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Abstract:    System identification is a method for using measured data to create or improve a mathematical model of the 
object being tested. From the measured data however, noise is noticed at the beginning of the response. One solution to avoid 
this noise problem is to skip the noisy data and then use the initial conditions as active parameters, to be found by using the 
system identification process. This paper describes the development of the equations for setting up the initial conditions as 
active parameters. The simulated data and response data from actual shear buildings were used to prove the accuracy of both 
the algorithm and the computer program, which include the initial conditions as active parameters. The numerical and 
experimental model analysis showed that the value of mass, stiffness and frequency were very reasonable and that the 
computed acceleration and measured acceleration matched very well. 
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INTRODUCTION 
 

System identification is a method for using 
measured data to create or improve a mathematical 
model of the object being tested. It had been de-
scribed as the process of selecting the form of the 
mathematical model and then, using measured test 
data, systemically adjusting the parameters in this 
method until, based on a predefined criterion, the 
best possible correlation is achieved between the 
predicted and measured response (Matzen and 
McNiven, 1976). This method is widely used in 
many research areas, such as civil engineering, 
electronic engineering, chemical engineering, etc. 
(Yue and Schlueter, 2002; Bykov et al., 2003; 
Kruglov et al., 2002). Especially, this method is 

very useful for analyzing the behavior of structural 
dynamics. The measured acceleration of free vi-
bration (Hart and Yao, 1977) revealed that there 
was noise in the high frequency response super-
imposed on the expected response at the beginning 
of the vibration. To solve this noise problem, one 
solution is to skip the noise data, establish a new 
origin for the time scale, and then use initial con-
ditions as parameters to be found by the system 
identification process.  

Several approaches to system identification 
had been developed (Natke, 1982; Beck and 
Jennings, 1980). Many models and approaches had 
been used, e.g. linear, nonlinear, time domain, 
frequency domain, modal parameters and physical 
parameters (McVerry, 1980; Distefano and Rath, 
1975; Matzen, 1990; Deng et al., 2003; Fukushima 
and Sugie, 1999). In this paper, a modified 
Gauss-Newton minimizing algorithm (Matzen, 
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1990) is used to find the elements of mass, damping 
and stiffness matrices of structure based on the time 
domain method. One of the reasons for using a 
physical parameter time domain approach is that 
some modeling problems such as isolated uncer-
tainties may be more easily addressed using this 
method than the modal parameter frequency do-
main method. Therefore, in order to demonstrate 
that this idea of using the initial conditions as active 
parameters is valid, the following steps are used in 
this research. The first step of this research is to 
derive the algorithm including the initial conditions 
as active parameters. The second step, a 
pull-back-and-quick-release test is used to generate 
measured data from actual shear buildings with 
single-degree of freedom and multi-degree of 
freedom. These measured data are used to test and 
verify the usefulness and accuracy of the proposed 
algorithm. 
 
 
METHOD OF SYSTEM IDENTIFICATION 
 

Berkey (1970) divided the process of system 
identification into the following three steps: 

(1) Determination of the form of the model and 
isolation of the unknown parameters. 

(2) Selection of a criterion function by means 
of which the goodness of fit of the model response 
to the actual system response can be evaluated. 

(3) Selection of an algorithm or strategy for 
adjustment of the parameters in such a way that the 
differences between model and system responses, 
as measured by the criterion in Step (2), are mini-
mized. 

A good choice for the model is one that can 
produce good correlation with the measured data, 
but also contains terms that are directly related to 
known physical properties. We follow these steps 
to derive the analysis model using the initial con-
ditions as active parameters. 
 
Form of the mathematical model 

The mathematical model for the shear building, 
tested by free vibration, is assumed to be linear, 
elastic and viscously damping. The resulting dis-

crete initial value problem takes the following 
form:   
 

[ ]{ } [ ]{ } [ ]{ } { ( )}t+ + =M X C X K X P                 (1) 

 
Where: [M]: the mass matrix of the structure; [C]: 
the damping matrix of the structure; [K]: the stiff-
ness matrix of the structure; { }X : the acceleration 

vector; { }X : the velocity vector; { }X : the dis-
placement vector; { ( )}:tP the load vector; 

0 0{ } { },  { } { }= =X X X X : the initial conditions. 
The parameters to be obtained in the system 

identification process are any combination of the 
elements of the three coefficient matrices and these 
are placed in a one-dimensional array, called Active 
Parameter vector, denoted AP. The algorithm was 
originally developed to use only zero initial condi-
tions. However, if we conclude that the initial ve-
locity and displacement vectors are included in the 
Active Parameter vector, we can start from any time. 
This will prove to be an easy way to avoid the initial 
noisy experimental data. 

