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Abstract:    The density-based clustering algorithm presented is different from the classical Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) (Ester et al., 1996), and has the following advantages: first, Greedy algorithm 
substitutes for R*-tree (Bechmann et al., 1990) in DBSCAN to index the clustering space so that the clustering time cost is 
decreased to great extent and I/O memory load is reduced as well; second, the merging condition to approach to arbi-
trary-shaped clusters is designed carefully so that a single threshold can distinguish correctly all clusters in a large spatial 
dataset though some density-skewed clusters live in it. Finally, authors investigate a robotic navigation and test two artificial 
datasets by the proposed algorithm to verify its effectiveness and efficiency. 
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INTRODUCTION 
 

Clustering groups dataset data into meaning-
ful subclasses in such a way that minimizes the 
intra-differences and maximizes the in-
ter-differences of these subclasses; and is one of 
the most widely studied problems in data mining. 
There are many application areas for clustering 
techniques, such as statistical data analysis, pattern 
recognition, image processing, and other business 
processes etc. Many clustering algorithms have 
been proposed, in particular, DBSCAN (Ester et al., 
1996) as a density-based clustering method attracts 
much attention due to its intuitive meaning and 
good performance.  

However, a clustering algorithm that can do 
everything that DBSCAN can do is not yet avail-

able. Various new clustering algorithms appear oc-
casionally. DBSCAN has been modified to great 
extent recently and used to derive a new procedure 
to calculate EPS which are most important pa-
rameters. This paper shall attack another problem of 
DBSCAN in large-scale spatial dataset, i.e., its in-
applicability to datasets with density-skewed clus-
ters; and its excessive consumption of I/O memory. 
This paper  

1. Uses Greedy algorithm (Skieyca, 1990) to 
index the space in DBSCAN so that both time and 
space complexity are decreased to great extent; 

2. Presents a merging condition to distinguish 
density-skewed clusters; 

3. Shows relatively better performance in ro-
botic navigation and in two artificial datasets. 

The rest of this paper is organized as follows. 
Section 2 presents a summary on DBSCAN algo-
rithm. Section 3 presents a based on Greedy algo-
rithm and DBSCAN (GDBSCAN) clustering algo-
rithm implementable in any dataset with den-
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sity-skewed clusters, and compares its time cost 
and memory loan with other corresponding algo-
rithms in Section 4. Three experiments were used 
to verify the efficiency and effectiveness of 
GDBSCAN in Section 5. Conclusions are pre-
sented in Section 6.  
 
 
RELATED WORK 
 

DBSCAN is designed to discover arbi-
trary-shaped clusters in any dataset D and at the 
same time can handle noise or outliers effectively. 
The core point in DBSCAN refers to such point 
that its neighborhood of a given radius (EPS) has to 
contain at least a minimum number (Minpts) of 
other points. The procedure for finding a cluster is 
based on the fact that a cluster can be determined 
uniquely by any of its core points. To find a cluster, 
DBSCAN starts from an arbitrary point p and re-
trieves all density-reachable points in D (i.e. there 
exists a chain of directly density-reachable points, 
which means a point is contained in the 
neighborhood of the core point sequentially) from 
p wrt EPS and Minpts. When p is a border point and 
none point is density-reachable from p, then p is 
assigned to noise temporarily. Then DBSCAN 
handles the next point in dataset D. Retrieval of 
density-reachable points is performed in a succes-
sive region query. A region query returns all points 
intersecting a specified threshold efficiently with 
R*-trees. Before clustering a dataset, R*-tree must 
be built (Ester et al., 1996). However, the proce-
dure has very high time cost in the whole clustering 
process and excessive consumption of memory of 
I/O to great extent although it reduces the time cost 
of DBSCAN to O(nlogn), there is a huge amount of 
unnecessary search and waste of space resource. 
Furthermore, DBSCAN cannot correctly distin-
guish the density-skewed clusters in a dataset, 
which can be illustrated as follows. Let us see Fig.1 
that shows a dataset holding 5 clusters with dif-
ferent densities and between-cluster distances. The 
two clusters on the left side are dense, and the other 
two clusters on the right side are sparse. If we 
choose the EPS value in terms of densities on the  

 
 
 
 
 
 
 
 
 
 

right side, DBSCAN will merge the three clusters 
into one cluster. Otherwise, if the EPS value is 
chosen according to the densities of clusters on the 
left side, the two clusters on the right will be dis-
rupted into multiple smaller clusters or outliers. 
Under such circumstances, there is no global EPS 
with which DBSCAN can aggregate the dataset 
correctly. However, if we partition the dataset into 
two parts such that the three dense clusters on the 
left side is held in the left partition and the two 
sparse clusters on the right are within the right par-
tition, and cluster the two partitions separately, then 
a satisfactory clustering result can be obtained. 
Therefore, partitioning dataset is favorable as far as 
clustering efficiency is considered. Unfortunately, 
the partitioning technique is not easy exercise either. 
In fact, after partitioning the dataset, merging and 
synthesis of the partitioned sub-clusters with dif-
ferent EPS values must be done. The problem is that 
how and when to partition. In this paper, we shall 
give different treatments for different points to solve 
the above difficulty, and use Greedy algorithm and a 
careful merging condition instead of the corre-
sponding components in DBSCAN. 
 
