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Abstract:    Recently machine learning-based intrusion detection approaches have been subjected to extensive researches 
because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, 
is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a 
very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature 
ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using 
Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with 
those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the 
convergence speed and decrease the training time of RSC. The models generated by RSC take the form of “IF-THEN” rules, 
which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that 
for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set). 
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INTRODUCTION 
 

Intrusion detection is used to classify normal 
and intrusive activities, in which machine learning 
can play an important role. Recently the machine 
learning-based intrusion detection approaches 
(Allen et al., 2000) have been subjected to exten-
sive researches because they can detect both misuse 
and anomaly. The learning-based intrusion detec-
tion approaches include two key steps: feature ex-

traction and detection model generation. In the 
research of feature extraction in intrusion detection, 
Wenke (1999) used improved Apriori algorithm to 
acquire features of network connection level. This 
method is very effective. Later, Srinivas and Sung 
(2002) presented the use of support vector machine 
(SVM) to rank these extracted features, but this 
method needs many iterations and is very 
time-consuming. In the research of detection model 
generation, it is desirable that the detection model 
be explainable and have high detection rate, but the 
existing methods cannot achieve these two goals. 
For example, neural networks (James, 1998) could 
achieve high detection rate but the detection rules 
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generated are not explainable; decision trees 
(Wenke, 1999) could yield explainable rules but the 
detection rate is low.  

In this paper we present the use of rough set 
classification (RSC) (Pawlak, 1982) for intrusion 
detection system (IDS) feature ranking and intru-
sion detection rules generation. Intrusion detection 
using RSC can yield both explainable detection 
rules and high detection rate for some attacks, and 
feature ranking using RSC for IDS is simple and fast. 

RSC is one of the important contents of rough 
set theory (Wang and Tao, 2003). The main con-
tribution of rough set to learning theory is the con-
cept of reducts. A reduct is a minimal subset of 
attributes with the same capability of objects clas-
sification as the whole set of attributes. In this paper, 
we propose a fast hybrid genetic algorithm for the 
reduct computation of rough set. In fact, the reduct 
computation of rough set corresponds to feature 
ranking for IDS in RSC. Compared with the classic 
SVM based feature ranking approach (Srinivas and 
Sung, 2002), this feature ranking method is simpler 
and faster.  

RSC creates the intrusion (decision) rules us-
ing the reducts as templates. After reduct genera-
tion, the detection rules are automatically computed 
subsequently. The rules generated have the intui-
tive “IF-THEN” format, which is explainable and 
very valuable for improving detector design. Ex-
periments were designed to test the rules detection 
performance. The experiment data we used origi-
nated from MIT’s Lincoln Labs. It was developed 
for KDD (1999) competition by DARPA and is 
considered a standard benchmark for intrusion 
detection evaluations. Since SVM performed well 
among the classical intrusion detection algorithms 
(Srinivas and Sung, 2002), we also use SVM to 
detect intrusions on the same dataset for compari-
son. The test results indicated that RSC algorithm 
has compatible level detection performance with 
SVM algorithm for detection of Probe and DoS 
attacks (all above 99%) on DARPA dataset. But 
RSC has obvious advantage in rules explanations. 
Further comparisons between RSC based IDS and 
SVM based IDS are provided in detail in the paper. 

The paper is organized as follows. In the 

second section, the system model for general ma-
chine learning-based intrusion detection approach 
is introduced. In the third section, rough set is pre-
liminarily interpreted and rough set classification 
algorithm used in this paper and the hybrid genetic 
algorithms proposed are explained in detail. Ex-
periment design for comparison of RSC based IDS 
and SVM based IDS is given in the fourth section to 
indicate the advantages of RSC algorithm. Finally 
we conclude the paper in the last section. 

 
 

SYSTEM MODEL 
 

Based on the research work of Wenke (1999), 
designing an intrusion detection system based on 
learning algorithm can be described in the follow-
ing steps:  

(1). Capture network data by using tools such 
as Tcpdump, Dsniff, etc.; (2). Process these data 
into suitable input format; (3). Normalize the net-
work flow and extract features of attack behavior or 
normal usage pattern from raw data; (4). Design 
and use learning algorithm to get detection rules; 
(5). Integrate the detection rules into the real time 
IDS for detecting intrusion.  

