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Abstract:    For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient 
condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequalities solvable 
by an LMI-based iterative algorithm. Compared with the conventional state-feedback controller, the proposed controller can 
achieve better robust control performance since the delayed state is utilized as additional feedback information and the 
parameters of the proposed controllers are changed synchronously with the dynamical characteristic of the system. This 
design method was also extended to the case where only delayed state is available for the controller. The example of 
balancing an inverted pendulum on a cart demonstrates the effectiveness and applicability of the proposed design methods. 
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INTRODUCTION 
 

With the increasing complexity and nonlin-
earity of control systems, linear switched models 
with parameter uncertainties were suggested by 
researchers for describing the nonlinear system 
(Hassibi, 2000). Typical examples of those switch- 
ed systems include automobile transmission sys-
tems, stepper motor driver, computer disc driver 
(Hassibi et al., 1999), flexible manufacturing sys-
tems and a wide variety of other engineering sys-
tems (Lennartson et al., 1994). In recent years, 
increasing attention has been devoted to the per-
formance analysis and controller synthesis of 
switched systems and some useful results had been 
obtained (Hassibi, 2000; Lee et al., 2000; Skafidas 

et al., 1999).  
On the other hand, in most engineering prac-

tices time delay phenomena is hard to be avoided 
due to the transmission speed limitation of infor-
mation or material, the time-consuming measure-
ment or analysis of the online analyzer, etc. In the 
last decades, stability analysis and controller syn-
thesis of time delay systems were an attractive field 
in control theory and received remarkable progress 
(Cao et al., 1998; Li et al., 2001; Moon et al., 2001). 

However, only a few studies on the control 
problem has been reported for switched systems 
with both parameter uncertainties and time delay 
arising in with time delay modeling nonlinear sys-
tems, such as remote control systems (Luo et al., 
2003) and networked control systems (Walsh et al., 
1999; Zhang et al., 2001) for manufacturing, un-
derwater manipulation, aerospace explorer, satel-
lite repair, etc. Generally speaking, if local dy-
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namics of a nonlinear system with time delay 
around different work points can be described by 
linear models with parameter uncertainties and time 
delay, then the overall system will be described by a 
linear uncertain switched model with time delay. 
Thus, it is very important to extend the stability 
analysis and controller design issues to such kind of 
models. 

In this paper, a delay-dependent sufficient 
condition for the existence of a new robust H∞ 
feedback controller for uncertainty linear switched 
systems with time delay is presented in terms of 
nonlinear matrix inequalities which can be solved 
efficiently by an iterative algorithm. The delayed 
state of the system is taken as additional feedback 
information in the computation of the controller 
output. The parameters of the proposed controller 
are switched synchronously with the dynamical 
characteristics of the model to guarantee better 
robust control performance of the closed-loop 
system. Since the delayed system state is the only 
information source available in most networked 
control systems (Zhang et al., 2001) and remote 
control systems (Luo et al., 2003), a sufficient 
condition for the existence of a robust H∞ state delay 
feedback controller is also discussed in this paper.  
 
 
PROBLEM STATEMENT AND PRELIMINARIES 
 

Consider an uncertain linear switched system 
with time delay given by 

 

0, ( ) 0, ( ) 1, ( ) 1, ( )( ) ( )q t q t q t q t d∆ ∆= + + +x A A x A A x   

0, ( ) 0, ( ) 1, ( )( )q t q t q t∆+ + +B B u B w              (1a) 

0, ( ) 1, ( ) 0, ( )q t q t d q t= + +z C x C x D u              (1b) 

( ) ( ) [ ,0]t t dϕ= ∈ −x            (1c) 
 

where dx x(t-d) and x, u, z is the state, control and 
controlled output of the system with appropriate 
dimensions, w is the external disturbance which 
belongs to L2[0,∞ ),  q(t): {1,2,NI+ →  , }N  is 
a piecewise constant switching function, d>0 is the 
constant size of time delay, and ϕ(t) is the initial 
condition. For any q(t)∈IN, A0,q(t), A1,q(t), B0,q(t), B1,q(t), 

C0,q(t), C1,q(t) and D0,q(t) are real constant matrices 
with appropriate dimensions. ∆A0,q(t), ∆A1,q(t) and 
∆B0,q(t) are admissible parameter uncertainties of 
the system that can be described as 
 

0 00, , ,( )i A i i A it∆ ∆=A E F ;  
1 11, , ,( )i A i i A it∆ ∆=A E F   

0 00, , ,( )i B i i B it∆ ∆=B E F  
 

where
0 1 0, , ,{ , , }

NA i A i B i i I∈E E E and 
0 1 0, , ,{ , , }

NA i A i B i i I∈F F F  

are known real constant matrices characterizing the 
upper bounds of those uncertainties and { ( )}

