
Yan et al. / J Zhejiang Univ SCI 2004 5(9):1102-1105 1102

A front-end automation tool supporting design,

verification and reuse of SOC

YAN Xiao-lang (严晓浪)1, YU Long-li (余龙理)†1, WANG Jie-bing (王界兵)†2
 (1Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China)

(2C-Sky Microsystems, Hangzhou 310032, China)

E-mail: †1longli_yu@saianmicro.com; †2jiebing_wang@saianmicro.com

Received Mar. 18, 2003; revision accepted June 12, 2003

Abstract: This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit
high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog code by
more than a factor of 5, increase the efficiency of the front-end design, reduce the bug rate significantly. This tool can be used
to enhance the reusability of an intellectual property model, and facilitate porting design for different platforms.

Key words: System-On-Chip, Verilog, HDL, Verification, Reuse
doi:10.1631/jzus.2004.1102 Document code: A CLC number: TN402

INTRODUCTION

With ever increasing semiconductor chip
complexity, HDL (hardware description language)
is also evolving, as required by the evolving design
and verification methodologies. The new HDL de-
sign methodology puts more emphasis on system
level design, IP (intellectual property) models, de-
sign re-use and very deep submicron effects, etc.
Such is the case for the emerging IEEE 1364-2001
Verilog-2001 standard (IEEE Std 1364, 2001;
Cummings, 2001). Also, System-On-Chip (SOC)
methodology requires system-level simulation, i.e.,
hardware-software co-design/verification in the
early project stage. Mostly for this purpose, a group
of design languages and extensions are proposed to
raise the abstraction level for hardware verification.
The list includes e, OpenVera, Superlog, System
Verilog and a few other variants of C/C++.

Here we introduce an in-house developed HDL

tool called VPerl (Verilog-Perl), which has been
used successfully in implementing a 250 MHz
32-bit high-performance, low-power embedded
microprocessor (CK520) in Hangzhou C-Sky Mi-
crosystems and VLSI Institute of Zhejiang Univer-
sity. Perl, as a programming language, not only has
excellent text processing capability, but also offers
database interconnectivity. A few elegant syntaxes
offered by VPerl, as will be introduced later in this
paper, will raise the abstraction level, reduce the
code size, decrease bug rate and offer reusability,
extensibility of the IP blocks. VPerl will be a great
complement to not only Verilog-1995, but also
Verilog-2001.

The following sections of the paper will dis-
cuss VPerl processing flow based on Verilog-1995
(IEEE Std 1364, 1995), VPerl for design, VPerl for
verification and VPerl for reuse, respectively. In
these discussions, the actual implementation of
CK520 is used as the example.

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Yan et al. / J Zhejiang Univ SCI 2004 5(9):1102-1105 1103

VPERL PROCESSING FLOW

VPerl transforms a Verilog template file called
vp file into a Verilog file. A vp file is designed to let
designers focus on the logic expressions, and the
other parts such as port declaration, sensitive list
declaration and register or wire data type declara-
tion are automatically generated by the basic func-
tions of Vperl (Davis and Mudge, 1995).

The transforming process is comprised of three
stages: preprocessing, template analysis and HDL
generation, as shown in Fig.1. Between these stages,
useful data is exchanged with text file or through
accessing database. Again, VPerl takes advantage
of Perl’s strong text processing capacity and rich
internet resources.

At the first stage, VPerl template file is pre-
processed. Preprocessing removes all the comments,
processes Verilog directive keywords (for instance,
“ifdef”), and formats the codes so that they can be
readily handled at the next stage. Lexical check is
also done at this stage. This template file should
follow Verilog or VPerl syntax. At the second stage,
Verilog lexis in the template file is analyzed, and
necessary information is extracted and stored into
an embedded database system−Berkeley Database.
This information database contains the sources and
sinks of an expression, the sensitivity list of a com-

binational block, etc. At the last stage, VPerl ac-
cesses the database and generates Verilog file. All
VPerl syntax is substituted by associated Verilog
code fragments.

VPERL FOR DESIGN

The use of VPerl consists of two steps. The
first step is to find dependency for each Verilog
module, for instance, the fact of A depending on B
means B is instantiated in A. The outcome of this
step is a makefile. The second step is to invoke
VPerl processing engine that will expand a Verilog
template file into a Verilog file.

Some basic features of VPerl are listed below.
i) Vperl handles the tedious parts of con-

structing a Verilog module, such as module decla-
ration, port declaration, data type (register or wire)
statements, and sensitive list statement in combi-
national logic, etc. These features not only reduce
coding load, but also reduce bug rate. One example
is that VPerl automatically analyzes the port defi-
nition through its source-and-sink database, and the
designer can easily identify improper coding by
looking at the port definition generated by VPerl. A
sample template file is shown in Fig.2.

In Fig.2, all clauses starting with ampersand

// VPerl template example1
&module_beg; // mark begin of module
&declare_ports; // auto-declare ports
&declare_regs; // auto-declare register signals
&declare_wires; // auto-declare wire signals

assign data_sel[1:0] = src_sel ? src0[1:0] : src1[1:0];

&comb_begin; // auto-declare sensitive list

data_out[7:0] = 8’b0;
case(data_sel[1:0])

2’b00: data_out[7:0] = data_in[7:0];
2’b01: data_out[7:0] = data_in[15:8];
2’b10: data_out[7:0] = data_in[23:16];
2’b11: data_out[7:0] = data_in[31:24];

endcase
&comb_end;
&module_end; // mark end of module
// end of example1

Fig.2 A sample VPerl template file Fig.1 VPerl processing flow diagram

Template file (.vp)