 
CLUSTERING APPROACH BASED ON GDBSC- 
AN 
 

The GDBSCAN algorithm includes the following 
main steps  

1. Retrieving core points based on the procedure 
of determining EPS in (Ester et al., 1996); 

2. Enhancing the effect of core points with 
higher densities by using larger EPS and reducing 
the effect of core points with lower densities by 

Fig.1  Five density-skewed clusters 
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Fig.2  Function of core points of two clusters 
(a) Source dataset; (b) Skeleton structure 

 

       (a)                                      (b) 
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using lower EPS;  
3. Finding subclusters with the least number 

based on Greedy algorithm; 
4. Merging all subclusters to get final clusters 

by designing carefully the merging condition. We 
shall detailedly illustrate the procedure in the fol-
lowing sections. 
 
Retrieving core points with lower EPS 

In order to obtain core points, we predeter-
mine EPS by the existing procedure (Yue et al., 
2004) in any dataset D with their distance space S 
which consists of all different distances of arbitrary 
two point D; thus the EPS is the top (δ2/(4c) 2

nC  
minimal distances in S, and let the set of all these 
distances be S1; c is the number of clusters in D; n 
is number of points and δ is determined by a drift 
speed (Nakamura and Kehtarnavaz, 1998). After 
ordering all points in D, we retrieve points one by 
one according to their presence frequency in S1 till 
no core point is found. However, considering that 
there are density-skewed clusters, i.e., the highest 
density of some clusters may only attain the den-
sity of border points of some other clusters, as 
shown in Fig.1, so that we must take lower EPS 
than the one of [δ2/(4c) 2

nC ] to ensure that a core 
point in any cluster can be found at least, which is 
necessary for finding a cluster in DBSCAN. In 
general, core points are located in the dense area in 
D instead of in the overlapped area of different 
clusters. It is clear that all clustering prototypes 
must be contained in core points. Intuitively, core 
points act as “skeleton structure” of each cluster 
because all core points are closer to the “interior” 
of each cluster than other points. When the core 
points are determined, then the belongingness of 
other points can easily be determined. For example, 
we can arrange any of them by the belongingness 
of the nearest core point from it. 

Fig.2 shows intuitively “skeleton structure” 
consisting of core points in two clusters where 
those red points and connected line show the 
course of forming two arbitrary-shaped clusters. In 
the following, we let ρj be the set of core points in 
the neighborhood of any core point xj with the EPS 

and (ρj) being the set of ρj, j=1,2,…,J. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Determine radii of core points by density 

In order to distinguish different points with dif-
ferent densities, we redefine the neighborhood radius 
of the jth point xj, j=1, 2, …, J in D instead of EPS by 
the point number in its neighborhood, obtaining  
 

 , | | / , 1,2,..., ,j j j jd RD EPS RD j Jρ ρ= ⋅ = =   (1) 
 

where RDj is a relative density coefficient and ρ  is 

average value of | ρj | for all ρj∈{ρj}. Clearly, when 
|jρ ρ> , RDj >1, it means this point locates in the 

larger density area in D. Inversely, when | |jρ ρ< , 

RDj <1, it means this point locates in the sparse area 
in D. Therefore, different points get different radii 
due to their different densities in D. This procedure 
means that the effects of the points with higher 
densities are enhanced and the points with lower 
densities are masked, and is consistent with the 
demand of classifying all core points as well. We 
renew constructing each ρj∈{ρj} with dj, j=1, 2, …, 
J  and turn to the next subsection. 
 
Greedy algorithm in GDBSCAN 

Now we use the core points of number as small 
as possible such that each point is contained in one 
member of {ρj} at least. The condition aims at re-
ducing the repeated search and waste of I/O memory 
in DBSCAN, and can be characterized by the fol-
lowing two conditions that 
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(1) find a group of ρj, j=1, 2, …, J with the 
least number of {ρj} in D, and 

(2) each core point is contained in at least one 
member of {ρj}. 

