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Abstract:    The chaotic characteristics and maximum predictable time scale of the observation series of hourly water 
consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional 
Wolf’s algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption 
series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics 
obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer 
maximum predictable scale than hourly series. These findings could have significant practical application for better pre-
diction of urban hourly water consumption. 
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INTRODUCTION 

 
The prediction of hourly water consumption is 

of crucial importance to optimal operation of urban 
water supply systems, and is always at the top of the 
agendas of urban water supply authorities. Al-
though various methods have been produced over a 
long period of theoretical study (Lü et al., 1998; 
Yang et al., 2002; Zhou et al., 2002), very few 
practical methods for prediction have yet been 
found. There are many reasons for the difficulty in 
application of practical predictive methods, but of 
particular importance is a lack of understanding of 
the characteristics of the observed series of hourly 
water consumption. Since the change of urban 
hourly water consumption is influenced by many 

factors such as economic activities, holidays and 
climate conditions (e.g. rainfall, sunshine/cloud 
time, temperature etc.), it is a nonlinear dynamic 
problem. It is widely accepted that the development 
of hourly water consumption time series consists of 
four components, i.e. a periodic component, a 
component containing intrinsic trends, a climati-
cally determined component and a random com-
ponent (Lü et al., 1998; Zhou et al., 2002). It was 
confirmed that the climate system is a kind of 
chaotic system (Tsonis and Elsner, 1988). More-
over the existence of climate influenced chaotic 
characteristics of other observed data series such as 
mine water discharge and dam monitoring data had 
also been confirmed (Han, 2001; Wang et al., 1999). 
With regard to hourly water consumption time 
series influenced by climate; however, no study 
was carried out to verify the existence of chaotic 
characteristics. 
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In this study, observed series of urban hourly 
water consumption were firstly confirmed as hav-
ing chaotic characteristics. Due to the lack of 
long-term predictability of chaotic systems, the 
maximum predictable time scale for observed se-
ries of urban hourly water consumption was then 
identified to provide new insight into the prediction 
of hourly water consumption. 

 
 

THEORY OF CHAOTIC IDENTIFICATION 
 

Chaos and Lyapunov exponent 
Chaotic phenomena are common in nonlinear 

dynamic systems, and were deterministic and very 
sensitive to initial conditions. Considering the 
sensitivity towards initial conditions, a chaotic 
system is short of long-term predictability, while 
short-time predictability does exist because of the 
system’s determinism. A chaotic system was 
mainly identified by: testing Lyapunov exponents, 
evaluating fractal dimensions and analyzing Kol-
mogorov power spectra. Because of the explicit 
physical significance of Lyapunov exponents, in 
this study the chaotic characteristics of hourly wa-
ter consumption series were identified using its 
largest Lyapunov exponent. 

Lyapunov exponents measure the rate of 
divergence or convergence of two nearby initial 
points of a dynamical system. A positive Lyapunov 
exponent measures the average exponential diver-
gence of two nearby trajectories whereas a negative 
Lyapunov exponent measures the average expo-
nential convergence of two nearby trajectories. If a 
discrete nonlinear system is dissipative, a positive 
Lyapunov exponent confirms the existence of chaos. 
Table 1 gives the relation between Lyapunov ex-
ponents and system motion properties. 

 
Reconstruction of phase space 

Reconstruction of phase space is a necessary 
precondition for calculating Lyapunov exponents 
of time series. For time series with a single variable, 
Packard et al.(1980) proposed a method to recon-
struct phase space. A stagnancy time τ (an integer 
multiple of ∆t) is selected by uniformly  sampling 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
from an observed time series where xi=x(ti) with 
ti=t0+i∆t and i=1,2,…,n. And an m-dimensional 
phase space (m>d, d is attractor dimension) can be 
constructed as follows: 
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where τ=k∆t (k=1,2,…) is the stagnancy time; x(ti) 
(i=1,2,…,n′) represents a phase point in the 
m-dimensional phase space; n′=n−(m−1)k and m is 
the embedding dimension.  

