
Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1076

Intrusion detection using rough set classification*

ZHANG Lian-hua (张连华)†1,2, ZHANG Guan-hua (张冠华)1, YU Lang (郁 郎)3,

ZHANG Jie (张 洁)4, BAI Ying-cai (白英彩)1

(1Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, China)

(2An Zong Information Technology Inc., Shanghai 200042, China)

(3www.antpower.org)

(4Department of Computing, Hong Kong Polytechnic University, Hong Kong, China)
†E-mail: a000309035@21cn.com

Received May 21, 2003; revision accepted July 21, 2003

Abstract: Recently machine learning-based intrusion detection approaches have been subjected to extensive researches
because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm,
is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a
very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature
ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using
Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with
those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the
convergence speed and decrease the training time of RSC. The models generated by RSC take the form of “IF-THEN” rules,
which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that
for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).

Key words: Intrusion detection, Rough set classification, Support vector machine, Genetic algorithm
doi:10.1631/jzus.2004.1076 Document code: A CLC number: TP393

INTRODUCTION

Intrusion detection is used to classify normal
and intrusive activities, in which machine learning
can play an important role. Recently the machine
learning-based intrusion detection approaches
(Allen et al., 2000) have been subjected to exten-
sive researches because they can detect both misuse
and anomaly. The learning-based intrusion detec-
tion approaches include two key steps: feature ex-

traction and detection model generation. In the
research of feature extraction in intrusion detection,
Wenke (1999) used improved Apriori algorithm to
acquire features of network connection level. This
method is very effective. Later, Srinivas and Sung
(2002) presented the use of support vector machine
(SVM) to rank these extracted features, but this
method needs many iterations and is very
time-consuming. In the research of detection model
generation, it is desirable that the detection model
be explainable and have high detection rate, but the
existing methods cannot achieve these two goals.
For example, neural networks (James, 1998) could
achieve high detection rate but the detection rules

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

* Project (No. 2001AA40437.2) partially supported by the Hi-Tech
Research and Development Program (863) of China

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1077

generated are not explainable; decision trees
(Wenke, 1999) could yield explainable rules but the
detection rate is low.

In this paper we present the use of rough set
classification (RSC) (Pawlak, 1982) for intrusion
detection system (IDS) feature ranking and intru-
sion detection rules generation. Intrusion detection
using RSC can yield both explainable detection
rules and high detection rate for some attacks, and
feature ranking using RSC for IDS is simple and fast.

RSC is one of the important contents of rough
set theory (Wang and Tao, 2003). The main con-
tribution of rough set to learning theory is the con-
cept of reducts. A reduct is a minimal subset of
attributes with the same capability of objects clas-
sification as the whole set of attributes. In this paper,
we propose a fast hybrid genetic algorithm for the
reduct computation of rough set. In fact, the reduct
computation of rough set corresponds to feature
ranking for IDS in RSC. Compared with the classic
SVM based feature ranking approach (Srinivas and
Sung, 2002), this feature ranking method is simpler
and faster.

RSC creates the intrusion (decision) rules us-
ing the reducts as templates. After reduct genera-
tion, the detection rules are automatically computed
subsequently. The rules generated have the intui-
tive “IF-THEN” format, which is explainable and
very valuable for improving detector design. Ex-
periments were designed to test the rules detection
performance. The experiment data we used origi-
nated from MIT’s Lincoln Labs. It was developed
for KDD (1999) competition by DARPA and is
considered a standard benchmark for intrusion
detection evaluations. Since SVM performed well
among the classical intrusion detection algorithms
(Srinivas and Sung, 2002), we also use SVM to
detect intrusions on the same dataset for compari-
son. The test results indicated that RSC algorithm
has compatible level detection performance with
SVM algorithm for detection of Probe and DoS
attacks (all above 99%) on DARPA dataset. But
RSC has obvious advantage in rules explanations.
Further comparisons between RSC based IDS and
SVM based IDS are provided in detail in the paper.

The paper is organized as follows. In the

second section, the system model for general ma-
chine learning-based intrusion detection approach
is introduced. In the third section, rough set is pre-
liminarily interpreted and rough set classification
algorithm used in this paper and the hybrid genetic
algorithms proposed are explained in detail. Ex-
periment design for comparison of RSC based IDS
and SVM based IDS is given in the fourth section to
indicate the advantages of RSC algorithm. Finally
we conclude the paper in the last section.