Having gotten ρj, j=1, 2, …, J, the arbi-
trary-shaped clusters can be constructed by the 
linkage of neighborhood of these core points. In-
stead of the clustering procedure by R*-tree in 
DBSCAN which is time-consuming and repeated 
search, we use the classical Greedy algorithm for 
this purpose. It can be formulated by finding a 
group of finite members in {ρj} with least number 
subject to overspread all the points in D, the group 
of members is called formally covers in this paper. 
We calculate the average sample number of the 
group of covers denoted by {ρj | j = 1,2,…,m},  
 

* * *
1 2

1 2

...
...

m

m

minpts minpt minpt
mean

d d dρ
+ + +

=
+ + +

,  (2) 

 
where meanρ is the average sample number in all 

covers; *
kptmin  is the sample number in 

neighborhood ρk with dk. The smaller m is, the 
larger is meanρ. Thus in order to approach those 
points with larger densities, we must find the 
smallest m. Namely, the idea is to find the minimal 
number of covers that overspread all samples, 
which is a classical cluster vertex cover (VC) 
problem (Thshihiro, 2000). Although this is an 
NP-hard problem, thus there are several Greedy 
algorithms that can effectively solve it (Skieyca, 
1990). 

The original formulation of the VC problem is  
 

min{ , {0,1} }j j
j

w s s Σ

∈Σ

≥ ∈∑ s A b ,        (3)           

 
where Σ is the set of covers; and sj is the charac-
teristic vector; wj is cost associated with Σ which is 
always 1.0 in our algorithm; A is 0-1 matrix and 
b=1. The solution of the VC problem yields c~  
points and let them be related one-to-one to 
c~ subclusters consisting of the points inside ρk, 

ck ~,...,2,1= each. Greedy  algorithm  is  shown  in 

Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Merging condition among subclusters 

After the above steps, we obtain the least 
number of covers ρ1, ρ2, …, ρ c to overspread all the 
samples. It is clear that every cover must be a part of 
a cluster; now the problem is which of them come 
from same cluster and which come from different 
clusters; in other words, which pair of them should 
(and which pair should not) be merged in the garden? 
As a fundamental principle, if two sets of aggre-
gating points come from the same cluster, their 
intersection is no empty set and the density of points 
in their intersection must match the densities of two 
sets by themselves. On the other hand, we notice that 
the density distribution in D can be assumed as 
normal distribution with the mean of sample densi-
ties µ and variance δ being defined by  
 

      
2

2
1 ( )( , ) exp{ }

22
xf µµ δ
δδ
−

= −
π

                 (4) 

 
and shown in Fig.1. There are turning points at x=µ 
±δ, and f(µ, δ) is a convex function when x∈(µ−δ, 
µ+δ), otherwise is concave function so that the value  

Table 1  Greedy algorithm 
 

Label the covers in D with ρ′, for j=1, 2, …, J.  
Mark ρ′ as un-visited. Construct  
{ρj} by di, i = 1,2,…,n. 
Initialize the characteristic vector s={0}k,  
Let { }anchorρ′ be maximal.  

S{anchor}=1, 
Mark anchorρ′ as visited. 

While existing Φ is a set of un-visited covers that have 
the joint element with anchorρ′ , 

FOR all elements in Φ, 
      IF proneerρ′ ∈Φ and anchor vectorρ ρ′ ′∩ is minimal; 

S[proneer]=1; 

Mark proneerρ′ as visited; 

Replace the index of anchorρ′ as proneerρ′ ; 

END IF 
END FOR 

END WHILE 
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of the function is rapidly decreasing. According to 
the notation, the merging condition is presented as 
follows. Let two sets of aggregating points move 
their positions until they intersect and finally their 
centers overlap. If the overlapping centers appear 
then two sets will be merged into a cluster without 
question, yet a puzzling problem appears in the 
case of intersecting. On what level two sets of 
aggregating points should intersect each other is 
just regarded as the boundary line for partitioning 
or merging, but this problem has no acceptable 
benchmark (Halkidi et al., 2002). Notice that if two 
sets of aggregating points come from the same 
cluster, then their intersection will not be an empty 
set and the density of their intersection must match 
themselves. Thus we first find the point with the 
largest density in the intersection (e.g., point P in 
Fig.3a in a 2-dimensional dataset); and find points 
A and B which have respectively the largest den-
sity shown by AC and BD in the two sets. Since the 
cluster distribution is assumed to be normal dis-
tribution in probability, then A, B, C, D are in the 
same plane. Let ζ be a crossing point of lines AD 
and CB, and compare the height of P with that of ζ. 
If the former is larger then two sets are merged, or 
else are partitioned. This can be shown in Fig.3b 
and 3c. Finally, the procedure of GDBDCAN 
based on the above several phases is shown in 
Table 2. 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
TIME COST OF GDBSCAN 
 