In these five steps, as the above section said, 
feature extraction and detection rules generation 
are two key steps. For feature extraction, it depends 
on data source and the category of attack to be 
detected. In order to focus on our learning algo-
rithm study, we choose the 1999 KDD intrusion 
detection contest dataset to design our system. The 
1999 KDD intrusion detection contest used 1998 
DARPA intrusion detection dataset to construct the 
connection records and extract the object features 
(Wenke, 1999). 1998 DARPA intrusion detection 
dataset was acquired from nine weeks of raw TCP 
dump data for a local-area network (LAN) simu-
lating a typical U.S. Air Force LAN and peppered 
with four main categories of attacks: DoS, Probe, 
U2R, R2L. A connection record is a sequence of 
TCP packets starting and ending at some well de-
fined times, between which data flows to and from 
a source IP address to a target IP address under 
some well defined protocol. Each connection is 
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labeled as either normal, or as an attack, with ex-
actly one specific attack type. For each TCP/IP 
connection, 41 various quantitative and qualitative 
features were extracted. The following three main 
feature sets can be used to classify each connection. 

1) Intrinsic features, i.e., general information 
related to the connection. They include the duration, 
type, protocol, flag, etc. of the connection; 

2) Traffic feature, i.e., statistics related to past 
connections similar to the current one, e.g., number 
of connections with the same destination host or 
connections related to the same service in a given 
time window or within a predefined number of past 
connections; 

3) Content features, i.e., features containing 
information about the data content of packets 
(“payload”) that could be relevant to discover an 
intrusion, e.g., errors reported by the operating 
system, root access attempts, etc. 

For detection rules auto-generation, we pre-
sent the use of rough set classification for this task. 
It includes three phases: 

1) Preprocessing: The raw data is first parti-
tioned into three groups: DoS attack detection 
dataset, Probe attack detection dataset, U2R&R2L 
attack detection dataset. For each dataset, a deci-
sion system is constructed. Each decision system is 
subsequently split into two parts: the training 
dataset and the testing dataset.  

2) Training: rough set classifier is trained on 
each training dataset of three different types of 
attacks (DoS, Probe, U2R&R2L). Each training 
dataset uses the corresponding input features and 
fall into two classes: normal (+1) and attack (−1). 

3) Testing: measure the performance on test-
ing data. 

We will describe our rough set classification 
algorithm in detail in the following section. 

 
 

ROUGH SET CLASSIFICATION ALGORITHM 
 
Part A: Rough set theory preliminary 

Rough sets theory was developed by Zdzislaw 
Pawlak in the early 1980’s (Pawlak, 1982). It is a 
mathematical tool for approximate reasoning for 

decision support and is particularly well suited for 
classification of objects. Rough sets can also be 
used for feature selection, feature extraction etc. 
(Wang, 2001).  
Definition 1    An information system is defined as 
a four-tuple as follows, S=<U, Q, V, f>, where 
U={x1, x2, …, xn} is a finite set of objects (n is the 
number of objects); Q is a finite set of attributes, 
Q={q1, q2, …, qn}; V= qq Q

V
∈∪  and Vq is a domain 

of attribute q; f:U×V→V  is a total function such 
that f(x, q)∈Vq for each q∈Q, x∈U. If the attributes 
in S can be divided into condition attribute set C 
and decision attribute set D, i.e. Q=C∪D and 
C∩D=Φ, the information system S is called a de-
cision system or decision table. 
Definition 2    Let IND(P), IND(Q) be indiscernible 
relations determined by attribute sets P, Q, the P 
positive region of Q, denoted ( ) ( ( ))IND PPOS IND Q  is 

defined as follows:  
 

( ) ( ( ))IND PPOS IND Q =
/ ( )

( ) ( )
X U IND Q

IND P X−
∈
∪ . 