SYSTEM MODEL

Based on the research work of Wenke (1999),
designing an intrusion detection system based on
learning algorithm can be described in the follow-
ing steps:

(1). Capture network data by using tools such
as Tcpdump, Dsniff, etc.; (2). Process these data
into suitable input format; (3). Normalize the net-
work flow and extract features of attack behavior or
normal usage pattern from raw data; (4). Design
and use learning algorithm to get detection rules;
(5). Integrate the detection rules into the real time
IDS for detecting intrusion.

In these five steps, as the above section said,
feature extraction and detection rules generation
are two key steps. For feature extraction, it depends
on data source and the category of attack to be
detected. In order to focus on our learning algo-
rithm study, we choose the 1999 KDD intrusion
detection contest dataset to design our system. The
1999 KDD intrusion detection contest used 1998
DARPA intrusion detection dataset to construct the
connection records and extract the object features
(Wenke, 1999). 1998 DARPA intrusion detection
dataset was acquired from nine weeks of raw TCP
dump data for a local-area network (LAN) simu-
lating a typical U.S. Air Force LAN and peppered
with four main categories of attacks: DoS, Probe,
U2R, R2L. A connection record is a sequence of
TCP packets starting and ending at some well de-
fined times, between which data flows to and from
a source IP address to a target IP address under
some well defined protocol. Each connection is

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1078

labeled as either normal, or as an attack, with ex-
actly one specific attack type. For each TCP/IP
connection, 41 various quantitative and qualitative
features were extracted. The following three main
feature sets can be used to classify each connection.

1) Intrinsic features, i.e., general information
related to the connection. They include the duration,
type, protocol, flag, etc. of the connection;

2) Traffic feature, i.e., statistics related to past
connections similar to the current one, e.g., number
of connections with the same destination host or
connections related to the same service in a given
time window or within a predefined number of past
connections;

3) Content features, i.e., features containing
information about the data content of packets
(“payload”) that could be relevant to discover an
intrusion, e.g., errors reported by the operating
system, root access attempts, etc.

For detection rules auto-generation, we pre-
sent the use of rough set classification for this task.
It includes three phases:

1) Preprocessing: The raw data is first parti-
tioned into three groups: DoS attack detection
dataset, Probe attack detection dataset, U2R&R2L
attack detection dataset. For each dataset, a deci-
sion system is constructed. Each decision system is
subsequently split into two parts: the training
dataset and the testing dataset.

2) Training: rough set classifier is trained on
each training dataset of three different types of
attacks (DoS, Probe, U2R&R2L). Each training
dataset uses the corresponding input features and
fall into two classes: normal (+1) and attack (−1).

3) Testing: measure the performance on test-
ing data.

We will describe our rough set classification
algorithm in detail in the following section.

ROUGH SET CLASSIFICATION ALGORITHM

Part A: Rough set theory preliminary

Rough sets theory was developed by Zdzislaw
Pawlak in the early 1980’s (Pawlak, 1982). It is a
mathematical tool for approximate reasoning for

decision support and is particularly well suited for
classification of objects. Rough sets can also be
used for feature selection, feature extraction etc.
(Wang, 2001).
Definition 1 An information system is defined as
a four-tuple as follows, S=<U, Q, V, f>, where
U={x1, x2, …, xn} is a finite set of objects (n is the
number of objects); Q is a finite set of attributes,
Q={q1, q2, …, qn}; V= qq Q

V
∈∪ and Vq is a domain

of attribute q; f:U×V→V is a total function such
that f(x, q)∈Vq for each q∈Q, x∈U. If the attributes
in S can be divided into condition attribute set C
and decision attribute set D, i.e. Q=C∪D and
C∩D=Φ, the information system S is called a de-
cision system or decision table.
Definition 2 Let IND(P), IND(Q) be indiscernible
relations determined by attribute sets P, Q, the P
positive region of Q, denoted () (())IND PPOS IND Q is

defined as follows:

() (())IND PPOS IND Q =
/ ()

() ()
X U IND Q

IND P X−
∈
∪ .

Definition 3 Let P, Q, R be an attribute set, we say
R is a reduct of P relative to Q if and only if the
following conditions are satisfied:

(1) () (())IND RPOS IND Q = () (())IND PPOS IND Q ;

(2) ∀r∈R follows that

 ({ }) ()(()) (())IND R r IND RPOS IND Q POS IND Q− ≠

Definition 4 Let L=(U, A∪{d}, V, f) be a decision
system, whose discernibility matrix ()U =M

[(,)]d
A n nM i j × is defined as:

(,)d

AM i j =

{ | () ()}, () ();

, () ().
k k k i k j i j

i j

a a A a x a x d x d x

d x d x

∈ ∧ ≠ ≠
Φ =

where ak(xj) is the value of objects xj on attribute ak,

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1079

d(x) is the value of object x on decision attribute d.
Write () [(,)]d

A n nU M i j ×=M as a list {p1,…, pt}.
Each pi is called a discernibility entry, and is usu-
ally written as pi=ai1, …, aim, where each aik cor-
responds to a condition attribute of the information
system, k=q,…,m; i=1,…,t.