Ni i It∆ ∈  

are time-varying uncertainties satisfying 
 

( ) ( )i it t∆ ∆Τ ≤ I ,  for Ni I∀ ∈             (3) 
 

According to Eq.(1), a nominal linear switched 
system with time delay can be written as 
 

0, ( ) 1, ( ) 0, ( ) 1, ( )q t q t d q t q t= + + +x A x A x B u B w      (3a) 

0, ( ) 1, ( ) 0, ( )q t q t d q t= + +z C x C x D u                    (3b) 
 

Obviously, system Eq.(1) and Eq.(3) both 
consist of N  dynamical linear subsystems with 
time delay and a switching function that determines 
the switching action among them. A system with 
such kind of architecture can be used to character-
ize many nonlinear systems with time delay (Has-
sibi, 2000).  

In this paper, it is assumed that the switching 
function q(t) is an available or measurable piece-
wise constant function and has finite discontinuous 
instants in any limited interval. Now, consider a 
switched controller with state delay feedback as 
follows 
 

0, ( ) 1, ( )q t q t d= +u K x K x              (5) 
 

where K0,q(t) and K1,q(t) are feedback gain matrices 
to be determined. Since the controller Eq.(4) util-
izes not only real-time system state but also delayed 
system state as the feedback information, it may 
achieve better control performance than the con-
ventional memoryless state-feedback controller (Li 
et al., 2001). Furthermore, the controller Eq.(4) and 
the system Eq.(1) or Eq.(3) have the same switch-
ing function, i.e., the control law will be changed as 
soon as the dynamical characteristic of the plant is 
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remarkably changed. Then, it may achieve certain 
control objectives which cannot be accomplished 
by a conventional memoryless state-feedback con- 
troller. 

Substituting Eq.(4) into Eq.(1) and Eq.(3), 
respectively, one obtain the corresponding closed- 
loop systems 
 

0, ( ) 1, ( ) 1, ( )q t q t d q t= + +x A x A x B w           (5a) 

0, ( ) 1, ( )q t q t d= +z C x C x            (5b) 

and 

0, ( ) 1, ( ) 1, ( )q t q t d q t= + +x A x A x B w           (6a) 

0, ( ) 1, ( )q t q t d= +z C x C x            (6b) 

where 
 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( )q t q t q t q t q t q t= + = +A A B K A ∆A , 

1, ( ) 1, ( ) 0, ( ) 1, ( ) 1, ( ) 1, ( )q t q t q t q t q t q t= + = +A A B K A ∆A  

0, ( ) 0, ( ) 0, ( )q t q t q t= +A A ∆A , 1, ( ) 1, ( ) 1, ( )q t q t q t= +A A ∆A ,  

0, ( ) 0, ( ) 0, ( )q t q t q t= +B B ∆B , 0, ( ) 0, ( ) 0, ( ) 0, ( )q t q t q t q t= +A A B K  

1, ( ) 1, ( ) 0, ( ) 1, ( )q t q t q t q t= +A A B K ,  

0, ( ) 0, ( ) 0, ( ) 0, ( )q t q t q t q t= +∆A ∆A ∆B K ,  

1, ( ) 1, ( ) 0, ( ) 1, ( )q t q t q t q t= +∆A ∆A ∆B K  

0, ( ) 0, ( ) 0, ( ) 0, ( )q t q t q t q t= +C C D K ,  

1, ( ) 1, ( ) 0, ( ) 1, ( )q t q t q t q t= +C C D K                  
  

Now, based on the closed-loop model Eq.(5), 
the definition of the robust stabilizable of the sys-
tem Eq.(1) is proposed as follows. 
Definition    Given a scalar γ(γ>0), the system 
Eq.(1) is said to be robust stabilizable with an 
H∞-norm bound γ if there exists a control law Eq.(4) 
such that the closed-loop system Eq.(5) with w(t)=0 
is globally asymptotically stable for all admissible 
uncertainties Eq.(2) and, under zero initial condi-
tions, the following H∞ performance is satisfied 
 

1 T T

01

2( ( ) ( ) ( ) ( ))d 0
t

τ τ γ τ τ τ− ≤∫ z z w w    

for 0t∀ > , 2[0, )∀ ∈ ∞w L                (7) 
 

Moreover, the controller Eq.(4) is called a robust 
H∞ switched controller with state delay feedback of 
the system Eq.(1). 

In this paper, our aim is to find a delay- de-
pendent condition from which a robust H∞ switched 
controller with state delay feedback of system Eq.(1) 
can be derived. 