 
Definition 3    Let P, Q, R be an attribute set, we say 
R is a reduct of P relative to Q if and only if the 
following conditions are satisfied: 
 
(1) ( ) ( ( ))IND RPOS IND Q = ( ) ( ( ))IND PPOS IND Q ; 

 
(2) ∀r∈R follows that 
 
 ( { }) ( )( ( )) ( ( ))IND R r IND RPOS IND Q POS IND Q− ≠  

 
Definition 4    Let L=(U, A∪{d}, V, f) be a decision 
system, whose discernibility matrix ( )U =M  

[ ( , )]d
A n nM i j ×  is defined as:  

 
( , )d

AM i j = 

{ | ( ) ( )},  ( ) ( );

,                                              ( ) ( ).
k k k i k j i j

i j

a a A a x a x d x d x

d x d x

∈ ∧ ≠ ≠
Φ =

 

 
where ak(xj) is the value of objects xj on attribute ak, 
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d(x) is the value of object x on decision attribute d. 
Write ( ) [ ( , )]d

A n nU M i j ×=M  as a list {p1,…, pt}. 
Each pi is called a discernibility entry, and is usu-
ally written as pi=ai1, …, aim, where each aik cor-
responds to a condition attribute of the information 
system, k=q,…,m; i=1,…,t.  

Furthermore, the discernibility matrix can be 
represented by the discernibility function f, con-
junction normal form (CNF), i.e., f=p1∧…∧pt, 
where each pi=ai1∨…∨aim is called a clause, and 
each aik is called an atom. Note that the dis-
cernibility function contains only atoms, but not 
negations of atoms. 

Although the discernibility matrix and dis-
cernibility function have different styles of ex-
pression, they are actually the same in nature.  
Definition 5    Let h denote any Boolean CNF 
function of m Boolean variables * *

1{ ,..., }ma a , com-

posed of n Boolean sums 1{ ,..., }ns s . Furthermore, 

let * {0,1}ijw ∈  denote an indicator variable that 

states whether *
ia  occurs in * *

1

. ,
m

j j ij i
i

s s w a
=

= ×∑  

1

n

j
j

h s
=

=∏ . We can interpret h as a bag or multiset 

M(h)= *{ | { |  occurs in }}i i j j iS S a A a s= ∈ . Because 

the discernibility function f is also a CNF Boolean 
function, so it has a multiset. Let M( f ) denote the 
multiset of discernibility function f,  M( f )={{a11,…, 
a1m},…,{ai1,…,aim},…,{at1,…,atm}}. 
Definition 6    A hitting set of a given bag or mul-
tiset M of elements from 2A is a set B⊆A such that 
the intersection between B and every set in M is 
non-empty. The set B∈HS(S) is a minimal hitting 
set of M if B ceases to be a hitting set if any of its 
elements are removed. Let HS(M) and MHS(M) 
denote the sets of hitting sets and minimal hitting 
sets, respectively, 
 

( ) { | for all in }i iHS M B A B S S M= ⊆ ∩ ≠ Φ . 
 
Proposition 1    For decision system L=(U, A∪{d}, 
V, f), g is its discernibility matrix, and B⊆A, 
B∈RED(U, d) is equivalent to B∈MHS(M(g)) 

(Aleksander, 1999). So the rough set reduct com-
putation can be viewed as a minimal hitting set 
problem. 
Definition 7    A approximate hitting set is a set that 
hits “enough” elements of the bag or multiset M. 
The approximate hitting set provides an approxi-
mate solution to the hitting set problem. The set of 
ε-approximate hitting sets of the multiset M is de-
noted AHS(M, ε): 
 

 
| in | |

, { | }
| |

i iS M S B
AHS M B A

M
ε ε

∩ ≠ Φ
= ⊆ ≥（ ） , 

 
where the parameter ε controls the degree of ap-
proximation. The set is a minimal ε-approximate 
hitting set if it ceases to be so if any of its elements 
are removed. The set of all minimal ε-approximate 
hitting set is denoted MAHS(M, ε).  

Computing all elements of MAHS(M, ε) is 
computationally intractable, and heuristics are 
needed (Wroblewski, 1995). In this paper, a heu-
ristic rule based on the significance of attribute is 
applied to search for solutions.  
Definition 8    The significance of attribute is de-
fined as: SGF(a, R, D)=p(a), p(a) is the number of 
appearing times of attribute a in the remain part of 
the discernibility matrix which removes all the 
elements that have non-empty intersection with R. 

 
Part B: Rough set classification algorithm 

Our general scheme of rough set classification 
algorithm is presented in Fig.1. 

(1) The raw input data set is transformed into a 
decision system which is subsequently split into 
two parts: the training dataset and the testing 
dataset. A classifier will be induced from the 
training dataset and applied to the testing dataset to 
obtain a performance estimate.  