Furthermore, the discernibility matrix can be
represented by the discernibility function f, con-
junction normal form (CNF), i.e., f=p1∧…∧pt,
where each pi=ai1∨…∨aim is called a clause, and
each aik is called an atom. Note that the dis-
cernibility function contains only atoms, but not
negations of atoms.

Although the discernibility matrix and dis-
cernibility function have different styles of ex-
pression, they are actually the same in nature.
Definition 5 Let h denote any Boolean CNF
function of m Boolean variables * *

1{ ,..., }ma a , com-

posed of n Boolean sums 1{ ,..., }ns s . Furthermore,

let * {0,1}ijw ∈ denote an indicator variable that

states whether *
ia occurs in * *

1

. ,
m

j j ij i
i

s s w a
=

= ×∑

1

n

j
j

h s
=

=∏ . We can interpret h as a bag or multiset

M(h)= *{ | { | occurs in }}i i j j iS S a A a s= ∈ . Because

the discernibility function f is also a CNF Boolean
function, so it has a multiset. Let M(f) denote the
multiset of discernibility function f, M(f)={{a11,…,
a1m},…,{ai1,…,aim},…,{at1,…,atm}}.
Definition 6 A hitting set of a given bag or mul-
tiset M of elements from 2A is a set B⊆A such that
the intersection between B and every set in M is
non-empty. The set B∈HS(S) is a minimal hitting
set of M if B ceases to be a hitting set if any of its
elements are removed. Let HS(M) and MHS(M)
denote the sets of hitting sets and minimal hitting
sets, respectively,

() { | for all in }i iHS M B A B S S M= ⊆ ∩ ≠ Φ .

Proposition 1 For decision system L=(U, A∪{d},
V, f), g is its discernibility matrix, and B⊆A,
B∈RED(U, d) is equivalent to B∈MHS(M(g))

(Aleksander, 1999). So the rough set reduct com-
putation can be viewed as a minimal hitting set
problem.
Definition 7 A approximate hitting set is a set that
hits “enough” elements of the bag or multiset M.
The approximate hitting set provides an approxi-
mate solution to the hitting set problem. The set of
ε-approximate hitting sets of the multiset M is de-
noted AHS(M, ε):

| in | |

, { | }
| |

i iS M S B
AHS M B A

M
ε ε

∩ ≠ Φ
= ⊆ ≥（ ） ,

where the parameter ε controls the degree of ap-
proximation. The set is a minimal ε-approximate
hitting set if it ceases to be so if any of its elements
are removed. The set of all minimal ε-approximate
hitting set is denoted MAHS(M, ε).

Computing all elements of MAHS(M, ε) is
computationally intractable, and heuristics are
needed (Wroblewski, 1995). In this paper, a heu-
ristic rule based on the significance of attribute is
applied to search for solutions.
Definition 8 The significance of attribute is de-
fined as: SGF(a, R, D)=p(a), p(a) is the number of
appearing times of attribute a in the remain part of
the discernibility matrix which removes all the
elements that have non-empty intersection with R.

Part B: Rough set classification algorithm

Our general scheme of rough set classification
algorithm is presented in Fig.1.

(1) The raw input data set is transformed into a
decision system which is subsequently split into
two parts: the training dataset and the testing
dataset. A classifier will be induced from the
training dataset and applied to the testing dataset to
obtain a performance estimate.

For the training dataset, we do the following
steps (2), (3);

(2) If the decision system has real values at-
tributes, the discretization strategies should be built
to obtain a higher quality of classification rules.
There are many discretizaion methods such as boo
reasoning algorithm, semi-naïve algorithm etc. How

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1080

to choose the suitable discretizaion methods is still
a difficult question and some tests are needed. In
our following experiment, Equal Interval Width
discretizaion method is used. The Equal Interval
Width discretization method divides the range of
observed values for an attribute into k equal sized
intervals, where k>0 is a user-supplied parameter.
If an attribute a is observed to have values bounded
by amin and amax then this method computes the
interval width width(k)=(amax−amin)/k and con-
structs thresholds at amin+i*width(k) where i=1, ...,
k−1. The method is applied to each continuous
attribute independently. Since this unsupervised

method does not utilize decision values in setting
partition boundaries, it is likely that classification
information will be lost by binning as a result of
combining values that are strongly associated with
different classes into the same interval. But in our
case this could make effective classification.

