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Abstract:    A great deal of stabilization criteria has been obtained from study of stabilizing interconnected systems. The 
results obtained are usually based on continuous systems by state feedback. In this paper, decentralized impulsive control is 
presented to stabilize a class of uncertain interconnected systems based on Lyapunov theory. The system under consideration 
involves parameter uncertainties and unknown nonlinear interactions among subsystems. Some new criteria of stabilization 
under impulsive control are established. Two numerical examples are offered to prove the effectiveness and practicality of 
the proposed method. 
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INTRODUCTION 
 

With the development of science and tech-
nology, the structures of control systems are getting 
more and more complicated. This kind of system 
has the characteristic of large dimension, and in-
terconnection among subsystems. Generally, this 
kind of system is called interconnected large system. 
The study of interconnected systems is motivated 
by quite a number of practical applications ranging 
from power networks, transportation, aerospace, 
economics, management, and so on. The strategies 
to control interconnected systems are divided into 
two kinds: centralized control and decentralized 
control. Although centralized control has good 
effect, the complexity among subsystems makes the 

information transfer restricted so that it is difficult 
to realize. Decentralized control is different from 
centralized control, which designs controller for 
each subsystem using only local information. 
Utilizing this control strategy facilitates design of 
controllers. There is a large body of literature on 
interconnected large system (Wang and Zhang, 
1993; Liu and Guan, 1995; Yan et al., 1998). Until 
now, most of the results obtained on interconnected 
systems are usually based on continuous system; 
only a few results on stability of large scale systems 
with impulse effect have been obtained. Liu and 
Guan (1995), Guan and Liu (1994), Guan (1999) 
studied the stability of large scale systems with 
impulse effect based on differential equations. In 
these papers, impulses were regarded as perturba-
tions.  

Significant progress has been made on the 
theory of impulsive differential equations (Laksh- 
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mikantham et al., 1989; Lakshmikantham and Liu, 
1989). People try to use impulsive control to con-
trol practical systems because such controls may be 
simpler to implement and involve cheaper control 
mechanisms. Impulsive control was widely applied 
in chaos (Guan et al., 2002; Liu and Kok, 2002), but 
no corresponding papers on interconnected large 
system have appeared yet. The objective of this 
paper is to present decentralized impulsive con-
trollers to stabilize a class of interconnected large 
system based on Lyapunov theory and to develop 
some stabilization criteria. Theoretical analysis 
showed the method is feasible. The simulation 
results of two numerical examples proved the 
effectiveness of the method. 
 
 
SUPPORTING   RESULTS 
 

This section introduces the basic principles of 
impulsive control and several lemmas. Consider the 
following impulse nonlinear system 
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where  t∈R+, x∈Rn is the state variable,  f (t, x): R+ × 
Rn →Rn is a continuous function in its domains of 
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Ik ( ): n nR R .→x  tk is the moment when the impulse 

occurs. Assume that { }kt , a set of discontinuity po- 
ints, satisfies: 
 

0 1 20 < <  < ,kt t t t< <  and ∞=
∞→k

ktlim . 

 
The state is changed under impulsive control, 

hence the solution trajectories of the system is 
changed as well. 
Lemma 1     Suppose n nR ×∈P  is a positive definite 
matrix, n nR ×∈Q  is a symmetric matrix; then for 

any ,nR∈x  we have 

 

1 Τ Τ 1 Τ
min max( ) ( )λ λ− −≤ ≤P Q x Px x Qx P Q x Px . 

 
Proof   P is a positive definite matrix, so there is a 
full rank matrix P1 to make T

1 1=P P P .   

Let yxP =1 , 

hence T T 1 T 1
1 1( )− −=x Qx y P QP y . 
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Hence matrix 1 T 1

1 1( )− −P QP  is analogous with 1−P Q , 
as they have the same eigenvalues.  
Hence 
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Similarly, we have 1 T T
min ( )λ − ≤P Q x Px x Qx . 

Lemma 2    Suppose n, R∈x y , 0ε > , then we have 
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ε

+ ≤ +
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Lemma 3     

1) Let  
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be the eigenvalues of the symmetric matrices 

BACBA +=,,  respectively. Then 
 

1 , 1,2, ,i i i n i nα β γ α β+ ≤ ≤ + = . 
 

2) Let λ  be the eigenvalue of matrix A; then 
for any integer ,k  kλ  is the eigenvalue of ma-

trix kA . 
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Lemma 4     Suppose n nR ×∈P  is a positive definite 
matrix, ( ) nR∈f x , is a continuous nonlinear func-

tion. Assume ( )f x satisfies ( ) L≤f x x , then  
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Proof   P is a positive definite matrix, so there is a 
full rank P1 to make T

1 1=P P P . Since T
1 1P P  is 

analogous to T
1 1P P , T

M 1 1 M( ) ( )λ λ=P P P . 