For the training dataset, we do the following 
steps (2), (3); 

(2) If the decision system has real values at-
tributes, the discretization strategies should be built 
to obtain a higher quality of classification rules. 
There are many discretizaion methods such as boo 
reasoning algorithm, semi-naïve algorithm etc. How 
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to choose the suitable discretizaion methods is still 
a difficult question and some tests are needed. In 
our following experiment, Equal Interval Width 
discretizaion method is used. The Equal Interval 
Width discretization method divides the range of 
observed values for an attribute into k equal sized 
intervals, where k>0 is a user-supplied parameter. 
If an attribute a is observed to have values bounded 
by amin and amax then this method computes the 
interval width width(k)=(amax−amin)/k and con-
structs thresholds at amin+i*width(k) where i=1, ..., 
k−1. The method is applied to each continuous 
attribute  independently. Since  this  unsupervised 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
method does not utilize decision values in setting 
partition boundaries, it is likely that classification 
information will be lost by binning as a result of 
combining values that are strongly associated with 
different classes into the same interval. But in our 
case this could make effective classification.  

(3) The intrusion (decision) rules are created 
using the reducts computed by the attribute reduc-
tion algorithm as templates. There are many at-
tribute reduction algorithms such as dynamic reduct 
(Bazan et al., 1994) and RA-Order algorithm 
(Wang and Tao, 2003), etc. But, until now, the most 
effective algorithm for large decision system re-

Fig.1  General scheme of rough set classification algorithm 
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duction computation in practice is genetic algo-
rithm (Wroblewski, 1995), which is used by most of 
the rough set tools such as Rough Enough (Anders, 
1997) and Rosetta (Aleksander, 1999). In this paper, 
we proposed a hybrid genetic algorithm based on 
the attribute significance heuristic rule to find 
minimal reducts. This hybrid genetic algorithm 
decreases the training time and makes the generated 
classifier more effective and it is adjusted to fit the 
intrusion detection environment. This hybrid ge-
netic algorithm is the key sub-algorithm in our RSC 
Algorithm. In order to make it clear, we first in-
troduce the general Genetic Algorithms (GAs) and 
their extension in Part C, then we describe the key 
sub-algorithm in detail in Part D.  

For the testing dataset, the following step is 
done. 

(4) The same cuts computed from training 
dataset discretizaion method are first used to dis-
cretize the new object dataset. Then the rules gen-
erated are used to match testing objects to compute 
the strength of the selected rule sets for any deci-
sion class. The new object will be assigned to the 
decision class with maximal strength of the selected 
rule set.  

 
Part C: General genetic algorithms and their 
extension  

GAs were formally introduced in the United 
States in the 1970s by John Holland at the Univer-
sity of Michigan (Goldberg, 1989). They have a 
solid basis in genetics and evolutionary biological 
systems. GAs comprise a kind of effective search-
ing and optimizing technique and have been applied 
to various fields. In particular, GAs work very well 
on combinatorial problems such as reduct finding in 
rough set theory (Wroblewski, 1995). 

A GA starts by generating a large set of pos-
sible solutions to a given problem (a solution to a 
problem corresponds to a genome or chromosome 
in genetics; a large set of possible solutions to a 
given problem corresponds to a population). It then 
evaluates each of those solutions, and decides on a 
“fitness level”(“survival of the fittest” in the Dar-
winian principle of natural selection; the “fitness 
level” is represented by fitness function in GA) for 

each solution set. These solutions then breed new 
solutions (“breed” action is simulated by genetic 
operator, such as mutation, crossover and inversion, 
etc., in GA). The parent solutions that have better 
“fitness level” are more likely to reproduce (selec-
tion and reproduction strategy in GA), while those 
that have less “fitness level” are more unlikely to do 
so. In essence, solutions are evolved over time or 
generation (GA will iterate many times in control 
for optimization). This way GAs evolve the search 
space scope to a point where the solution can be 
found. Genetic algorithms can be incredibly effi-
cient if programmed correctly. 

The general algorithm for genetic algorithms 
includes the following steps: 

Step 1. Generate an Initial Population 
An initial population is created from a random 

selection of solutions.  
Step 2. Evaluate Fitness 
A value for fitness is assigned to each solution 

(chromosome) depending on how close it actually 
is to solving the problem (thus arriving to the an-
swer of the desired problem). These “solutions” are 
not “answers” to the problem but are possible 
characteristics that the system would employ in 
order to reach the answer.  