(3) The intrusion (decision) rules are created
using the reducts computed by the attribute reduc-
tion algorithm as templates. There are many at-
tribute reduction algorithms such as dynamic reduct
(Bazan et al., 1994) and RA-Order algorithm
(Wang and Tao, 2003), etc. But, until now, the most
effective algorithm for large decision system re-

Fig.1 General scheme of rough set classification algorithm

No

Tain decision table
(given objects)

Test decision table
(new objects)

Use
discretization

method?

Discretization

Yes

Us
egenetic reduction

of attributes?

Decision rules

Computed set ot cuts

Predicted decision
values for

tested object

Selection of rules
matching

tested objects

Split

Raw input dataset

Construction of
decision system

Discretization of tested
object using cuts

Calculation of
strength of the

selected rules sets

Selection of
decision class with
maximal strength of
selected rules sets

Calculation of
decision rules Calculation of

reducts using GA

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1081

duction computation in practice is genetic algo-
rithm (Wroblewski, 1995), which is used by most of
the rough set tools such as Rough Enough (Anders,
1997) and Rosetta (Aleksander, 1999). In this paper,
we proposed a hybrid genetic algorithm based on
the attribute significance heuristic rule to find
minimal reducts. This hybrid genetic algorithm
decreases the training time and makes the generated
classifier more effective and it is adjusted to fit the
intrusion detection environment. This hybrid ge-
netic algorithm is the key sub-algorithm in our RSC
Algorithm. In order to make it clear, we first in-
troduce the general Genetic Algorithms (GAs) and
their extension in Part C, then we describe the key
sub-algorithm in detail in Part D.

For the testing dataset, the following step is
done.

(4) The same cuts computed from training
dataset discretizaion method are first used to dis-
cretize the new object dataset. Then the rules gen-
erated are used to match testing objects to compute
the strength of the selected rule sets for any deci-
sion class. The new object will be assigned to the
decision class with maximal strength of the selected
rule set.

Part C: General genetic algorithms and their
extension

GAs were formally introduced in the United
States in the 1970s by John Holland at the Univer-
sity of Michigan (Goldberg, 1989). They have a
solid basis in genetics and evolutionary biological
systems. GAs comprise a kind of effective search-
ing and optimizing technique and have been applied
to various fields. In particular, GAs work very well
on combinatorial problems such as reduct finding in
rough set theory (Wroblewski, 1995).

A GA starts by generating a large set of pos-
sible solutions to a given problem (a solution to a
problem corresponds to a genome or chromosome
in genetics; a large set of possible solutions to a
given problem corresponds to a population). It then
evaluates each of those solutions, and decides on a
“fitness level”(“survival of the fittest” in the Dar-
winian principle of natural selection; the “fitness
level” is represented by fitness function in GA) for

each solution set. These solutions then breed new
solutions (“breed” action is simulated by genetic
operator, such as mutation, crossover and inversion,
etc., in GA). The parent solutions that have better
“fitness level” are more likely to reproduce (selec-
tion and reproduction strategy in GA), while those
that have less “fitness level” are more unlikely to do
so. In essence, solutions are evolved over time or
generation (GA will iterate many times in control
for optimization). This way GAs evolve the search
space scope to a point where the solution can be
found. Genetic algorithms can be incredibly effi-
cient if programmed correctly.

The general algorithm for genetic algorithms
includes the following steps:

Step 1. Generate an Initial Population
An initial population is created from a random

selection of solutions.
Step 2. Evaluate Fitness
A value for fitness is assigned to each solution

(chromosome) depending on how close it actually
is to solving the problem (thus arriving to the an-
swer of the desired problem). These “solutions” are
not “answers” to the problem but are possible
characteristics that the system would employ in
order to reach the answer.

Step 3. Reproduce, Selection, Mutate and
Crossover

Those chromosomes with a higher fitness
value are more likely to reproduce offspring (which
can mutate/inverse after reproduction). The off-
spring is a product of the father and mother, whose
composition consists of a combination of genes
from them (known as “crossing over”).

Step 4. Control Next Generation
If the new generation contains a solution that

produces an output that is close enough or equal to
the desired answer then the problem has been
solved. If this is not the case, then the new genera-
tion will go through the same process as their
parents did. This will continue until a solution is
reached. Then the algorithm is over.