In obtaining the main results in the next sec-
tion, the following matrix inequalities play an 
important role.  
Lemma 1    Assume that , , 1,2, ,n

i i i r∈ =x y  

and n n×∈∆  satisfying T .≤ I∆∆ Then, for any 
scalars εi, i=1, 2, …, r(r+1)/2, the following ine-
quality holds 
 

T T T T T 1

1

( )
r

i i i i
i

−

=

+ ≤ +∑ x y y x X X Y Y∆ ∆ ∆ ∆       (8) 

where 

( 1)
2

( 1)
2

1 2

2 1 2 1
1 2

2 1

( , , , ) 0r r

r r

r

r r

r r

ε ε ε
ε ε ε

ε ε ε

ε ε ε

+

+

+ −

−

 
 
  > 
 
  

I I I
I I I

Θ

I I I

 

and 
T T T T

1 2[ ],rX x x x  
T T T T

1 2[ ].rY y y y  
 

The proof is given in Appendix. 
Lemma 2 (Moon et al., 2001)    Assume ( ) an⋅ ∈a  

and ( ) bn⋅ ∈b are real vector functions and ( )⋅ ∈N  
a bn n× is defined on the interval Ω. Then, for any 

matrices a an n×∈X , a bn n×∈Y  and b bn n×∈Z , the 
following inequality holds 
 

T2 ( ) ( ) ( )dυ υ υ υ
Ω

− ∫ a N b
T

T T

( ) ( ) ( )
d

( ) ( ) ( )
υ υ υ

υ
υ υ υΩ

−     
≤      −     
∫

a X Y N a
b Y N Z b

    (9) 

where 

T 0
 

≥ 
 

X Y
Y Z

. 

 
 
MAIN RESULTS 
 

In this section, the control problem of the 
nominal system Eq.(3) is considered first and a 
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delay-dependent sufficient condition for the exis-
tence of a H∞ switched controller with state delay 
feedback is presented as follows. 
Theorem 1    Given scalars ( 0)d d >  and γ(γ>0), 
the system Eq.(3) is stabilizable with an H∞-norm 
bound γ  for any time delay constant d  satisfying 

0 d d≤ ≤  if there exist matrices Q>0, W>0, U>0, 
{ 0}

Ni i I∈>M  and 0, 1,{ , , }
Ni i i i I∈L L N such that the fol-

lowing matrix inequalities are satisfied  
 

  

11 12 1, 14 15

24 25
T
1,

( ) ( ) ( ) ( )
( ) ( )

0

i

i

i i i i
i i

d

d

γ
γ

 
 − 
  <−
 

− 
 − 

B
W

I B
I

* U

* 0
* * 0
* * * 0
* * *

Ω Ω Ω Ω
Ω Ω

     (10a) 

  T 1 0i i

i
−

 
≥ 

 

M N
N QU Q

          (12b) 

where 
T T T

11 0, 0, 0, 0, 0, 0,( ) i i i i i ii = + + +Ω A Q QA B L L B  
T

i i id+ + + +M N N W  

12 1, 0, 1,( ) i i i ii = + −Ω A Q B L N , T T T
14 0, 0, 0,i( ) i ii = +Ω QC L D , 

T T T
15 0, 0, 0,( ) ( )i i ii d= +Ω QA L B  

T T T
24 1, 1, 0,( ) i i ii = +Ω QC L D , T T T

25 1, 1, 0,( ) ( )i i ii d= +Ω QA L B . 
 

Moreover, the suitable feedback gain matrices of 
controller Eq.(4) can be constructed by 

1
0, 0,i i

−=K L Q  and 1
1, 1,i i

−=K L Q . 

Proof    Since the switching function ( )q t is a 
piecewise constant function and has finite discon-
tinuous instants in any limited interval, ( )tx  must 
be a strongly continuous function of t  and piece-
wise differentiable. Based on real function theory, 
the following equation holds 
 

1

1
( )d

t

d t d
τ τ

−
= − ∫x x x  

 

Then, the closed-loop system Eq.(6a) can be re-
written as  
 

0, ( ) 1, ( ) 1, ( ) 1, ( )

1

1
( ) ( )d .

t

q t q t q t q t t d
τ τ

−
= + + − ∫x A A x B w A x  

 

Choose the Lyapunov functional candidate as 

1 2 3( ( )) ( ) ( ) ( )V t V t V t V t= + +x  
where 

T
1( )V t = x Px  

0 T
2 ( ) ( ) ( )d d

t

d t
V t

τ
υ υ υ τ

− +
= ∫ ∫ x Rx  

T
3 ( ) ( ) ( )d

t

t d
V t υ υ υ

−
= ∫ x Tx  

 

and P, R, T are positive definite matrices. When the 
value of q(t) is fixed, the derivative of V1(t) is 
 

T T
1 0, 1, 0, 1,( )
( ) (( ) ( ))i i i iq t i

V t
=
= + + +x A A P P A A x  

T T
1, 1

1

1,2 2 ( )d
t

i i t d
τ τ

−
+ − ∫x PB w x PA x       

 