Step 3. Reproduce, Selection, Mutate and 
Crossover 

Those chromosomes with a higher fitness 
value are more likely to reproduce offspring (which 
can mutate/inverse after reproduction). The off-
spring is a product of the father and mother, whose 
composition consists of a combination of genes 
from them (known as “crossing over”).  

Step 4. Control Next Generation 
If the new generation contains a solution that 

produces an output that is close enough or equal to 
the desired answer then the problem has been 
solved. If this is not the case, then the new genera-
tion will go through the same process as their 
parents did. This will continue until a solution is 
reached. Then the algorithm is over. 

We can extend the above general genetic al-
gorithms to find rough set reducts quickly. The 
problems such as reduct finding are NP-hard, and 
there is no fast and reliable way to solve them in 
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deterministic way. Genetic algorithms are flexible 
and universal and can be used to solve these kinds 
of combinational problem. On the other hand, ap-
proximate but fast heuristics such as SGF approach 
for reduct finding (Wang and Tao, 2003) are de-
signed and tuned up especially for those tasks, and 
are often more efficient than general genetic algo-
rithm. Unfortunately, they are often suboptimal and 
cannot avoid local optima. Moreover, the determi-
nistic algorithm such as reduct computation based 
on SGF often spend more time on computations and 
be no hope for improvement. The hybrid genetic 
algorithms (Wroblewski, 1995) which use nonde-
terministic, problem-oriented heuristics controlled 
by GAs can exploit the advantages of both genetic 
and heuristic algorithms. Different from the hybrid 
genetic algorithm by Wroblewski (1995), the heu-
ristic method based on the significance of attribute 
SGF(a, R, D) is introduced in our rough set classi-
fication algorithm by a new Bit-adapt operator. 
This Bit-adapt operator is our main extension of 
Step 3 in the above general genetic algorithm (see 
the following part and Fig.2 for details).  

 
P←initializePopulation(); 
evaluate(P); 
while(not terminate(P)) do  
    Parents[1..3]←selectParents(P); 
    Offspring[1]←CrossoverParents(Parents[1]); 
    Offspring[2]←Mutation(Parents[2]); 
    Offspring[3]←Inversion(Parents[3]); 
    P←recombine (P, Offpring[1..3], Parents[1..3]); 
    Bit-Adapt(P); //this operator implements an adaptation 
strategy which will be discussed in   the following; after this 
operation, the attribute subset (represented by each chro-
mosome)  has the approximate classification ability of the 
whole condition attribute set; 
    evaluate(P); 
done 
 

Fig.2  Pseudo-code for the hybrid genetic algorithm 
based SGF 

 
Part D: Finding minimal reduct using hybrid 
genetic algorithm based on SGF 

(1) Frame of hybrid Genetic Algorithm  
As the above “Part A” said, finding the rough 

set minimal reduct is viewed as minimal hitting set 

problem. For the discretized decision system L=(U, 
A∪{d}, V, f), a multiset is constructed according to 
the above Definition 5, Part A. Subsequently, the 
hitting set of this multiset is computed using hybrid 
genetic algorithm. 

As the above “Part C” said, when suitable lo-
cal search techniques which make use of some 
heuristic information are introduced into simple 
genetic algorithms, the heuristic algorithms will 
maintain the capability of optimizing globally and 
can converge faster. Different from the hybrid ge-
netic algorithm by Wroblewski (1995), the heuris-
tic method based on the significance of attribute 
SGF(a, R, D) defined in the Definition 8, Part A is 
introduced into the genetic algorithm for minimal 
approximate hitting set, i.e., approximate minimal 
relative reduct. The algorithm skeleton is shown in 
the following Fig.2. 

In our algorithm, a new operator named 
Bit-adapt is constructed. This new operator operates 
on the whole population and can guarantee each 
chromosome converges into one of the hitting sets. 

(2) Representation (Generation of the Initial 
Population) 

For the minimal hitting set problem, a 
straightforward choice of population is a set P of 
elements from 2A, encoded as bit-vectors, where 
each bit indicates the presence of a particular ele-
ment in the set. For example, assume that we have 
10 condition attributes {a1, a2, …, a10} and we have 
a reduct candidate as {a1, a4, a6, a9}. Then the re-
duct candidate should be represented as: 
1001010010. 