Intermediate file (.vpi)

Berkeley database

Verilog file (.vp)

Preprocess

Template analysis

HDL generation

Yan et al. / J Zhejiang Univ SCI 2004 5(9):1102-1105 1104

are VPerl syntax. VPerl will expand these clauses
and generate corresponding Verilog code fragment.
Through these clauses, designers will only concen-
trate on logic expression coding.

ii) VPerl has a powerful feature in instantiating
sub-modules. VPerl can search the sub-modules
automatically through external environment setting,
instantiate them, and connect ports intelligently in
the generated Verilog file (Bening et al., 2001). An
example is shown in Fig.3.

iii) VPerl provides an API interface to call
other stand-alone programs. This greatly increases
reusability of a Verilog Design−making HDL de-
sign more object-oriented. More details are covered
in the section VPERL FOR DESIGN REUSE. It is
worth mentioning that VPerl has integrated eperl,
embedded Perl, which has been found rather useful.
Fig.4 shows a piece of code that is included in our
pad module.

VPerl will then instantiate the pad_cell 32 times,
significantly reduce the duplicative work and avoid
cut-and-paste errors.

Code compression ratio has been studied in
CK520 project. We have seen 2 to 12 fold com-
pression among different Verilog modules. More
than 5 fold compression ratio can be achieved.

VPERL FOR VERIFICATION

VPerl provides a syntax:
&assert_error(“… verilog expression…”);
This will generate assertion-based error

checking if enclosed Verilog expression is evalu-
ated to be true (Bening and Foster, 2001), and di-
rectly help verification to find bugs during simula-
tion run-time.

Another rather useful syntax is:
&assert_one_hot_error(“…sel[x:o]…”);
This is very useful for a high-performance de-

sign where one-hot state machine is constantly used.
Although only two syntaxes are listed here,

VPerl leaves the door open for integrating more
error checks.

VPERL FOR DESIGN REUSE

Reuse is a prominent issue in the design of
SOC (Keating and Bricaud, 2002). One important
feature in VPerl is that it supports an API interface
to call other stand-alone programs. By using this
feature, objects can be created in the design with its
characteristics and ports configured as needed,
which is similar to creating an object in C++. We
have employed a configurable synchronous FIFO
generator script in CK520 project. A designer can
call this script directly in the VPerl template file,
and specify the depth, width, and flags they wish to
have for the FIFO. Thus, the FIFO object is essen-
tially reused throughout CK520 design.

The authors have overcome another challenge

...
<:
for($i=0; $i<32; $i++) {
 print "pad_cell i_gsb_$i (\n";
 print " .PAD (i_cpu_gsb[$i]),\n";
 print " .C (pad_biu_gsb[$i]) \n";
 print "); \n";
}
:>
...

Fig.4 Eperl support from Vperl

// VPerl template example2
// top-level module of CPU core

&module_begin;
&declare_ports; // auto-declare ports
&declare_regs; // auto-declare register signals
&declare_wires; // auto-declare wire signals

&instance(“ifu”); // instantiate instruction

 fetch unit
&instance(“decode”); // instantiate instruction

decode unit
&instance(“execute”); // instantiate instruction

exec unit
&instance(“data”); // instantiate data memory

access unit
&instance(“wb”); // instantiate write back unit

&module_end;

Fig.3 An example showing instantiation feature of VPerl

Yan et al. / J Zhejiang Univ SCI 2004 5(9):1102-1105 1105

during the design of CK520 by using VPerl. The
goal is to port CK520 to a Xilinx Vertex-II FPGA to
increase our confidence before the final tape-out.
The problem is that in order to port to FPGA, sev-
eral issues must be resolved: on-chip customer PLL
to become Xilinx DCM, on-chip memory-compiled
SRAM to become Xilinx Block SelectRAM, etc.
Meanwhile, we constantly need to pull out internal
wires to the FPGA external pins for digital analyzer
observation. All these may require module port-
interface changes, which ASIC design/verification
team does not want to see. It is a common practice to
separate ASIC and FPGA into two files, so one has
to maintain the coherence between them. VPerl
solves this problem by preprocessing “ifdef” con-
struct and automatically generate port list, so that
only one file needs to be maintained.

CONCLUSION

As SOC design and verification becomes more
complex, a good tool methodology becomes essen-
tial in increasing design efficiency, reusability and
reliability. The authors believe that a tool like VPerl
can greatly enhance the above areas in the SOC
design and verification.

ACKNOWLEDGEMENT

One of the authors, Dr. Jiebing Wang, sin-
cerely thanks Mr. Dane Mrazek for his enlightening
contributions to this work. All the authors thank the
entire CK520 project team from C-Sky Microsys-
tems and Zhejiang University for their trust in us
and debugging of this tool.

References
Bening, L., Hornung, B., Pflederer, R., 2001. Hardware

Description Language-Embedded Regular Expression
Support for Module Iteration and Interconnection. Proc.
International Hardware Description Language Con-
ference.

Bening, L., Foster, H., 2001. Principles of Verifiable RTL
Design, Second Edition. Kluwer Academics, USA, p.
31-37.

Cummings, C.E., 2001. Verilog-2001 Behavioral and Syn-
thesis Enhancements. HDLCON2001, Rev1.3.

Davis, B., Mudge, T., 1995. A Verilog Preprocessor for
Representing Datapath Components. Proceedings of
the 4th International Verilog Conference, p.90-98.

IEEE Std 1364, 1995. IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description
Language.

IEEE Std 1364, 2001. IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description
Language.

Keating, M., Bricaud, P., 2002. Reuse Methodology Manual,
3rd edition. Kluwer Academics.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