 
Criterion function 

A realistic mathematical model must be able to 
produce a response that matches the structure’s 
response when both the model and the structure are 
subjected to the same excitation. The error function 
indicates how well the match is made. In laboratory 
tests, the acceleration response can be easily 
measured. Hence, errors in accelerations are only 
one used in this paper. The function is divided by 
the duration of the signal, and the acceleration error 
at each degree of freedom is weighted by a factor W 
to form a weighted, mean square error function. 
The final error function for a single degree of 
freedom (SDOF) system takes the following form: 
 

 2

 0

1( ) [ ( ) ( , )] ddt

m c
d

J W t t t
t

= −∫AP X X AP                (2) 

 
and for number of degrees of freedom (NDOF) 
system, it takes the following form: 



Sung et al. / J Zhejiang Univ SCI   2004 5(9):1035-1044 1037

{ }

1

 2

 0

0 0
0 01( ) ( , ) ( , ) d

0
0 0

dt

d

n

W
W

J e t e t t
t

W

 
 
 =
 
 
  

∫AP AP AP

(3) 
 

Where: ( , ) [ ( ) ( , )];mj cje t t t= −AP X X AP n: the 

number of degrees of freedom; ( )mj tX :  the meas-

ured acceleration at the jth DOF; ( , )cj tX AP : the 

computed acceleration at the jth DOF using the 
current set of parameters; Wj: the weighting factor 
for the jth DOF. 
 
Parameter adjustment algorithm 

The Gauss-Newton method was selected to 
systemically adjust the parameters in the mathe-
matical model until the error function was mini-
mized. This method was derived by expanding the 
error function in Taylor series about the previous 
set of parameters AP. 

The error function is as follows: 
 

{ }
 

 0
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t

= ∫AP AP W AP              (4) 

 
Taylor series expansion of Eq.(4) yields: 
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: the Hessian Matrix; 
APi: the ith Active Parameter.  
To minimize J(AP), the gradient with respect 

to APi was set equal to zero vector. 
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In the Gauss-Newton method, the first integral 

term in the Hessian is eliminated. The terms of the 
remaining symmetric matrix which is called the 
Approximate Hessian, denoted AH, is given by the 
following equation: 
 

 

 0

( , ) ( , )
( ) 2 [ ]  ddt C C

ij
i j
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Eq.(6) can be rearranged to give the following 
equation: 
 

{ } { }
010 0 ( )( )i i

j

Ja
−  ∂  = −    ∂  

APAP AP AH AP
AP

       (7) 

 
Where: a is a positive scaling factor.  

This equation is called the modified Gauss 
method. It is widely used in optimization and has 
the advantage of rapid convergence to the minimum 
without the need to calculate second partial de-
rivatives. 
 
Sensitivity coefficient 

To compute the elements of the gradient vector 
and the Approximate Hessian matrix, it is necessary 
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to evaluate the first partial derivative of the com-
puted acceleration with respect to each parameter. 
These first partial derivatives, called sensitivity 
coefficients, are the solutions to partial differential 
equations. These equations are obtained by par-
tially differentiating Eq.(1) with respect to each 
parameter. 

For example if AP=Mij, then partially differ-
entiating Eq.(1) yields: 

 

[ ] [ ] [ ] { }
ij ij ij ij

       ∂ ∂ ∂ ∂       + + = −       
∂ ∂ ∂ ∂              

X X X MM C K X
M M M M

                                                                          (8) 

where: (0) (0){0};   {0}.
ij ij
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If AP=Cij, then partially differentiating Eq.(1) 

yields: 
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If AP=Kij, then partially differentiating Eq.(1) 

yields: 
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Eqs.(8), (9) and (10) can only be valid at the be-
ginning of the response because the initial condi-
tions for Eq.(1) are only known at time=0. As 
mentioned previously, some experimental data 
have noise at the beginning and it would be con-
venient to skip the noisy data and use data with 
known initial conditions from a non-zero starting 
time. However, they are not known. One solution to 

this dilemma is to make the elements active pa-
rameters (AP). Typical equations for finding sen-
sitivity coefficients for initial displacements and 
initial velocities are given below: 

If AP= 3 ( )t′X and time starts from t′  
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If AP= X3(t′)and time starts from t′ 
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VERIFICATION USING SIMULATED DATA 
 