(3) Function of fitness 
According to the definition of relative reducts, 

we know that the fitness function depends on the 
assumption: the number of attributes (which we 
wish to keep as low as possible) and the decision 
ability (which we wish to keep as high as possible). 
Our fitness function for decision system L=(U, 
A∪{d}, V, f ) is defined as follows:  Let n denote the 
number of condition attributes, M the multiset of 
discernibility function of L and B⊆A, 

 

| | | { in | } |( ) min{ , }
| |

n B S M S Bf B
n M

ε− ∩ ≠ Φ
= + . 
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The first term rewards the shorter elements 
and the second tries to ensure that we reward sets 
that are hitting sets to guarantee the decision ability. 
The parameter ε controls the degree of approxima-
tion decision ability. 

(4) Selection and recombination method 
The selection and recombination operator are 

implemented with two steps: 
Step 1: Calculate the fitness for each chro-

mosome in the current generation t. Then according 
to the fitness for each chromosome, we use sto-
chastic sampling method to select; 

Step 2: Let minsingle(Offspring) be the worst 
individual in the new population, minfit(Offspring) 
be the corresponding fitness; Let maxsingle(Parent) 
be the best individual in the old population, max-
fit(Parent) be the corresponding fitness. If min-
fit(Offspring)<maxfit(Parent), we replace min-
singel(Offspring) with maxsingle(Parent). 

(5) Crossover, Mutation and Inversion 
We use classical, one-point crossover. Cross-

ing-over process affects chromosome selected for 
reproduction with probability of Pc. In the mutation 
process, we first select a chromosome to be mutated 
with probability Pm and then choose a single gene 
of the chromosome randomly.  Mutation of a single 
gene means replacement of “1” by “0” or “0” by “1”. 
Suppose that chromosome 
S1={s11, s12, …, s1r, s1,r+l, s1,r+l+1,…, s1n}, where r, l 
are random numbers. S2 is the inversion of S1:  
 S2={s11, s12, …, s1r, s1,r+l, s1,r+l+1,…, s1n}; 

(6) Bit-Adaptation Strategy 
We use this strategy as heuristic rule to make 

genetic algorithm converge faster. It is not 
time-consuming in computing. This operator oper-
ates on the whole population. 

Let R be the attribute set represented by cur-
rent chromosome. If R is not a hitting set (It is 
judged in the fitness function computation), then 
find an attribute a in C−R which has the maximal 
value SGF(a, R, D)=p(a). If there are several aj, 
(i=1,2,…,m;) with the same maximal value, sto-
chastically choose one attribute from them. Set the 
bit corresponding with aj as “1”. 

When computing the fitness function of each 
individual, the multiset should be searched once; at 

the same time, the SGF values are computed in this 
same search procedure. So it will not remarkably 
increase the computation time of general GA with 
this “modify strategy”. Our fitness function design 
can guarantee that the changed chromosome can 
converge faster and correctly. 

 
 

EXPERIMENTS 
 

In order to compare RSC algorithm with the 
classical learning algorithm for intrusion detection, 
we constructed intrusion detection systems using 
rough set classification (RSC) and support vector 
machines (SVM) and tested their performance on 
the 1999 KDD intrusion detection contest data set. 
All the two experiments (RSC based IDS and SVM 
based IDS) were done in the same Personal Com-
puter (DELL Optiplex GX400 system) with 1.70 
GHz Pentium IV CPU, Windows 2000 operating 
system and 128 M RAM. The compiler is Microsoft 
Visual C++ 6.0 and the program language is C and 
C++. 

 
Part A:  Development of RSC based IDS 

The raw data from the KDD99 contest is first 
partitioned into three groups (input dataset): DoS 
attack detection dataset, Probe attack detection 
dataset, U2R&R2L attack detection dataset. For 
each input dataset, we construct a decision system 
using the following method: 1) for each attack de-
tection dataset, different connection record feature 
set are selected as the condition attributes of the 
decision system. For Probe and DoS attack, intrin-
sic and traffic features are used; for U2R&R2L 
attack, intrinsic and content features used. 2) the 
label (normal+1, attack–1) variable of each record 
is used as the decision attribute of the decision 
system. 3) a connection record data point is used as 
an object in the decision system. Each of the con-
structed decision systems will be processed by RSC 
subsequently. 