The time cost of GDBSCAN algorithm in-
cludes mainly three parts: searching core points by 
EPS equation and calculating the radii of each core 
point; implementing Greedy algorithm; imple-
menting merge condition. In the last two parts, the 
first part is very low. Greedy algorithm needs only 
finite steps when scanning the dataset, so its time 
cost is far less than that of O(nlogn) in DBSCAN. 
On the other hand, the time cost of merging per-
formance is far less than that of the O(nlogn) since 
the subcluster number is least in Greedy algorithm. 
Furthermore, if the time-consumed in deleting the 
outlier is disregarded, we can observe that its time 
cost is far less than that of O(nlogn) as well. In total, 
the time cost of GDBSCAN is less than that of 
DBSCAN. 
 
 
EXPERIMENTS 
 
Distinguishing density-skewed clusters 

Let us use GDBSCAN for the example shown 
in Fig.1. We use lower EPS in order that a core point 
at least of each cluster can be found. According to 
the new merging condition, we can easily distin-
guish them intuitively because there exists almost 
equal density difference between C1 and C2 or C1 
and C3 as that between C4 and C5. Therefore, all five 
clusters can be found correctly. This means that we 
can use a single EPS to distinguish them. 
 
Test of time complexity and space complexity 

This experiment is used to check the time cost 
and effectiveness of GDBSCAN. The source dataset 
is similar to the five clusters aforementioned in Fig. 
1 yet exist in 8-dimensional space with 10000, 
20000 and 30000 samples respectively, in which 

Table 2  GDBSCAN algorithm 
 

FOR  Every neighborhood of core point ρi in {ρi}. 
            Find all subclusters or covers. 

Call the Greedy algorithm procedure for finding 
least number of covers. 

Call the merging condition to form final clusters.
END FOR 

Fig.3  Illustration of merging condition 
(a) Projection of density function; (b) Larger overlap 

density; (c) Smaller overlap density 
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there exist not only density-skewed clusters but 
also different ratios of noises. They contain 
respectively 11, 22 and 30 clusters. Table 3 gives 
the clustering results from GDBSCAN and 
DBSCAN algorithm showing that DBSCAN can-
not achieve usually correct results. On the contrary, 
satisfactory clustering result is obtained with 
GDBSCAN algorithm at less time cost and higher 
accuracy than GDBSCAN. This experiment was 
performed on PC-586 by C++ program. 

 
 
 
 
 
 
 
 
A robotic application 

Robotic navigation (See web address) in-
cludes sensing scene interpretation and collision 
avoidance of stationary and moving points in the 
robot’s neighborhood. A robot is often expected to 
navigate in unknown environment and hence must 
interpret and understand the environment from its 
sensor readings, when the robot employs range 
sensors for probing the environment. Fig.4a shows 
an environment with 5 points and a circular in 
shape navigating robot and Fig.4b is its point cloud  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

representation obtained by projecting raw sensor 
data onto a global reference frame. Operations such 
as extracting the endpoints and centers of the points 
from the point cloud representation becomes man-
datory in situations requiring point tracking, motion 
prediction and maneuvering past moving points. 
They also become essential for classifying points as 
stationary or moving from the characteristics of the 
point cloud cluster that represents the points. Evi-
dently the nature of the point cloud represents points 
to a clustering based solution for extracting the point 
centers and its other attributes such as the border set. 
Since sensor data is in general error prone and out-
lier ridden due to various grounds, the need for 
robust clustering algorithm appears inevitable, so 
GDBSCAN algorithm is used in this paper. 
DBSCAN and PCM (Krishnapuram and Keller, 
1993) which are often used for clustering in a 
dataset with outliers are employed simultaneously. 
The corresponding results are shown in the second 
column and third column. The calculation course 
and simulation results are as follows. Simulations 
are run on the sensory data obtained by navigating a 
robot in the Fig.4c environment containing 4 sta-
tionary points. Two transient points initially at po-
sitions ‘a’ and ‘b’ marked with arrows start moving 
away from the robot. Range data corresponding to 
these two transient points appear as outliers at lo-
cation ‘a’ and ‘b’ in the point cloud representation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Clustering quality comparison: DBSCAN vs 
GDBSCAN 
 

Name                              GDBSCAN/DBSCAN 
Noise ratio                         13%            23%               33% 
Run-time (sec.)             13.4/78.3     21.7/106.5     43.36/178.5
Missing number              230/334      270/1022         397/2089
Maximal memory (M)      1.3/2.9       3.5/7.8              4.9/8.2 

 

Fig.4  Simulation course of robotic model 

Table 4  Comparison of maximal, minimal and average error of GDBCCAN , DBSCAN and PCM 
GDBCCAN DBSCAN PCM 

Out. Min 
Err. 