By defining ( ),⋅a  ( ),⋅b  and ( )⋅N in Lemma 2 as 

( ) ( ),tυa x ( ) ( )tυb x  and 1,( ) iυN PA for all 

[ , ]t d tυ ∈ −  and applying matrix inequality Eq.(9), 
it is obtained that 
 

    1 ( )
( )

q t i
V x

=
 

T T T T
0, 0, 1,( ) 2i i i i i id≤ + + + + +x A P PA M N N x x PB w  

1

1

T T
1,2 ( ) ( ) ( )d

t

i i d t d
τ τ τ

−
+ − + ∫x PA N x x Rx    

 

where 0i >M  and iN  are matrices with appropri-
ate dimensions and satisfy the following matrix 
inequalities for all Ni I∈  
 

T 0i i

i

 
≥ 

 

M N
N R

.         (11a) 

Moreover, 

2 ( )
( )

q t i
V t

=

T
0, 1, 1, 0, 1, 1,( ) ( )i i d i i i d id≤ + + + +A x A x B w R A x A x B w    

    T ( ) ( )d
t

t d
τ τ τ

−
−∫ x Rx  

T T
3 ( )
( ) d dq t i

V t
=
= −x Tx x Tx  

 
Thus, it results 
 

( ) 1 T T

( )
( )

q t i
V t γ γ−

=
+ −x z z w w  

1 T T
1 2 3( ) ( ) ( )
( ) ( ) ( )

q t i q t i q t i
V t V t V t γ γ−

= = =
= + + + −z z w w  
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T
1, 1,( ) i i i

d

i

γ

  − + 
   ≤ −   
    −   

x N PA PB
x * T
w * * I

0
Ω

 

T
0,
T
1, 0, 1, 1,
T
1,

i

i i i i

i

d
 
   +    
 
 

A
A R A A B
B

 

0,
1

1, 0, 1,

T
i

T
i i i dγ −

   
    +      
      

C x
C C C x

w
0

0
 

 

where , T T
0, 0,( ) i i i i ii d= + + + + +Ω A P PA M N N T .  

By using Schur-Complement (Boyd et al., 
1994), it is concluded that a sufficient condition for 

( ( ))V tx |q(t)=i
1 T T 0γ γ−+ − <z z w w  for all i∈IN is the 

following matrix inequalities and Eq.(11a) are sat-
isfied for all i∈IN 
 

T T
1, 1, 0, 0,

T T
1, 1,

T
1,

1

( )

0

i i i i i

i i

i

i d
d
d

d

γ
γ

−

 − +
 

− 
  <−
 

− 
  

N PA PB C A
* T C A
* * I B
* * * I
* * * * R

0
0

0

Ω

  (11b) 

 
Now, by pre- and post-multiplying diag{P−1, 

P−1} and diag{P−1, P−1, I, I, I} to Eq.(11a) and 
Eq.(11b), respectively, and setting Q=P−1, W= P−1T 
P−1, L0,i=K0,iP−1, L1,i=K1,iP−1, U=R−1, Mi= 1 1

i
− −P M P  

and 1 1
i i

− −=N P N P , it can be concluded that Eq.(11) 
⇔ Eq.(10), i.e., the satisfying of Eq.(10) implies 
that the following inequality holds almost every-
where on t  
 

( ) 1 T T
. .( ) 0a eV t γ γ−+ − <x z z w w           (12) 

 
Considering the continuity of x(t) one can conclude 
that V(x(t)) is a globally Lyapunov function of the 
closed-loop system Eq.(6) with w(t)=0. Under the 
zero initial conditions and by integrating the 
left-hand of Eq.(12) from 0 to t, the following ine-
quality is obtained  

1 T T

0
( ( ) ( ) ( ) ( ))d ( ( )) 0

t
V tγ τ τ γ τ τ τ− − < − ≤∫ z z w w x  

 

which implies that the closed-loop system Eq.(6) 
satisfies the given H∞ performance Eq.(7). 

Now, we extend Theorem 1 to designing a 
robust H∞ switched controller with state delay 
feedback for the uncertain linear switched system 
with time delay described by Eq.(1). 
Theorem 2    Given scalars ( 0)d d >  and γ(γ>0), 
the system Eq.(1) is robustly stabilizable with an 
H∞-norm bound γ for any time delay constant d 
satisfying 0 d d≤ ≤  if there exist scalars εj,i>0, for 
j=1,2,…,16, i∈IN and matrices Q>0, W>0, U>0, 
{ 0}

Ni i I∈>M  and 0, 1,{ , , }
Ni i i i I∈L L N such that the fol-

lowing matrix inequalities are satisfied. 
 