According to Takens’s (1981) embedding 
theory, when a d-dimensional attractor can be 
embedded in an m-dimensional (m≥2d+1) phase 

Motion property Lyapunov exponents  

Constant  0, 1,2, ,
iEL i n< =  

Periodic  1
0, 0, 2,3, ,

iE EL L i n= < =  

Quasi-periodic  1 2
0, 0, 3,4, ,

iE E EL L L i n= = < =  

Chaotic  1
0,  can be positive,

iE EL L>
  

negative or zero, i=2,3,…,n 
 

Random  1
,   can be arbitrarily 

iE EL L→∞
 

assumed number, i=2,3,…,n
 

 

Table 1  Relation between Lyapunov exponent and
system motion properties 

1EL represents the Lyapunov exponent of distance expansion rate, 

2EL represents the Lyapunov exponent of area expansion rate,

iEL represents the Lyapunov exponent of i-dimensional expansion 

rate, and the unit is bits/time. 
1EL is the largest Lyapunov exponent 

to be discussed 
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space, the geometric characteristics of the original 
attractor can be reconstructed, and the system’s 
evolution rules can be studied. 

During the reconstruction of phase space, the 
selection of stagnancy time τ has to ensure the 
relative independence of its sub-values, i.e. the 
autocorrelation coefficients of coordinates of phase 
space are chosen to be as small as possible. In the 
current calculation, the stagnancy time τ is selected 
when the first negative autocorrelation coefficients 
are reached. 

 
 

IMPROVED ALGORITHM FOR THE LARGEST 
LYAPUNOV EXPONENT  

 
There are many methods for calculating the 

largest Lyapunov exponent of chaotic systems, 
among which Wolf’s method is frequently adopted 
because of its explicit physical meaning. However 
in this study it was found that there exist two main 
practical problems associated with the conventional 
Wolf method. The first one is that, during the 
conversion of old to new vectors, the new vectors 
have to fulfill two strict conditions: smaller vector 
length and smaller angle between the new and old 
vector. No specific ranges for the vector length and 
angle between the new and old vector are available 
in the literature. The other problem is that the sta-
bility of calculated results depends heavily on the 
quantity of data. Considering that the Lyapunov 
exponent tends to be stable when m is greater than 
or equal to the minimum embedding dimension, in 
this paper an improved algorithm for largest 
Lyapunov exponent is put forward to overcome the 
above problems. The optimal variables in the al-
gorithm are the weight α applied to the length of 
new vector and the angle between new and old 
vectors; and the optimal objective is the stability of 
Lyapunov exponent within certain ranges. The 
weight α varies from 0 to 1 with an increment 0.05 
for each search step. The approaches for the im-
proved algorithm are given below:  

(1) Reconstruct the phase space using the 
stagnancy time τ determined by minimizing the 
autocorrelation coefficients of phase space (Li and 

Liu, 2000) and using the minimum embedding 
dimension m0 obtained by calculation of the fractal 
dimensions in the chaotic system (Wang and Chao, 
1995); 

(2) Take the original phase point x(t1) as the 
initial point, then select the point x(t1)′ nearest to 
x(t1) from the rest; and the two points form the 
original vector denoted as V1 with length L1(t1); 

(3) Suppose the evolution time of the initial 
vector on the trajectories of the system as τ; the 
evolution vector V1′ is derived, and the corre-
sponding end points are x(t1+τ) and x(t1+τ)′. Then 
calculate the length of V1′ which is marked as L1′⋅ 

(t1+τ), hence obtaining 1 2 1 1
1 log ( / )L Lλ
τ

′＝ ; 

(4) Set x(t1+τ) as a new basic point; select a 
new vector denoted as V2  to replace V1 and cal-
culate its length as L2. Considering the require-
ments that V2 must have a shorter length and a 
smaller angle θ with V1′, L2=αL2sinθ+(1−α)L2cosθ 
is deduced with α as the weight; 

(5) Set V2 as a new initial vector, repeat (3) to 

get 2 2 2 2
1 log ( / )L Lλ
τ

′＝ ; 

(6) Continue the above process until the end 
point of {x(ti)}. Take a mathematical average of the 
exponential growth rates λi (i=1,2,…,N) as the 
estimated value of the Lyapunov exponent, 

i.e.
1 2

1

1 1 log ( / )
N

E i i
i

L L L
N τ=

= ′∑ , where N represents 

the total step number of evolution, and LE repre-
sents the changes of information per unit time; 