The program was tested to ensure that the 
modified algorithm, using the initial conditions as 
active parameters and the reduced sensitivity array, 
were correctly implemented. This was accom-
plished using simulated data. In these experiments, 
assigning values to all of the parameters numeri-
cally simulated measured data. Then the program 
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was run using initial set parameters different from 
the assigned set and a non-zero starting time. The 
parameters used were similar to those expected 
from the laboratory models. The simulated accel-
erations were used as input file, with a varied set of 
values for active parameters, including mass, 
damping, stiffness and initial conditions. The nu-
merical experiments used noise-free data and an 
initial set of parameters that are though to be typical 
of the initial estimates that could be made when real 
data are employed. To check the non-zero initial 
condition modification, four experiments were 
performed, each starting from a different time. The 
first try, without skipping any point, started from 
time equal to zero. The second try, skipping 
twenty-five points, one time step equal to 0.07 
second, started from the time of 1.75 seconds. The 
third and fourth tries, skipping fifty and sev-
enty-five points individually, started from time 
equal 3.5 seconds and 5.25 seconds respectively. 
All results are shown in Table 1 and Table 2. In 
each case, the parameters converged to the assigned 
values and the correct initial displacements and 
velocities were obtained. Moreover, the value of 
the error was very nearly zero. These simulated 
data experiments demonstrated that the algorithms 
proposed in this paper are correct. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VERIFICATION USING EXPERIMENTAL DATA 
 

The laboratory tests aimed at examining the 
actual behavior of the shear building in order to 
demonstrate that the algorithms proposed in this 
paper are correct. A single story model building and 
a multi-story shear building were tested; both 
structures were tested with an added mass and 
without it. Then, we skipped the noisy data and find 
all the parameters to demonstrate the accuracy of 
the proposed expressions. As most of the mass of 
the shear building was concentrated at the girder 
level, it was assumed for this research that the 
masses are lumped at each degree of freedom. The 
mass matrix generated was diagonal. The stiffness 
matrix was formed by inducing a unit displacement 
to a degree of freedom while keeping all other de-
grees of freedom equal to zero; then the elastic 
forces at the degree of freedom required to maintain 
the deflected shape was used to compute the stiff-
ness matrix. The shear building had non-zero 
off-diagonal terms in the stiffness matrix. There-
after, the analytical frequencies were computed. 
The Rayleigh damping matrix (Rapid System, 1999) 
was used to find the damping matrix. 
 
Experimental test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Numerical investigation of SDOF (Unit: non-dimensional)

Mass=1.0 Initial parameters Skip numbers Computed AP Actual AP Error (%) 
 

Damping 
 

0.016 
 

0.00604 
 

0.006 
 

0.67 
Stiffness 28 30 30 0 
Velocity −0.1 −0.3 −0.3 0 

Displacement 0.2 

0 

−0.0000307 0 0.0037 

Damping 0.016 0.006 0.006 0 
Stiffness 28 30 30 0 
Velocity −0.1 −0.271 −0.27 0.37 

Displacement 0.2 

25 

0.446 0.45 0.89 

Damping 0.016 0.00606 0.006 1 
Stiffness 28 30 30 0 
Velocity −0.1 −0.201 −0.201 0 

Displacement 0.2 

50 

0.807 0.81 0.37 

Damping 0.016 0.00606 0.006 1 
Stiffness 28 0 30 0 
Velocity −0.1 −0.1 −0.1 0 

Displacement 0.2 

75 

1.03 1.03 0 
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Table 2  Numerical investigation of MDOF (Unit: non-dimensional)

Mass11=1.0 Initial parameters Skip numbers Computed AP Actual AP Error (%) 