11 12 1, 14 15 16

24 25 26
T
1,

55

66

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0

( )
( )

i

i

i i i i i
i i i

d

i
i

γ
γ

 
 

− 
 −

< 
− 

 
 
  

B
* W
* * I B
* * * I
* * * *
* * * * *

0
0 0

0 0
0

Ω Ω Ω Ω Ω
Ω Ω Ω

Ω
Ω

 

(13a) 

T 1 0i i

i
−

 
≥ 

 

M N
N QU Q

 for Ni I∀ ∈         (13b) 

where 
T T T

11 0, 0, 0, 0, 0, 0,( ) i i i i i i ii d= + + + +Ω A Q QA B L L B M  

0 0 1 1

T T T
1, , , 4, , ,i i i A i A i i A i A iε ε+ + + + +N N W E E E E  

           
0 0

T
7, 8, 11, , ,( 2 )i i i B i B iε ε ε+ + + E E , 

12 1, 0, 1,( ) i i i ii = + −Ω A Q B L N , T T T
14 0, 0, 0,( ) i i ii = +Ω QC L D , 

T T T
24 1, 1, 0,( ) i i ii = +Ω QC L D ,  T T

25 1, 1, 0,( ) ( )T
i i ii d= +Ω QA L B ,  

0 0 1 1

T T T T T
15 0, 0, 0, 2, , , 5, , ,( ) ( )i i i i A i A i i A i A ii d ε ε= + + +Ω QA L B E E E E  

0 0

T
9, 10, 12, 13, , ,( )i i i i B i B iε ε ε ε+ + + + E E , 

0 0 1 1

T T
55 3, , , 6, , ,( ) i A i A i i A i A ii d ε ε= − + +Ω U E E E E  

0 0

T
14, 15, 16, , ,( 2 )i i i B i B iε ε ε+ + + E E , 

16 16 18( ) [ ( ) ( )],i i i= 0Ω Ω Ω

0 0

T T
16 , ,( ) [ ]A i A ii d= QF QFΩ , 

0 0

T T T T
18 0, , 0, ,( ) [ ]i B i i B ii d= L F L F0 0Ω , 
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26 27 28( ) [ ( ) ( )]i i i= 0Ω Ω Ω ,  

1 1

T T
27 , ,( ) [ ]A i A ii d= QF QFΩ ,  

0 0

T T T T
28 1, , 1, ,( ) [ ]i B i i B ii d= L F L F0 0Ω , 

66 66 77 88( ) diag( ( ), ( ), ( ))i i i i=Ω Ω Ω Ω ,  

66 1, 2, 3,( ) ( , , )i i ii ε ε ε= −Ω Θ ,  

77 4, 5, 6,( ) ( , , ),i i ii ε ε ε= −Ω Θ  

88 7, 8, 16,( ) ( , , ),i i ii ε ε ε= −Ω Θ  
 
Moreover, the suitable feedback gain matrices of 
controller Eq.(4) can be constructed by K0,i=L0,iQ−1 
and K1,i=L1,iQ−1. 
Proof    According to Theorem 1 and by replac-
ing 0,iA , 1,iA  and 0,iB in matrix inequalities Eq.(10a) 

with 0,iA , 1,iA  and 0,iB , respectively, it is obtained 

that the sufficient conditions for the system Eq.(1) 
being robustly stabilizable with an H∞-norm bound 
γ are as follows 
 

T
1 111 12 1, 14 15

2 224 25
T

3 31,

4 4

5 5

( ) ( ) ( ) ( )
( ) ( )

i

i

i i i i
i i

d

d

γ
γ

    
    −    
    −
    

−    
    −    

x xB
x x* W
x x* * I B
x x* * * I
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0
0

0

Ω Ω Ω Ω
Ω Ω

 

                              <0                                           (14a) 
 

T 1 0i i

i
−

 
≥ 

 

M N
N QU Q

,  for Ni I∀ ∈         (14b) 

 
where  
 

T T T
11 0, 0, 0, 0, 0, 0,( ) i i i i i ii = + + +A Q QA B L L BΩ  

T
i i id+ + + +M N N W , 

12 1, 0, 1,( ) i i i ii = + −A Q B L NΩ ,  
T T T

15 0, 0, 0,( ) ( )i i ii d= +QA L BΩ ,  
T T T

25 1, 1, 0,( ) ( )i i ii d= +QA L BΩ , 

 
and xi, i=1,2,…,5 are arbitrary real vectors with 
appropriate dimensions. The matrix inequality 
Eq.(14a) can be rewritten as 