We can extend the above general genetic al-
gorithms to find rough set reducts quickly. The
problems such as reduct finding are NP-hard, and
there is no fast and reliable way to solve them in

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1082

deterministic way. Genetic algorithms are flexible
and universal and can be used to solve these kinds
of combinational problem. On the other hand, ap-
proximate but fast heuristics such as SGF approach
for reduct finding (Wang and Tao, 2003) are de-
signed and tuned up especially for those tasks, and
are often more efficient than general genetic algo-
rithm. Unfortunately, they are often suboptimal and
cannot avoid local optima. Moreover, the determi-
nistic algorithm such as reduct computation based
on SGF often spend more time on computations and
be no hope for improvement. The hybrid genetic
algorithms (Wroblewski, 1995) which use nonde-
terministic, problem-oriented heuristics controlled
by GAs can exploit the advantages of both genetic
and heuristic algorithms. Different from the hybrid
genetic algorithm by Wroblewski (1995), the heu-
ristic method based on the significance of attribute
SGF(a, R, D) is introduced in our rough set classi-
fication algorithm by a new Bit-adapt operator.
This Bit-adapt operator is our main extension of
Step 3 in the above general genetic algorithm (see
the following part and Fig.2 for details).

P←initializePopulation();
evaluate(P);
while(not terminate(P)) do
 Parents[1..3]←selectParents(P);
 Offspring[1]←CrossoverParents(Parents[1]);
 Offspring[2]←Mutation(Parents[2]);
 Offspring[3]←Inversion(Parents[3]);
 P←recombine (P, Offpring[1..3], Parents[1..3]);
 Bit-Adapt(P); //this operator implements an adaptation
strategy which will be discussed in the following; after this
operation, the attribute subset (represented by each chro-
mosome) has the approximate classification ability of the
whole condition attribute set;
 evaluate(P);
done

Fig.2 Pseudo-code for the hybrid genetic algorithm
based SGF

Part D: Finding minimal reduct using hybrid
genetic algorithm based on SGF

(1) Frame of hybrid Genetic Algorithm
As the above “Part A” said, finding the rough

set minimal reduct is viewed as minimal hitting set

problem. For the discretized decision system L=(U,
A∪{d}, V, f), a multiset is constructed according to
the above Definition 5, Part A. Subsequently, the
hitting set of this multiset is computed using hybrid
genetic algorithm.

As the above “Part C” said, when suitable lo-
cal search techniques which make use of some
heuristic information are introduced into simple
genetic algorithms, the heuristic algorithms will
maintain the capability of optimizing globally and
can converge faster. Different from the hybrid ge-
netic algorithm by Wroblewski (1995), the heuris-
tic method based on the significance of attribute
SGF(a, R, D) defined in the Definition 8, Part A is
introduced into the genetic algorithm for minimal
approximate hitting set, i.e., approximate minimal
relative reduct. The algorithm skeleton is shown in
the following Fig.2.

In our algorithm, a new operator named
Bit-adapt is constructed. This new operator operates
on the whole population and can guarantee each
chromosome converges into one of the hitting sets.

(2) Representation (Generation of the Initial
Population)

For the minimal hitting set problem, a
straightforward choice of population is a set P of
elements from 2A, encoded as bit-vectors, where
each bit indicates the presence of a particular ele-
ment in the set. For example, assume that we have
10 condition attributes {a1, a2, …, a10} and we have
a reduct candidate as {a1, a4, a6, a9}. Then the re-
duct candidate should be represented as:
1001010010.

(3) Function of fitness
According to the definition of relative reducts,

we know that the fitness function depends on the
assumption: the number of attributes (which we
wish to keep as low as possible) and the decision
ability (which we wish to keep as high as possible).
Our fitness function for decision system L=(U,
A∪{d}, V, f) is defined as follows: Let n denote the
number of condition attributes, M the multiset of
discernibility function of L and B⊆A,

| | | { in | } |() min{ , }
| |

n B S M S Bf B
n M

ε− ∩ ≠ Φ
= + .

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1083

The first term rewards the shorter elements
and the second tries to ensure that we reward sets
that are hitting sets to guarantee the decision ability.
The parameter ε controls the degree of approxima-
tion decision ability.

(4) Selection and recombination method
The selection and recombination operator are

implemented with two steps:
Step 1: Calculate the fitness for each chro-

mosome in the current generation t. Then according
to the fitness for each chromosome, we use sto-
chastic sampling method to select;

Step 2: Let minsingle(Offspring) be the worst
individual in the new population, minfit(Offspring)
be the corresponding fitness; Let maxsingle(Parent)
be the best individual in the old population, max-
fit(Parent) be the corresponding fitness. If min-
fit(Offspring)<maxfit(Parent), we replace min-
singel(Offspring) with maxsingle(Parent).