Mass22 1.02 1.0 1.0 0 
Damping  C11 0.0025 0.000492 0.0005 1.6 

C12=C21 −0.0009 −0.000303 −0.0003 1.0 
C22 0.0013 0.00089 0.00086 3.49 

Stiffness   K11 5.2 5.0 5.0 0 
K12=K21 −2.01 −2.0 −2.0 0 
K22 3.8 4.0 4.0 0 

Displacement  X1 −0.13 −0.13 −0.13 0 
X2 −0.2 −0.333 −0.33 0.11 

Velocity   1X  0 0.0000045 0 0 

2X  
 

0 
 

0 

0.000002239 
 

0 
 

0 
 

Mass22 1.02 1.0 1.0 0 
Damping  C11 0.0025 0.000491 0.0005 1.8 

C12=C21 −0.0009 −0.00028 −0.0003 6.67 
C22 0.0013 0.00865 0.00086 0.58 

Stiffness   K11 5.2 5.0 5.0 0 
K12=K21 −2.01 −2.0 −2.0 0 
K22 3.8 3.98 4.0 0.5 

Displacement  X1 −0.13 −0.0713 −0.07122 0.11 
X2 −0.2 −0.229 −0.22863 0.16 

Velocity   1X  0 0.295 0.29515 0.05 

2X  
 

0 
 

25 

−0.0567 
 

−0.05692 
 

0.40 
 

Mass22 1.02 1.0 1.0 0 
Damping  C11 0.0025 0.000491 0.0005 1.8 

C12=C21 −0.0009 −0.000307 −0.0003 2.23 
C22 0.0013 0.00886 0.00086 3.02 

Stiffness   K11 5.2 5.0 5.0 0 
K12=K21 −2.01 −2.0 −2.0 0 
K22 3.8 4.0 4.0 0 

Displacement  X1 −0.13 0.0564 0.056358 0.07 
X2 −0.2 0.00903 0.0090 0.33 

Velocity   1X  0 −0.395 −0.3953 0.08 

2X  
 

0 
 

50 

0.135 
 

0.13525 
 

0.18 
 

Mass22 1.02 1.0 1.0 0 
Damping  C11 0.0025 0.000493 0.0005 1.4 

C12=C21 −0.0009 −0.000293 −0.0003 2.33 
C22 0.0013 0.00851 0.00086 1.05 

Stiffness   K11 5.2 5.0 5.0 0 
K12=K21 −2.01 −2.0 −2.0 0 
K22 3.8 4.0 4.0 0 

Displacement  X1 −0.13 0.00415 0.0049 1.5 
X2 −0.2 0.301 0.30158 0.19 

Velocity   1X  0 0.579 0.5799 0.16 

2X  0 

75 

0.217 0.21683 0.08 
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The structure and test setup are shown in Fig.1 
for the single degree of freedom and Fig.2 for the 
multi-degree of freedom structure. They were con-
structed of flexible aluminum columns and rigid 
steel girders. The joints of the structures were fixed 
by placing a bolt through the columns and into the 
girder. Then the accelerometers are connected to 
the end of the girders. These structures were fixed 
to the base to the nearly rigid supporting structure 
so that it lined up with the pull-back force. For this 
research, static test and dynamic test were used to 
test the shear building models. 

 
Static test 

The  assembled  shear  buildings  were  tested 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

statically to provide the information need to create 
a stiffness matrix. Stiffness coefficients cannot 
easily be computed directly, so flexibility coeffi-
cients were found instead. After each of the terms in 
the flexibility matrix had been found, the matrix 
could be inverted to give the stiffness matrix. Dis-
placements at each story were produced by hanging 
a weight on the structure at the first one of the sto-
ries and by hanging a string on the structures of the 
other stories. The displacements were measured 
using an LVDT. 

 
Dynamic test 

For dynamic testing, the accelerometers were 
attached at the  end  of  girders  and  the  lead  wires 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) (b) 

Fig.1  The structure and test setup for SDOF 
(a) test setup w/o added mass; (b) test setup w/ added mass 

 
(a) (b) 

Fig.2  The structure and test setup for MDOF 
(a) test setup w/o added mass; (b) test setup w/ added mass at 1st floor 
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were taped to the columns. Then, we set data ac-
quisition system gains. The equipment used in the 
free vibration were (1) Rapid system 4×4 digital 
storage oscilloscope, (2) PCB accelerometers 
Model 308B02, and (3) PCB I.C.P. 4-channel 
power supply model 482A04. DC coupling was 
used to record the experimental data. In order to 
conduct the free vibration tests, the structure being 
tested would be loaded statically as described in the 
previous section. The string would then be cut us-
ing a torch allowing the structure to vibrate freely. 
The data recorded from rapid system were voltages. 
Then, the following equation was used to convert 
the voltage to acceleration. 
 

127.5
16 /
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points Div
−

= ×  

2( / ) 386.4 in / s
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OscilloscopeGain V Div
Accel Sensitivity V g g

×        (15) 

 
where: Datum: the voltage read from the rapid 
system; Response: the acceleration (unit: in/s2).  

In addition to recording the accelerations, we 
measured the frequencies of each shear building 
with a real time spectrum analyzer using the rapid 
system 4×4 to acquire four simultaneous channels 
of data. It calculated the frequency spectra using the 
digital signal processor. 

 
Test results 

All of the tests results recorded by the rapid 
system indicated that the problem of noise at the 
beginning of the measured acceleration datum was 
resolved by skipping the noise points. The pa-
rameters in the active parameter vector must be 
independent in order for the minimization algo-
rithm to work correctly. Since the equations of 
motion for free vibration were homogeneous, each 
equation could be multiplied by a non-zero constant 
without affecting its behavior. Therefore, we al-
ways fixed the entire first row of the mass matrix. 
Using the measured accelerations and initial pa-
rameters estimated from the structure, the proposed 
algorithms were able to determine the minimizing 
set of parameters. The active parameters were the 

initial conditions, all elements of damping and 
stiffness matrices, and all elements except the first 
row of mass matrix. All of the active parameters are 
shown in Eqs.(6) to (14).  