DoS attack detection dataset consists of the set 
of 5330 data points: 4264 for training, 1066 for 
testing. Data points contain 3206 actual DoS attack 
connection records and 2124 normal usage pattern 
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data points. These data points are used for training 
using RSC algorithm. The generated rules are used 
to predict the tested objects.  

Probe attack detection dataset consists of the 
set of 2434 data points: 1947 for training, 487 for 
testing. Data points contain 310 actual Probe at-
tacks connection records and 2124 normal usage 
pattern data points. Data points are used for training 
using RSC algorithm. The generated rules are used 
to predict the tested objects.  

U2R&R2L attack intrusion dataset consists of 
the set of 2214 data points: 1171 for training, 1043 
for testing. Data points contain 90 actual 
U2R&R2L attacks connection records and 2124 
normal usage pattern data points. Data points are 
used for training using the RSC algorithm. The 
generated rules are used to predict the tested ob-
jects.  

The experiments results are shown in Table 1, 
where the training time units format is min-
utes:seconds. Training time 1 denotes the training 
time without “Bit-Adaptation strategy” in the ge-
netic algorithm; training time 2 denotes the training 
time with “Bit-Adaptation strategy”. RSC-ε refers 
to the parameter ε used in the reduct computation. 
ε=1 means it is the accurately computed hitting set 
without approximation.  

From the above table, our proposed “Bit- 
Adaptation strategy” can decrease the training time. 
 
Part B:  Development of SVM based IDS 

All the three input dataset construction and the 
experiment platform are the same as RSC IDS for 
convenient comparison. The only difference be-
tween the two systems are Step 4) in the SYSTEM 
MODEL. In RSC based IDS, the learning algorithm 

 
 
 
 
 
 
 
 
 
 

is RSC; but in SVM based IDS, the learning algo-
rithm is SVM. The other steps in the SYSTEM 
MODEL are the same. In addition, the SVM based 
IDS experiments described below use the freeware 
package LIBSVM (Chang and Lin, 2003).  

Each of the above three categories of input 
dataset is preprocessed into the LIBSVM input 
format and then is scaled using linear scaling. 
Furthermore, the SVMs are trained using the RBF 
(radial bias function) kernel option with different 
parameter (C, cost; g, gamma) for each category. 
Each data point is located in n-dimensional space, 
with each dimension corresponding to a feature of 
the data point. 

The experiment results are shown in Table 2. 
Our results are similar to those in (Srinivas and 
Sung, 2002). 

 
Part C: Discussion and comparison of SVM IDS 
and RSC IDS 

Table 3 shows the optimal experiment results 
of RSC and SVM algorithms. 

From Table 3, we can conclude that RSC al-
gorithm has detection performance level compati-
ble with that of the SVM algorithm in terms of 
Probe and DoS attack detection (all above 99%). 
But for U2R&R2L attack detection, RSC algorithm 
is worse than SVM algorithm. The reason is that 
RSC algorithm can get good performance when the 
samples are enough while it performs a little worse 
for small attack sample case (In the DARPA dataset, 
U2R&R2L attack samples are low but DoS and 
Probe attack samples are enough). In contrast, SVM 
is a good tool that performs well for both small and 
enough sample attack cases. 

Furthermore, the detection rules  generated  by 
 
 
 
 
 
 
 
 
 
 

Table 1  Experiment results of RSC based IDS 
 

 

Category RSC-ε Detection 
rate 

Misclassification 
rate 

Training time 1 
(min:sec) 

Training time 2 
(min:sec) 

 