T
1 111 12 1, 14 15

2 224 25
T

3 31,

4 4

5 5

( ) ( ) ( ) ( )
( ) ( )

i

i

i i i i
i i

d

d

γ
γ

′ ′    
    −    
    −
    

−    
    −    

x xB
x x* W
x x* * I B
x x* * * I
x x* * * * U

0
0

0

Ω Ω Ω Ω
Ω Ω

1 2 3( ) ( ) ( ) 0i i i+ + + <Φ Φ Φ  
where 

0 0 0 0

T T
1 1 , , 1 5 , , 1( ) 2 2A i i A i A i i A ii d= +x E F Qx x E F QxΦ ∆ ∆ , 

1 1 1 1

T T
2 1 , , 2 5 , , 2( ) 2 2A i i A i A i i A ii d= +x E F Qx x E F QxΦ ∆ ∆ , 

0 0 0 0

T T
3 1 , , 0, 1 1 , , 1, 2( ) 2 2B i i B i i B i i B i ii = +x E F L x x E F L xΦ ∆ ∆  

0 0 0 0

T T
5 , , 0, 1 5 , , 1, 22 2B i i B i i B i i B i id d+ +x E F L x x E F L x∆ ∆ , 

T T T
11 0, 0, 0, 0, 0, 0,( ) i i i i i ii′ = + + +A Q QA B L L BΩ  

T ,i i id+ + + +M N N W  
T T T

15 0, 0, 0,( ) ( ),i i ii d′ = +QA L BΩ  
 

Now, according to Schur-Complement (Boyd 
et al., 1994) and using Lemma 1, one can under-
stand that Eq.(14a)⇐Eq.(13a), which completes the 
proof. 

Considering the real-time state information 
cannot be available in most applications, such as 
networked control systems (Zhang et al., 2001) and 
remote control systems (Luo et al., 2003), we have 
to design a state delay feedback controller to 
guarantee the robust stability of the closed-loop 
system. By setting L0,i=0, Theorem 2 can be ex-
tended to this case.  
Theorem 3    Given scalars ( 0)d d >  and γ(γ>0). If 
there exist scalars εj,i>0, j=1,2,…,9 and matrices 
Q>0, W>0, U>0, { 0}

Ni i I∈>M  and  0, 1,{ , , }
Ni i i i I∈L L N  

such that the following matrix inequalities are sat-
isfied for all i∈IN 
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24 25 26
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                                                                      (15a) 
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T 1 0i i

i
−

 
≥ 

 

M N
N QU Q

                                  (15b) 

where 
T T

11 0, 0,( ) i i i i ii d= + + + + +A Q QA M N N WΩ  

0 0 1 1 0 0

T T T
1, , , 4, , , 7, , ,i A i A i i A i A i i B i B iε ε ε+ + +E E E E E E  

12 1, 0, 1,( ) ,i i i ii = − + +N A Q B LΩ  T
14 0,( ) ,ii = QCΩ  

T T T
24 1, 1, 0,( ) ,i i ii = +QC L DΩ  T T T

25 1, 1, 0,( ) ( ),i i ii d= +QA L BΩ  

0 0 1 1

T T T
15 0, 2, , , 5, , ,( ) i i A i A i i A i A ii d ε ε= + +QA E E E EΩ  

0 0

T
8, , , ,i B i B iε+ E E  

0 0 1 1 0 0

T T T
55 3, , , 6, , , 9, , ,( ) ,i A i A i i A i A i i B i B ii d ε ε ε= − + + +U E E E E E EΩ

[ ]16 16
ˆ ( ) ( ) ,i i= 0 0Ω Ω  

0 0

T T
16 , ,( ) [ ],A i A ii d= QF QFΩ  

[ ]26 27 28
ˆ ( ) ( ) ( ) ,i i i= 0Ω Ω Ω  

1 1

T T
27 , ,( ) [ ],A i A ii d= QF QFΩ  

0 0

T T T T
28 1, , 1, ,( ) [ ],i B i i B ii d= L F L FΩ  

66 66 77 88( ) diag( ( ), ( ), ( )),i i i i=Ω Ω Ω Ω  

66 1, 2, 3,( ) ( , , ),i i ii ε ε ε= −Ω Θ  77 4, 5, 6,( ) ( , , ),i i ii ε ε ε= −Ω Θ  

88 7, 8, 9,( ) ( , , ),i i ii ε ε ε= −Ω Θ  
 
then the system Eq.(1) is robustly stabilizable with 
an H∞-norm bound γ for any time delay constant d 
satisfying 0 d d≤ ≤  and a suitable state delay 
feedback controller is u(t)=L1,iQ−1xd. 
Remark 1    All the stabilization conditions pro-
posed in this section are delay-dependent since the 
matrix inequalities Eq.(10a), Eq.(13a) and Eq.(15a) 
are dependent upon the upper bound of time delay 
d . In general, the delay-dependent stabilization is 
less conservative than delay-independent stabili-
zation except for some special case where the sys-
tem is stabilizable in nature independent of the size 
of time delay (Lennartson et al., 1994; Luo et al., 
2003). Moreover, when q(t)≡1, i.e., system Eq.(1) 
is an uncertain linear system with time delay, the 
proposed conclusions above are still applicable. 
Remark 2    Note that all of stabilization conditions 
proposed in this section are not linear matrix ine-
qualities (LMIs) because of the nonlinear term 
QU−1Q in Eq.(10b), Eq.(13b) and Eq.(15b). Then, 
the available LMI tools cannot be used directly to 