The parameters in the active parameter vector 
must be independent in order for the minimization 
algorithm to work correctly. Since the equations of 
motion for free vibration were homogeneous, each 
equation can be multiplied by a nonzero constant 
without affecting its behavior. Therefore, to acquire 
the actual parameters of the tested shear building, 
the idea of using a known added mass was extended 
here to structure of more than one degree of free-
dom using system identification (Matzen, 1988). 
The basic procedure was that the original structure 
was tested using pull-back and quick release test to 
find an appropriate subset of the parameters which 
were not unique. Therefore, the test was repeated 
with a known mass added at one of the degrees of 
freedom and new values were obtained for the 
subsets of parameters. By comparing the two sub-
sets of parameters and calculating the value of a 
scaling factor, the correct set of parameters could 
be recorded. After the parameters were found, 
Eqs.(16) and (17) were used to find the following 
actual parameters: 
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OM pb OM

OM pb AM
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−

−

× + ∆

−
= × ×

−

             (16) 
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−
= ×

−
          (17) 

 
where: SFOM: Scaling factor of the pull-back test 
with original mass; SFAM: Scaling factor of the 
pull-back test with added mass; PB−OM: the con-
vergent values of the pull-back test with original 
mass; PB−AM: the convergent values of the 
pull-back test with added mass. 

As for the actual parameters, the weight of the 
added mass was the same as that measured after 
multiplying the scaling factor. The stiffness very 
closely correlated to the stiffness obtained ex-
perimentally. Table 3 compares experimental, 
analytical and computed results of SDOF with 
stiffness and frequency. Table 4 compares ex-
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perimental, analytical and computed results of 
SDOF with frequency. Table 5 compares the ex-
perimental, analytical and computed values of mass 
and stiffness. Figs.3 and 4 reveal that the measured 
response and the simulated response using the final 
parameters matched very well. 

 
 
CONCULSION 
 

The completed simulated and experimental 
data for testing the algorithms were used in the 
initial conditions as active parameters for the 
pull-back and quick release test. It was clear that 
using the initial conditions as element of active 
parameters (AP) or skipping the high frequencies 
points at the beginning of response were good ideas. 
From the tables, the results of  mass,  stiffness  and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

frequencies from the proposed algorithms are fairly 
reasonable. The figures show that the measured and 
simulated responses match very well using the final 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Comparison of experimental, analytical and computed results-SDOF with stiffness and frequency

Experimental results Analytical results Computed results  
 Added mass W/o added mass Added mass W/o added mass Added mass W/o added mass

Stiffness (in4) 18.32 18.32 18.40 18.40 18.35 18.31 
Frequency (Hz) 6.77 8.78 6.68 8.59 6.80 8.82 

 

Table 4  Comparison of experimental, analytical and computed results-SDOF with frequency (Unit: Hz)

Original structure Experimental result Analytical result Computed result 
Low frequency   5.6   5.696   5.594 
High frequency 17.1 17.198 17.161 

Added mass on the first floor of structure 
Low frequency   4.9   5.062   4.832 
High frequency 14.7 14.856 14.818 

Added mass on the second floor of structure 
Low frequency   4.5     4.7097   4.673 
High frequency 15.6 15.88 15.709 

 

Table 5  Comparison of experimental, analytical and computed values of mass and stiffness (added
mass=0.00411 lb×s2/in, stiffness=in4) 

Computed results 
 Experimental 

results 
Analytical 

results Original structure Added mass on the 1st floor Added mass on the 2nd floor 
Mass11         0.00575 N/A         0.00574         0.00986         0.00575 
Mass22         0.00594 N/A         0.00588         0.00588       0.0100 

K11   28.932 30.198   28.629   29.091   29.508 
K12 −30.071 −30.198 −29.245 −29.275 −28.531 
K21 −29.087 −30.198 −29.245 −29.274 −29.531 
K22   48.979 51.905   48.933   48.159   48.418 

 

− Computed acceleration; + Measured acceleration 

Fig.3  Comparison of measured and computed accel-
eration 
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parameters. These results indicate that the proposed 
algorithms are useful for actual experiment. Thus, 
the system identification for using initial conditions 
as active parameters is truly practical. 
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Fig.4  Comparison of measured and computed acceleration-MDOF 
(a) Comparison for the 2nd floor; (b) Comparison for the 1st floor 
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