ε=0.9 
 

0.9968 
 

0.0 
 

1:39 
 

1:29 
 

Probe attack 
 ε=1 0.9968 0.0 1:10 1:01 

ε=0.9 0.9298 0.0 4:30 3:59 DoS attack 
ε=1 0.9975 0.0005 3:29 3:07 
ε=0.9 0.6875 0.0 0:12 0:12 U2R&R2L attack 
ε=1 0.7368 0.0 0:10 0:10 
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the RSC algorithm, different from SVM, has the 
explainable “IF-THEN” format. For instance, one 
of the Probe attack detection rules is: “duration([1, 
2080]) AND dst_host_srv_rerror_rate([99, *]) => 
decsion(−1)”. Its meaning is that “if the rate of 
connections that have ‘REJ’ errors of the same 
service of 100 connections to the same host (the 
definition of ‘dst_host_srv_rerror_rate’ (Wenke, 
1999)) is above 99%, then it is a probe attack”. 
Since the packets of probe attack often access the 
unopened service, it can be concluded that the rule 
is evident. With this learned knowledge, we can 
improve the design of the probe detector. This ad-
vantage, together with its high detection perform-
ance for some attacks, makes the RSC algorithm 
very valuable in practical intrusion detector design. 
On the other hand, SVM had been criticized for the 
difficulties in model explanations. 

Another difference between RSC and SVM is 
the feature ranking for IDS. RSC accomplished the 
feature reduct computation once before  detection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
rules generation. In fact, the reduct computation 
corresponds to feature ranking for IDS. So, feature 
ranking is performed only once for RSC. However, 
feature ranking using SVM needs many times it-
erations. The SVM based feature ranking approach 
(Srinivas and Sung, 2002) is: one input feature is 
deleted from the data at a time, the resultant data set 
is used for the training and testing of the classifier; 
then the classifier’s performance is compared to 
that of the original classifier (based on all features) 
in terms of relevant performance criteria; finally, 
the importance of the feature is ranked according to 
a set of rules based on the performance comparison. 
Compared with SVM, RSC feature ranking is sim-
pler and faster. 

On the other hand, SVM has good scalability. 
And the training and running time for SVM is sig-
nificantly shorter (e.g. 1.03 s vs 1.39 min for Probe 
attack). Compared with the SVM, the training time 
of RSC is longer. Although we use the heuristic rule 
to accelerate the convergence speed of the reduct 

Table 2  Test results of SVM based IDS (Using RBF kernel function with different parameters) 

Category Training 
parameter 

Support vector 
number 

Iteration
number

Detection 
rate 

Training time 
(s) 

Testing time
(s) 

 

C=1,    g=0.033 
 

56 
 

42 
 

99.5892% 
 

0.82 
 

0.40 
C=1.5, g=0.033 44 53 99.5892% 0.82 0.39 
C=10,  g=0.1 30 67 99.9178% 0.91 0.41 

 

Probe attack 

C=50,  g=1 148 145 99.7535% 1.03 0.43 
C=1,    g=0.033 145 102 99.2495% 1.10 0.39 
C=1.5, g=0.033 123 137 96.1764% 1.10 0.39 
C=10,  g=0.1 56 151 98.1614% 1.20 0.40 

DoS attack 

C=50,  g=1 209 204 98.9686% 2.33 0.56 
C=1,    g=0.033 25 26 99.5331% 0.13 0.11 
C=1.5, g=0.033 22 27 99.5331% 0.13 0.11 
C=10,  g=0.1 29 117 99.6265% 0.15 0.12 

U2R&R2L 
attack 

C=50,  g=1 34 211 99.1597% 0.17 0.13 
 

Table 3  Comparison of SVM and RSC algorithm 
 
 

SVM (c=1, g=0.033) RSC (ε=1) 
Category 

Detection rate Misclassification rate Detection rate Misclassification rate 

Probe 99.59% 0.01643 99.68% 0 

Dos 99.25% 0.03 99.75% 0.0005 

U2R&R2L 99.53% 0.4424 73.68% 0 
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computation and decrease the training time of RSC, 
the training time of RSC is still long and needs 
further improvement. However, the running time of 
RSC is notably short since it just needs judgment of 
some conditions. 

 
 

CONCLUSION 
 

It is very valuable to get both high detection 
rate and explainable rules since this can improve 
our knowledge about the nature of the intrusion. In 
this paper we use rough set classification (RSC) for 
intrusion detection system (IDS) feature ranking 
and intrusion detection rules generation. Intrusion 
detection using RSC can yield both explainable 
detection rules and high detection rate for some 
attacks. And feature ranking using RSC for IDS is 
simple and fast. 

In addition, we proposed a hybrid genetic al-
gorithm based on the attribute significance to 
compute the rough set reduct and accelerate the 
convergence speed and decrease the training time 
of RSC. But for the real-time IDS, the training time 
of RSC is still long and needs further improvement. 
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