obtain a feasible solution of Eq.(10), Eq.(13) or 
Eq.(15). An easy, but some conservative way to 
deal with this problem is simply to set Q=U in 
Eq.(10b), Eq.(13b) and Eq.(15b), which converts 
the nonlinear matrix inequalities Eq.(10b), Eq.(13b) 
and Eq.(15b) to a set of LMIs. If one can afford 
more computational costs, however, better results 
can be obtained by using an LMI-based iterative 
algorithm developed by Moon et al.(2001). Since 
the related transform of the nonlinear terms QU−1Q 
and the detail steps of the iterative algorithm used 
in the numerical example in next section are very 
similar to the case in Moon et al.(2001), we will not 
discuss them in this paper. 
 
 
NUMERICAL EXAMPLES 
 

In this section, to illustrate the utilization of 
the results presented in the previous section, we 
consider the following dynamical model of the 
inverted-pendulum system where the effect of the 
friction on the hinge is approximately described as 
a time delay term depending on the angular velocity 
of the pendulum, the mass of the pendulum and the 
cart and the nature of the friction represented by a 
friction coefficient. 
 

1 2 2
2

1 2 1
2

2
1

1 2

2
1

0.25( ) ( ) ( )

sin( ) 0.5 sin(2 )
4( cos ( ))
3

cos( ) 1.2 ( ) ( )
4( cos ( ))
3

x x m M x t d w t

g x aml x xx
l aml x

a x u aml x t d w t
l aml x

= + + − +


− =
 −

 − + − + +
 −

       (16) 

                                                                         
where x1 denotes the angle of the pendulum from the 
vertical, x2 is the angular velocity, u is the force ap-
plied to the cart, and w is the external disturbance. 
Parameter g stands for the gravity constant, m and M 
are the mass of the pendulum and the cart respectively, 
a=1/(m+M), 2l is the length of the pendulum. The 
values of these parameters can be found in Feng 
(2002). 

Since the system Eq.(16) is a nonlinear plant 
with time delay, it should be transformed into an 
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uncertain linear switched model with time delay 
before our results can be used. This will be 
achieved by using the locally linearization methods 
and taking the differences between the linearized 
local models and the original nonlinear model as 
the system uncertainties. In this paper, the range of 
the pendulum swing is supposed to be |x1|≤π/3+ 
π/60 and is divided into 11 sub-ranges Si, i=1,2,…, 
11 as follows 

 

{ ( ( 1) 30 60) ( ( 1) 30 60)}.iS i iθ θπ − − π < ≤ π − + π
 

By linearizing the plant Eq.(16) around the central 
points of sub-ranges, i.e., (x1,x2)=(θi,0), where θi 
=π(i-1)/30, i =1,2,…,11, the linear switched model 
Eq.(1) is obtained, where 
 

0

0,

0 1
( ) 0i

A i∆ θ
 

=  
 

A , 
1

1

0 2 5( )
0 ( ),i

A i

. m M
∆ θ

+ 
=  
 

A ,  

0

0,

0
( )i

B i∆ θ
 

=  
 

B , 1,

1
1i
 

=  
 

B ,  

0, [1 0],i =C   1,2, ,11i =  

( )
0

2

, 04 3
( ) sin( ) , 04 3 cos ( )

A

g
l aml

g
l aml

θ
∆ θ θ

θθ θ


= −


 ≠ −

 

1 2

1.2( )
4 3 cos ( )A

aml
l aml

∆ θ
θ− , 

 0 2

cos( )( )
4 3 cos ( )B

a
l aml

θ∆ θ
θ

−
−

. 

 

Obviously, the upper bounds for those uncer-
tainties can be chosen as follows 
 

{ }0

0 0

,

0 0
,

max ( ) ( 60) 0A i
A i A i∆ θ ∆ θ

 
 =

− ± π  
E  

{ }1

1 1

,

0 0
,

0 max ( ) ( 60)A i
A i A i∆ θ ∆ θ

 
 =

− ± π  
E

{ }0

0 0

,

0 0
,

0 max ( ) ( 60)B i
B i B i∆ θ ∆ θ

 
 =

− ± π  
E

0 1, , ,A i A i= =F F I  
0 ,

0
1B i
 

=  
 

F , for 1,2, ,11i =  

Let the admissible H∞ performance bound γ=0.2 
and the upper bound of time delay is equal to the 
constant time delay of real system, i.e. d d= =0.1 s. 
According to the Theorem 2 and using LMI-based 
iterative algorithm developed by Moon et al.(2001), 
after 22 rounds of iteration, we can obtain the ro-
bust H∞ switched controller Eq.(4) with state delay 
feedback as follows 
 