(5) Crossover, Mutation and Inversion
We use classical, one-point crossover. Cross-

ing-over process affects chromosome selected for
reproduction with probability of Pc. In the mutation
process, we first select a chromosome to be mutated
with probability Pm and then choose a single gene
of the chromosome randomly. Mutation of a single
gene means replacement of “1” by “0” or “0” by “1”.
Suppose that chromosome
S1={s11, s12, …, s1r, s1,r+l, s1,r+l+1,…, s1n}, where r, l
are random numbers. S2 is the inversion of S1:
 S2={s11, s12, …, s1r, s1,r+l, s1,r+l+1,…, s1n};

(6) Bit-Adaptation Strategy
We use this strategy as heuristic rule to make

genetic algorithm converge faster. It is not
time-consuming in computing. This operator oper-
ates on the whole population.

Let R be the attribute set represented by cur-
rent chromosome. If R is not a hitting set (It is
judged in the fitness function computation), then
find an attribute a in C−R which has the maximal
value SGF(a, R, D)=p(a). If there are several aj,
(i=1,2,…,m;) with the same maximal value, sto-
chastically choose one attribute from them. Set the
bit corresponding with aj as “1”.

When computing the fitness function of each
individual, the multiset should be searched once; at

the same time, the SGF values are computed in this
same search procedure. So it will not remarkably
increase the computation time of general GA with
this “modify strategy”. Our fitness function design
can guarantee that the changed chromosome can
converge faster and correctly.

EXPERIMENTS

In order to compare RSC algorithm with the
classical learning algorithm for intrusion detection,
we constructed intrusion detection systems using
rough set classification (RSC) and support vector
machines (SVM) and tested their performance on
the 1999 KDD intrusion detection contest data set.
All the two experiments (RSC based IDS and SVM
based IDS) were done in the same Personal Com-
puter (DELL Optiplex GX400 system) with 1.70
GHz Pentium IV CPU, Windows 2000 operating
system and 128 M RAM. The compiler is Microsoft
Visual C++ 6.0 and the program language is C and
C++.

Part A: Development of RSC based IDS

The raw data from the KDD99 contest is first
partitioned into three groups (input dataset): DoS
attack detection dataset, Probe attack detection
dataset, U2R&R2L attack detection dataset. For
each input dataset, we construct a decision system
using the following method: 1) for each attack de-
tection dataset, different connection record feature
set are selected as the condition attributes of the
decision system. For Probe and DoS attack, intrin-
sic and traffic features are used; for U2R&R2L
attack, intrinsic and content features used. 2) the
label (normal+1, attack–1) variable of each record
is used as the decision attribute of the decision
system. 3) a connection record data point is used as
an object in the decision system. Each of the con-
structed decision systems will be processed by RSC
subsequently.

DoS attack detection dataset consists of the set
of 5330 data points: 4264 for training, 1066 for
testing. Data points contain 3206 actual DoS attack
connection records and 2124 normal usage pattern

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1084

data points. These data points are used for training
using RSC algorithm. The generated rules are used
to predict the tested objects.

Probe attack detection dataset consists of the
set of 2434 data points: 1947 for training, 487 for
testing. Data points contain 310 actual Probe at-
tacks connection records and 2124 normal usage
pattern data points. Data points are used for training
using RSC algorithm. The generated rules are used
to predict the tested objects.

U2R&R2L attack intrusion dataset consists of
the set of 2214 data points: 1171 for training, 1043
for testing. Data points contain 90 actual
U2R&R2L attacks connection records and 2124
normal usage pattern data points. Data points are
used for training using the RSC algorithm. The
generated rules are used to predict the tested ob-
jects.

The experiments results are shown in Table 1,
where the training time units format is min-
utes:seconds. Training time 1 denotes the training
time without “Bit-Adaptation strategy” in the ge-
netic algorithm; training time 2 denotes the training
time with “Bit-Adaptation strategy”. RSC-ε refers
to the parameter ε used in the reduct computation.
ε=1 means it is the accurately computed hitting set
without approximation.

From the above table, our proposed “Bit-
Adaptation strategy” can decrease the training time.