Furthermore T
1 M ( )λ=P P , 

we have 
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MAIN RESULTS 
 

Consider the following uncertain intercon-
nected systems under impulsive control 
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where 0 0[ , )( 0),t J t t∈ = +∞ ≥ in
i R∈x  is the state 

variable of the ith subsystem, Ai is an i in n×  matrix, 
Aij is the conjunction matrix of appropriate dimen-
sion which denotes the jth subsystem’s relation 
with the ith subsystem. ( , ),  ( , )i i ij jt tf x h x  are the 

unknown vector fields, the first denotes the uncer-
tainty of the ith subsystem and the later denotes the 
uncertainty relationship of the jth subsystem to the ith 
subsystem. 

Suppose (0, ) 0, (0, ) 0,i ijt t= =f h  and ( , )i i tf x  

, ( , ) ( ) lim (, ).
k

i i ij j ij j k
t t

t t tα α
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≤ ≤ =x h x x x x Im-

pulsive control law ( , ( ))i k i kt tu x  has the effect of 
suddenly changing the state of the system at the 
points tk, where 1 2<  < ,kt t t < lim k

k
t

→∞
= ∞ . 

Definition 1    System 
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is called the isolated subsystem of system (1). 
Definition 2    Suppose there exist impulsive con-
trol laws ( , ( ))i k i kt tu x , which make system (1), (2) 

all asymptotically stable, then ( , ( ))i k i kt tu x  is 
called the decentralized impulsive controller of 
system (1). 

In this paper, ( , ( ))i k i kt tu x can be chosen as the 

form of state feedback ( )ik i ktB x , where Bik are 

i in n×  constant matrices. The objective of this pa-
per is to design decentralized impulsive control 
matrices Bik and impulse occurring time interval 
(tk−tk−1) to make system (1), (2) all asymptotically 
stable. For convenience, define the following no-
tation: 
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where Pi  are i in n×  positive definite matrices, I is 

the i in n×  identity matrix, max ( )λ M  is the maximal 
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eigenvalue of matrix M. min∆ , max∆  denote the 
smallest and the largest time interval of the impul-
sive control respectively.  
Theorem 1    Assume there exist positive definite 
matrices Pi, control matrices Bik and a positive 
constant ε  to make the following conditions hold 
1) If 1,iβ β≥ ≥  
 

2
M MM

M
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ln 2 2 1 0,ji ij( N )
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λ ε λ
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then the systems (1), (2) are all asymptotically 
stable . 
2) If 1iβ β≤ ≤ , 
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then the systems (1), (2) are all asymptotically stable. 
Proof      Construct  a  Lyapunov  function Vi (xi) = 
xi

TPi xi of each isolated subsystem. When kt t≠ , we 
have 
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In general, for 1( , ]k kt t t +∈ , 
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Hence, when 1iβ ≥ , we have  
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Furthermore, when 
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is satisfied, the isolated subsystem is asymptoti-
cally stable. 



Cheng et al. / J Zhejiang Univ SCI   2004 5(3):274-282 278

Similarly, if 1,iβ ≤ M

max m

ln
2 0i i

i i
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holds, the isolated subsystem is asymptotically stable. 

Construct a Lyapunov function T
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By the identical equation 
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and Lemma 1 and Lemma 2, we have 
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When kt t= , we have 
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holds, then the interconnected system (1) is asym- 
ptotically stable as well. 

Comparing Eq.(12) with Eq.(16), we know, 
when Eq.(16) holds, Eq.(12) is certainly satisfied. 

Hence, when Eq.(16) holds, the interconnected 
system (1) and the isolated subsystem (2) are all 
asymptotically stable.  

Similarly, if 1,β ≤  
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holds, then the  systems (1) and (2) are all asymp-
totically stable.  

This completes the proof. 
Corollary 1     In Theorem 1, suppose N = 1, Aij = 0, 
hij  = 0; the following conditions hold 

(1) If  1β ≥ ,  

M

min m

ln 2 0
λβ λ α
λ

+ + <
∆

, 

then the system (1)is asymptotically stable . 
(2) If 1β ≤ ,  

M

max m

ln 2 0
λβ λ α
λ

+ + <
∆

, 

then the system (1) is asymptotically stable. 
This is the special case of a single system. 
In practical application, in order to predigest 

design, control matrices Bik are chosen as constant 
matrices Bi, matrix Pi  is chosen as identity matrix. 
Positive constant 1.ε = We have the following 
theorem. 
Theorem 2     Suppose the impulsive control in-
terval is a constant such that tk−tk−1= ∆ , control 
matrices Bik are chosen as constant matrices Bi (i=1, 
2, , N) whose largest eigenvalue is MλB . Matrices 
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Pi  (i=1, 2, ,  N) are chosen as identity matrix. 
Positive constant ε = 1 to make the following hold  
 

M 2
M M

ln 1
2 2 2( 1) 0ji ijN

λ
λ α λ α

+
+ + + + − + <

∆
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then the isolated and the interconnected systems (1), 
(2) are all  asymptotically stable. 