0,1 [1267.1 436.5],=K 1,1 [ 0.178 128.285],= −K  

0,2 [1285.1 443.4],=K     1,2 [ 0.125 129.277],= −K  

0,3 [1316.2 454.7],=K  1,3 [ 0.113 132.177],= −K  

0,4 [1364.6 472.1],=K     1,4 [ 0.108 137.163],= −K  

0,5 [1435.1 497.4],=K  1,5 [ 0.101 144.500],= −K  

0,6 [1532.2 532.2],=K     1,6 [ 0.087 154.609],= −K  

0,7 [1662.2 578.9],=K     1,7 [ 0.055 168.150],= −K  

0,8 [1835.0 640.8],=K     1,8 [0.018 186.160],=K  

0,9 [2066.8 723.9],=K 1,9 [0.192 210.327],=K  

0,10 [2385.1 837.9],=K     1,10 [0.581 243.521],=K  

0,11 [2839.9 1000.8],=K   1,11 [1.090 290.854].=K  

 
Obviously, this robust H∞ switched controller 

with state delay feedback has a piecewise constant 
feedback gain depending on the sub-range in which 
x1 is. In addition, the entry values of those feedback 
gain matrices indicate that the larger deviation 
between x1 and original results in a stronger control 
force. The solid line in Fig.1 shows the angle re-
sponse of the closed-loop system without external 
disturbance for the initial state x1=π/3, x2=0. If we 
cancel the state delay feedback loop, the 
closed-loop system is still stable, but the perform-
ance deteriorates as being shown by the dash line in 
Fig.1. The dash-dot line in Fig.1 shows the angle 
response of the closed-loop systems with the ex-
ternal disturbance w(t)=sin(2πt), which is also 
showed by the dotted line in Fig.1. This example 
clearly demonstrated that the controller obtained 
from Theorem 2 can not only stabilize the uncertain 
linear switched systems with time delay but also 
achieve the given H∞ performance.  

Now, consider the case where the time delay is 
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introduced by the measurement components, the 
transmission of the system state information, i.e., 
the real-time state of the plant is not available for the 
controller. Let the admissible H∞ performance 
bound γ=0.1. By applying Theorem 3, a suitable 
state delay feedback controller is obtained when 

0.014 sd = . Three simulation results of the closed- 
loop system under the different initial conditions, 
external disturbances and time delay constants are 
shown in Fig.2, which indicates that the state delay 
 

 
 

Fig.1  Angle responses of the inverted-pendulum system 
with different controllers 
──: Robust H∞ switched controller with state delay feed-
back for the system without external disturbance;  
----: Robust H∞ switched controller without state delay 
feedback for the system without external disturbance; 
-⋅-⋅-: Robust H∞ switched controller with state delay feed-
back for the system with external disturbance w(t)=sin(2πt);  
….: External disturbance w(t)=sin(2πt) 

 

 
 

Fig.2  Angle responses of the inverted-pendulum system 
with state delay feedback controller for the different 
conditions 
──: x1=0, x2=−10, w(t)=sin(2πt), d=0.01;  
----: x1=π/4, x2=2, w(t)=sin(πt), d=0.014;  
….: x1=π/4, x2=2, w(t)=sin(πt), d=0.03 

feedback controller stabilizes the uncertain linear 
switched systems with time delay when d d≤ , but 
d  is only the suboptimal upper bound of all ad-
missible time delay of the closed-loop system since 
only a sufficient condition is presented in Theorem 3. 
 
 
CONCLUSIONS 
 

This paper addresses a new delay-dependent 
robust H∞ controller design method for the uncer-
tain linear switched systems with time delay. The 
new robust controller, which can be obtained by an 
iterative algorithm, utilizes the delayed state as 
additional feedback control information and has 
switched gain matrices to guarantee better robust 
control performance. The result is also extended to 
the case where only delayed state information is 
available for the controller. The example of bal-
ancing an inverted pendulum on a cart demonstrates 
the effectiveness and applicability of the proposed 
design methods. 
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APPENDIX: THE PROOF OF LEMMA 1 
 

We will base our proof on the following 
Lemma. 
Lemma A.1 (Cao et al., 1998)   For any , n∈x y  

and any positive definite matrix n n×∈Q  
 

T T T 12 −− ≤ +x y x Qx y Q y  
 

Proof of Lemma 1    For the sake of simplicity and 
without loss of generality, we do the proof only for 

2r = . For the more general case, the proof is 
similar. Note that 
 

T T T T T T
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Based on the matrix theory, Q  can be decomposed 
into 
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Applying Lemma A.1, we have 
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This completes the proof. 
 
 