Part B: Development of SVM based IDS

All the three input dataset construction and the
experiment platform are the same as RSC IDS for
convenient comparison. The only difference be-
tween the two systems are Step 4) in the SYSTEM
MODEL. In RSC based IDS, the learning algorithm

is RSC; but in SVM based IDS, the learning algo-
rithm is SVM. The other steps in the SYSTEM
MODEL are the same. In addition, the SVM based
IDS experiments described below use the freeware
package LIBSVM (Chang and Lin, 2003).

Each of the above three categories of input
dataset is preprocessed into the LIBSVM input
format and then is scaled using linear scaling.
Furthermore, the SVMs are trained using the RBF
(radial bias function) kernel option with different
parameter (C, cost; g, gamma) for each category.
Each data point is located in n-dimensional space,
with each dimension corresponding to a feature of
the data point.

The experiment results are shown in Table 2.
Our results are similar to those in (Srinivas and
Sung, 2002).

Part C: Discussion and comparison of SVM IDS
and RSC IDS

Table 3 shows the optimal experiment results
of RSC and SVM algorithms.

From Table 3, we can conclude that RSC al-
gorithm has detection performance level compati-
ble with that of the SVM algorithm in terms of
Probe and DoS attack detection (all above 99%).
But for U2R&R2L attack detection, RSC algorithm
is worse than SVM algorithm. The reason is that
RSC algorithm can get good performance when the
samples are enough while it performs a little worse
for small attack sample case (In the DARPA dataset,
U2R&R2L attack samples are low but DoS and
Probe attack samples are enough). In contrast, SVM
is a good tool that performs well for both small and
enough sample attack cases.

Furthermore, the detection rules generated by

Table 1 Experiment results of RSC based IDS

Category RSC-ε Detection
rate

Misclassification
rate

Training time 1
(min:sec)

Training time 2
(min:sec)

ε=0.9

0.9968

0.0

1:39

1:29

Probe attack
 ε=1 0.9968 0.0 1:10 1:01

ε=0.9 0.9298 0.0 4:30 3:59 DoS attack
ε=1 0.9975 0.0005 3:29 3:07
ε=0.9 0.6875 0.0 0:12 0:12 U2R&R2L attack
ε=1 0.7368 0.0 0:10 0:10

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1085

the RSC algorithm, different from SVM, has the
explainable “IF-THEN” format. For instance, one
of the Probe attack detection rules is: “duration([1,
2080]) AND dst_host_srv_rerror_rate([99, *]) =>
decsion(−1)”. Its meaning is that “if the rate of
connections that have ‘REJ’ errors of the same
service of 100 connections to the same host (the
definition of ‘dst_host_srv_rerror_rate’ (Wenke,
1999)) is above 99%, then it is a probe attack”.
Since the packets of probe attack often access the
unopened service, it can be concluded that the rule
is evident. With this learned knowledge, we can
improve the design of the probe detector. This ad-
vantage, together with its high detection perform-
ance for some attacks, makes the RSC algorithm
very valuable in practical intrusion detector design.
On the other hand, SVM had been criticized for the
difficulties in model explanations.

Another difference between RSC and SVM is
the feature ranking for IDS. RSC accomplished the
feature reduct computation once before detection

rules generation. In fact, the reduct computation
corresponds to feature ranking for IDS. So, feature
ranking is performed only once for RSC. However,
feature ranking using SVM needs many times it-
erations. The SVM based feature ranking approach
(Srinivas and Sung, 2002) is: one input feature is
deleted from the data at a time, the resultant data set
is used for the training and testing of the classifier;
then the classifier’s performance is compared to
that of the original classifier (based on all features)
in terms of relevant performance criteria; finally,
the importance of the feature is ranked according to
a set of rules based on the performance comparison.
Compared with SVM, RSC feature ranking is sim-
pler and faster.

On the other hand, SVM has good scalability.
And the training and running time for SVM is sig-
nificantly shorter (e.g. 1.03 s vs 1.39 min for Probe
attack). Compared with the SVM, the training time
of RSC is longer. Although we use the heuristic rule
to accelerate the convergence speed of the reduct

Table 2 Test results of SVM based IDS (Using RBF kernel function with different parameters)

Category Training
parameter

Support vector
number

Iteration
number

Detection
rate

Training time
(s)

Testing time
(s)

C=1, g=0.033

56

42

99.5892%

0.82

0.40
C=1.5, g=0.033 44 53 99.5892% 0.82 0.39
C=10, g=0.1 30 67 99.9178% 0.91 0.41

Probe attack

C=50, g=1 148 145 99.7535% 1.03 0.43
C=1, g=0.033 145 102 99.2495% 1.10 0.39
C=1.5, g=0.033 123 137 96.1764% 1.10 0.39
C=10, g=0.1 56 151 98.1614% 1.20 0.40