By Lemma 3, we can proof Theorem 2; the 
method is similar to Theorem 1.  

 
 

NUMERICAL VERIFICATION 
 
Example 1    Consider system (1), the parameters as 
follows:   
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It is easily verified 
 

1 1 1 2 1 2( , ) , ( , ) ,t t≤ ≤f x x f x x   

12 2 2 21 1 1( , ) 0 25 , ( , ) 0 25 ,t . t .≤ ≤h x x h x x  

 
In this example, we choose ε=1, control matrix Bi as 
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0 0 65 0 0 90
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We have N=2, α=1, αijM=0.25, λ=λi=4.828 (i=1, 2), 

when i=1,
2

1
1

5;j
j , j i

λ
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=∑  when i=2,
2

2
1

5 30j
j , j i

. .λ
= ≠
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By Theorem 2, we have ∆ ≤0.146, choose ∆ =0.1, 
initial value 11 12 21 22( , , , )x x x x =(10, 10, 10, 10)T. 

The system states trajectories without and under 
impulsive control are shown in Fig.1 and Fig.2 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)

x 1
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t(s) 

x 1
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(a) 
t(s) 

x 2
2 

t(s) 
(d) 

 
(c) 

x 2
1 

t(s) 

Fig.1   State trajectories of the system without impulsive control 
(a) x11 trajectory; (b) x12 trajectory; (c) x21 trajectory; (d) x22 trajectory 
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Example 2    Consider system (1), the parameters as 
follows: 
 

1 2 12 21

2 2 2 1 2 1
, , ,

1 3 1 1 0 0
− −     

= = = =     
     

A A A A  

11 11 21 21
1 1 2 2

12 22 22

0 5 cos 0 5 cos
( , ) , ( , ) ,

0 5 0 4 sin
. .

t t
. .

   
= =   
   

x x x x
f x f x

x x x
 

21 11 11
12 2 21 1

22 22 12

0 25 0 5 cos
( , ) , ( , ) ,

0 25 sin 0 25
. .

t t
. .

   
= =   
   

x x x
h x h x

x x x
 
It is easily verified  
 

1 1 1 2 1 2( , ) 0 5 , ( , ) 0 5 ,t . t .≤ ≤f x x f x x   

12 2 2 21 1 1( , ) 0 25 , ( , ) 0 5 ,t . t .≤ ≤h x x h x x  

 
In this example, we choose ε=1, control matrix Bi as 
 

1 2

0 42 0 0 38 0
, ,

0 0 25 0 0 40
. .

. .
− −   

= =   − −   
B B  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have  
N=2, α=0.5, αijM=0.5, λ=λi=8.16 (i=1, 2), 

 when 
2

1
1, 

1, 5;j
j j i

i λ
= ≠

= =∑   

when i=2, 
2

2
1

5 30j
j , j i

. .λ
= ≠

=∑   

By Theorem 2, we have ∆ ≤0.0387; choose ∆ =0.02, 
initial value 11 12 21 22( , , , )x x x x =(10, 10, 10, 10)T. 

The system states trajectories without and under 
impulsive control are shown in Fig.3 and Fig.4 
respectively. 
 
 
CONCLUSION 
 

This paper utilizes decentralized impulsive 
control to stabilize a class of uncertain intercon-
nected systems and provides some new criteria of 
stabilization. The impulsive controller is easy to 
design. The theory analysis and simulation results 
show the method is effective. 
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t(s) 

 t(s) 
(d) 

(a) 

t(s) 

(c) 
t(s) 

Fig.2   State trajectories of the system under impulsive control 
(a) x11 trajectory; (b) x12 trajectory; (c) x21 trajectory; (d) x22 trajectory 
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x 1
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x 2
1 
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Fig.4   State trajectories of the system under impulsive control 
(a) x11 trajectory; (b) x12 trajectory; (c) x21 trajectory; (d) x22 trajectory 
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Fig.3   State trajectories of the system without impulsive control 
(a) x11 trajectory; (b) x12 trajectory; (c) x21 trajectory; (d) x22 trajectory 
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