(7) Increase the embedding dimension from m 
to m0+5, and repeat (3)−(5); 

(8) Take 0.05 as the step length of search, and 
search α within the range [0,1]. Repeat (2)−(7), 
examine the stability of the largest Lyapunov 
exponent within m∈[m0, m0+5] with different α. 
The standard deviation std is considered as an in-
dicator of the stability of the results, and the 
mathematical average of the Lyapunov exponents 
corresponding to various minimum standard de-
viations min(std) is taken as the largest Lyapunov 
exponent of the time series.  
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MAXIMUM PREDICTABLE TIME SCALE 
 
From Table 1, a positive largest Lyapunov 

exponent of time series indicates dissipative 
trajectories with bifurcation and multi-periodicity 
so that the time series cannot be predicted in the 
long-term. Its maximum predictable time scale Tf, 
however, can be estimated using the following 
relationship with the maximum Lyapunov expo-
nent: 

 

   
1

1
f

E

T
L

=                                  (2) 

 
Here Tf has the same unit as ∆t.  

Huang (2000) pointed out that within the range 
of the maximum predictable time scale Tf, the sys-
tematic error of prediction is insensitive to the 
variations of prediction step length; while outside 
the range, the systematic error can be greatly 
magnified. Therefore Tf  

is defined as an index for 
measuring the predictability of chaotic systems 
(Huang, 2000). 

 
 

APPLICATION 
 

Basic data 
Using the above method, analysis and calcu-

lation of the largest Lyapunov exponent were car-
ried out for the hourly water consumption series 
(8760 observation points) in 1997 and daily 
maximum and minimum hourly water consumption 
series from 1997 to 1998 in Hangzhou  (from the 
averaged hourly water consumption in Fig.2, we can 

 
 
 
 
 
 

 
 
 
 
 

find that the maximum water consumption time in 
Hangzhou is at 9:00 am, and that the minimum 
water consumption time is at 4:00 am). Hangzhou 
lies in the southern part of the Changjiang River 
Delta and the lower reach of the Qiantang River, the 
climate here belongs to the Semitropics Wet Season 
Wind Climate Area with four distinct seasons. 
Hangzhou is warm and damp and has plenty of rain 
and average annual rainfall of 1453 mm. Its average 
annual temperature is 28.6 °C in summer, and 3.8 
°C in winter. The period without frost lasts 230 to 
260 days. At the end of 1999, the downtown area 
was 683 km2, the urban population had reached 
1752700, and the number of tourists was 
250 000 000 person-time per year. Groundwater 
resource is little exploited, and the city is supplied 
with surface water. Main urban water consumers 
include the industrial, domestic, municipal engi-
neering and agricultural sectors (although agricul-
ture water consumption is comparatively small). 
Domestic usage accounts for the greatest overall 
consumption, amounting to 55% of the total. The 
observed series of water consumption are shown in 
Figs.1, 3, 4. 
 
Lyapunov exponents of observed series of 
hourly water consumption and the maximum 
predictable time scale  

MATLAB language was adopted for the 
calculation program. The Lyapunov exponents of 
the hourly water consumption series in 1997, the 
observed series of water consumption at 9:00 am 
and 4:00 am and the calculated results of the 
maximum mum predictable time scale are shown in 
Tables 2, 3, showing that: 
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Fig.1  Time series of hourly water consumption in 1997
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(1) When the embedding dimension m is 
greater than the minimum embedding dimension m0, 
the Lyapunov exponent of each series all demon-
strate good stability. The maximum range of ex-
ponents is within 0.003, and the data accuracy can 
meet the requirement of chaos identification and 
determination of the maximum predictable time 
scale; 