DoS attack

C=50, g=1 209 204 98.9686% 2.33 0.56
C=1, g=0.033 25 26 99.5331% 0.13 0.11
C=1.5, g=0.033 22 27 99.5331% 0.13 0.11
C=10, g=0.1 29 117 99.6265% 0.15 0.12

U2R&R2L
attack

C=50, g=1 34 211 99.1597% 0.17 0.13

Table 3 Comparison of SVM and RSC algorithm

SVM (c=1, g=0.033) RSC (ε=1)
Category

Detection rate Misclassification rate Detection rate Misclassification rate

Probe 99.59% 0.01643 99.68% 0

Dos 99.25% 0.03 99.75% 0.0005

U2R&R2L 99.53% 0.4424 73.68% 0

Zhang et al. / J Zhejiang Univ SCI 2004 5(9):1076-1086 1086

computation and decrease the training time of RSC,
the training time of RSC is still long and needs
further improvement. However, the running time of
RSC is notably short since it just needs judgment of
some conditions.

CONCLUSION

It is very valuable to get both high detection
rate and explainable rules since this can improve
our knowledge about the nature of the intrusion. In
this paper we use rough set classification (RSC) for
intrusion detection system (IDS) feature ranking
and intrusion detection rules generation. Intrusion
detection using RSC can yield both explainable
detection rules and high detection rate for some
attacks. And feature ranking using RSC for IDS is
simple and fast.

In addition, we proposed a hybrid genetic al-
gorithm based on the attribute significance to
compute the rough set reduct and accelerate the
convergence speed and decrease the training time
of RSC. But for the real-time IDS, the training time
of RSC is still long and needs further improvement.

ACKNOWLEDGMENT

We would like to acknowledge many valuable
conversations with Professor Sun Shi-yin, IEEE
senior member, from Shanghai Jiaotong University,
Chen-hui, Research Associate from Hong Kong
Polytechnic University, Hong Kong, and Liu
Dong-xi, Research Fellow from the Department of
Computer Science School of Computing, National
University of Singapore, Singapore.

References
Aleksander, Ø., 1999. Discernibility and Rough Sets in

Medicine: Tools and Applications. PhD Dissertation,

http://www.idi.ntnu.no/~aleks/thesis.
Allen, J., Christie, A., Fithen, W., McHugh, J., Pickel, J.,

Stoner, E., 2000. State of the Practice of Intrusion
Detection. Technical Report, http://www.sei.cmu.edu/
pub/.

Anders, T.B., 1997. Rough Enough−A System Supporting
the Rough Sets Approach. Sixth Scandinavian Con-
ference on Artificial Intelligence SCAI’97.

Bazan, J.G., Skowron, A., Synak, P., 1994. Dynamic Re-
ducts as A Tool for Extracting Laws from Decision
Tables. Proceedings of ISMIS’94. Lecture Notes in
Artificial Intelligence 869. Springer-Verlag, Berlin,
p.346-355.

Chang, C., Lin, J., 2003. LIBSVM, A Library for Support
Vector Machines. http: //www.csie.ntu.edu.tw/~cjlin/
libsvm/.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
Reading, M.A.

James, C., 1998. The Application of Artificial Neural
Networks to Misuse Detection: Initial Results.
RAID98, Louvain-la-Neuve, Belgium, p.14-16.

KDD, 1999. http://kdd.ics.uci.edu/databases/kddcup99/
task.html.

Pawlak, Z., 1982. Rough sets. International Journal of
Computer and Information Sciences, 11:341-356.

Srinivas, M., Sung, A., 2002. Feature Ranking and Selec-
tion for Intrusion Detection. Proceedings of the
International Conference on Information and
Knowledge Engineering.

Wang, G.Y., eds, 2001. Rough Set Theory and Knowledge
Acquistion. Xi’an Jiaotong University Press, Xi’an (in
Chinese).

Wang, J., Tao, Q., 2003. Rough Set Theory and Statistical
learning Theory. In: Lu, R.Z., ed., Knowledge Science
and Computing Science. Tsinghua University Press,
Beijing, p.49 (in Chinese).

Wenke, L., 1999. A Data Mining Framework for Con-
structing Features and Models for Intrusion Detection
Systems. PhD dissertation, http://www.cc.gatech.edu/
~wenke/.

Wroblewski, J., 1995. Finding Minimal Reducts Using
Genetic Algorithms. Proc. of the second Annual Join
Conference on Information Sciences. Wrightsvillle
Beachm, NC, p.186-189.