Max 
Err. 

Ave. 
Err. BD% Min

Err. 
Max
Err. 

Ave.
Err. BD% Min

Err. 
Max 
Err. 

Ave. 
Err. BD%

0 0.705 3.010 1.502 0% 1.232 3.186 1.576 0% 1.116 3.227 1.132 0% 
15 9.13 10.17 10.15 35% 10.35 18.05 11.12 0% 10.10 28.97 18.86 8% 
30 10.98 52.22 22.23 56% 12.65 53.12 21.69 14% 12.20 45.67 33.54 19% 
45 15.01 53.54 24.67 46% 14.88 53.47 36.77 27% 15.17 55.67 30.98 52% 
60 16.98 56.97 33.45 57% 20.55 54.33 37.82 54% 19.88 54.12 39.17 57% 
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shown in Fig.4d and can hinder accurate extraction 
of the points’ features. Another source of noise is 
sensor misreading at the corner formed at the 
meeting point of the two points marked as ‘c’ in 
Fig.4d. At the corners, due to the phenomenon of 
multiple reflections, the range readings at times are 
higher than the usual value and appear as outliers at 
location ‘c’ in Fig.4. Thus the simulation environ-
ment of Fig.4 has three sources of outliers and 
DBSCAN algorithm is run over varying number of 
outliers. The results are tabulated for 5, 10 and 15 
and 20 outliers at each of the three locations. The 
number of data points for each of the points was 
limited at 40. A number of runs were performed for 
each algorithm with random initializations for a 
given number of outliers. The minimum, maximum 
and average error over these runs measured through 
the square norm distance for a given number of 
outliers are reported in 3 columns for each version 
of DBSCAN and PCM in Table 4. The breakdown 
percentage (BP) (Krishnapuram and Keller, 1998) 
is in the fourth column. By breakdown we mean 
informally that the estimate of the prototype during 
that run has become completely unreliable. The 
table suggests that while the minimum error for the 
DBSCAN algorithm is marginally ahead of the 
other two algorithm versions; the percentage 
breakdown is far less for the GDBSCAN in the 
paper when compared with the standard version for 
5 and 10 numbers of outliers at each location. 
Thereby the average error by GDBSCAN is lower 
than that of DBSCAN. However as the number of 
outliers increases, the fidelity of all the three ver-
sions decreases sharply and makes them unreliable. 
It is to be noted that the outliers are placed in such 
a position the algorithms can be tricked to form an 
erroneous cluster’s center settling right in the 
middle between the two locations of outliers. This 
phenomenon is shown in Fig.4e with the erroneous 
cluster shown by a line and its center indicated by 
an arrow. The propensity for the algorithms to fall 
into this trap increases as the number of outliers at 
that location increases that to serve as attractor or 
sink for one of the four prototypes to be estimated. 
Ones can judge that the high average square error 
increase in noise of all these algorithms may be due 

to this factor. 
 
 
CONCLUSION 
 

In this paper, although GDBSCAN is mainly 
used in 2-dimensional space, it is easy to be im-
plemented in higher 2−10 dimensional space as well. 
However, it has the same problem as DBSCAN, 
namely, they are difficult to be implemented in the 
above 10-dimensional space (Dash et al., 2001; Han, 
2001) 

The clustering method is of two types at pre-
sent: one handles directly the data in the dataset, 
another indexes data space by B-tree, R*-tree, and 
so on. The latter has less time cost but more space 
cost than the former. We do not evaluate which of 
them takes first place since this problem should be 
decided by users through the resource that they 
possess and the clustering task they face.   

GDBSCAN is more efficient since Greedy al-
gorithm execute a scan in only finite steps. A robotic 
navigation and two artificial experiments have been 
verified from several viewpoints. How can we 
identify whether a dataset has density-skewed 
clusters? Our research showed that when there exist 
density-skewed clusters, GDBSCAN gives lower 
minimum of clustering validity index, and we think 
that the conclusion is inevitable. However, there do 
not exist a clustering method that can do everything, 
GDBSCAN not excepted. In fact, some assumptions 
in this paper do not hold for arbitrary circumstances. 
Establishing an adaptive and less assumptions 
clustering algorithm would be promising work for 
our future concern. 
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