(2) The calculated Lyapunov exponents of the 
observed series of hourly water consumption were 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Hourly water consumption profile (averaged from
January 1997 to December 1998) 
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Table 2  Lyapunov exponent of each observed time series of hourly water consumption 
Observed time series of hourly water 

consumption 
Observed time series of water 

consumption at 9:00 am each day 
Observed time series of water  

consumption at 4:00 am each day 

m N 
Lyapunov 
exponent m N 

Lyapunov
exponent m N 

Lyapunov
exponent 

12 1232 0.0097 12 70 0.02167 10 370 0.00935 

13 345 0.0127 13 259 0.01521 11 220 0.01495 

14 465 0.0127 14 160 0.01613 12 552 0.01302 

15 2724 0.0127 15 179 0.01431 13 192 0.01279 

16 675 0.0127 16 217 0.01503 14 178 0.01456 

17 2119 0.0127 17 203 0.01527 15 411 0.01486 

18 798 0.0127 18 189 0.01543 16 397 0.01294 
 

Note: N represents the total steps of phase space evolution. Due to the limitation of space, the above table only provides the Lyapun- 
ov exponents corresponding to the embedding dimensions m from m0−1 to m0+5 
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Fig.3  Time series of water consumption observed at 9:00 am 
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Fig.4  Time series of water consumption observed at 4:00 am 
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more stable than those at 4:00 am and 9:00 am each 
day, which shows that the improved algorithm still 
has certain degree of data dependency, but was a 
significant improvement on Wolf (1985)’s method. 
The authors could not get stable results for the 
above hourly water consumption series at 4:00 am 
and 9:00 am using Wolf’s method; 

(3) The observed series with the same proper-
ties such as at 4:00 am and 9:00 am had approxi-
mate Lyapunov exponent values. According to 
chaotic theory, the magnitude of the Lyapunov 
exponent reflects the degree of chaos within a 
certain time scale. It can be estimated that the chaos 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the observed time series of water consumption at 
9:00 am was greater than that at 4:00 am. On the 
contrary, the maximum predictable time scale of 
the 4:00 am time series (72.2 days) was greater than 
that of the 9:00 am series (65.7 days). In addition, 
the Lyapunov exponent of the observed time series 
of hourly water consumption with one-hour inter-
vals was smaller than the results of that with 
24-hour intervals. Meanwhile, because the interval 
of series sampling (1 hour) is shorter, the 
corresponding maximum predictable time scale 
(3.28 days) was not very long.  

Figs.5a−5c display the trajectories in three-di- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.5  Trajectories in three-dimensional phase space 

(a)                                                                                                   (b) 

(c)                                                                                                   (d) 

Observed time series Relevant parameters Largest Lyapunov exponent Maximum predictable scale

Observed time series of hourly 
water consumption τ= 7, m0=13, α=0.60 0.0127 78.7 hours (3.28 days) 

Observed time series of water 
consumption at 9:00 am each day τ= 5, m0=13, α=0.65 0.01523 65.7 days 

Observed time series of water 
consumption at 4:00 am each day τ= 6, m0=11, α=0.65 0.01385 72.2 days 

Table 3  Chaotic parameter of each observed time series of hourly water consumption 
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mensional phase space representing respectively 
the observed data of continuous hourly water con-
sumption, and the observed data of water con-
sumption at 9:00 am and at 4:00 am. For com-
parison, the trajectory in three-dimensional phase 
space of the white noise sequence is presented in 
Fig.5d. Figs.5c and 5d clearly show differences 
between the two trajectories. 

 
 

CONCLUSION 
 

1. Along with the components of periodicity, 
trend and randomness known as usual, the calcu-
lated largest positive Lyapunov exponents show 
that a distinct chaotic component exists in the ob-
served time series of hourly water consumption.  

2. Lack of long-term predictability of the 
chaotic system determines that urban hourly water 
consumption cannot be predicted for a long period. 
Different hourly water consumption time series 
have different maximum predictable scales. It is 
fairly obvious that the water consumption time 
series with 24-hour intervals have longer maximum 
predictable scale than that of one-hour intervals, 
which has practical significance for better prediction 
of urban hourly water consumption. 

3. Because of the existence of a chaotic 
component, the research for prediction of urban 
hourly water consumption cannot only be limited to 
a consideration of its intrinsic trend and periodicity. 
It is a meaningful and feasible initiative to intro-
duce the relevant theories of nonlinear dynamic 
systems  to the field of hourly water consumption 

 
 
 
 
 
 
 
 
 
 
 

prediction, and there is considerable scope for 
further research work in this area.  
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