability of resiliency against some attacks: re-
ordering vertex, mesh simplification, noise imposi- 

 
 
 
 
 
 
 
 
 
 

Bunny Venus Mannu. 
Attack 

Linear Linear lifting Linear Linear lifting Linear Linear lifting
Reordering 10−4 10−4 10−4 10−4 10−4 10−4 

Simplification 1/4 0.135* 0.087 0.065 0.184* 0.104 0.081 0.167* 0.085 0.072 
Simplification 1/8 0.326* 0.165 0.107 0.383* 0.173 0.134 0.302* 0.221 0.108 

Noise 0.3% 0.063 0.042 0.076 0.045 0.067 0.038 
Noise 0.6% 0.125 0.103 0.128 0.092 0.143 0.088 

* denotes the watermark was only embedded into the detailed parts 

Table 1  Our experiments results: Bit error rates were used to measure the robustness of the algorithm
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position. In the table we also show the comparison 
result of linear and linear lifting. Table 1 clearly 
shows that the linear lifting method performs a little 
more robust than the linear method during resis-
tance against those attacks. Those attacks are dis-
cussed roughly below. 

 
Reordering vertex    

Reordering vertex is an attack when only the 
order of vertexes is modified and no geometry co-
efficients and topological connectivity are modified. 
It is a kind of lossless attack. During the watermark 
extraction, before spherical wavelet decomposition, 
we must align the original mesh and the attacked 
mesh. If we get the precise alignment, the water-
mark can be perfectly extracted. In practice, the 
alignment process cannot perform perfectly and 
small error is allowed. Our experiments showed the 
proposed approach can extracted successfully the 
watermark from the meshes suffering vertex reor-
dering attack. 

 
Mesh simplification  

The mesh simplification algorithm adopted by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

us was proposed by Zhou et al.(2000). The result of 
our experiments showed that the watermark cannot 
be detected if no watermark is embedded into  
scaling coefficients. And as we expected, the result 
of linear lifting is better than that of linear. Fur-
thermore, the difference in robustness is prominent 
when simplification rate is high. 

 
Noise imposition   

Noise imposition is a kind of attack by adding 
random noise to vertex coordinates. The bit error 
rates (BER) of the watermark are also evaluated as 
above. The results in Table 1 show good resiliency 
against noise imposition. 
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