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Abstract:    This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is 
used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm 
is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of 
Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. 
Experiments showed the effectiveness of such improvements on chaotic time series modeling. 
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INTRODUCTION 
 

Chaos is based on the principle that simple 
deterministic laws can exhibit complex external 
behavior (Hegger and Kantz, 2000); although it is 
quite difficult to reveal such simple laws from the 
system’s external behavior only. This is mainly due 
to the dissipation and sensitivity to initial condi-
tions (SIC) properties of the chaotic systems (Wei 
et al., 2002). Linear system theory has developed 
for many years, but has proved to be incapable of 
sufficiently modeling the chaotic time series. The 
identification and modeling of nonlinear systems is 
still a very active field of research at present. 

Artificial Neural Networks (ANN) and Poly-
nomials (Jian and Zheng, 2002) are two methods for 
global modeling. But they both cannot give simple 
and elegant model representations. Essentially 
speaking, they are more appropriate to be regres-

sion and approaching tools than to be modeling 
tools. They are less powerful in revealing the sys-
tem dynamic laws and are difficult to be integrated 
with the pre-discovered knowledge on chaotic 
systems. Generic Programming (GP) (Pan et al., 
1998) proposed in this paper is integrated with 
Nonlinear Time Series Analysis (NTSA) to model 
the chaotic time series. A prototype named GPM is 
implemented by mix-programming of C++ and 
MATLAB. The NTSA results not only guide the 
evolution of GPM, but also give the final criteria of 
the model quality according to chaotic system in-
variants instead of generally used mean square error 
(MSE). Particle Swarm Optimization (PSO) tech-
nique is introduced in GPM to overcome the dif-
ficulty of Nonlinear Parameter Estimation (NPE) of 
dynamic model structures, which can reduce the 
computations and improve the efficiency of GPM. 

This paper is organized as follows: Section 2 
introduces the architecture design of GPM; Section 
3 gives the detail descriptions of the GP-based 
chaotic modeling techniques in GPM; Section 4 
gives several modeling examples and summarizes 
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some modeling experiments, and finally Section 5 
presents the conclusion. 
 
 
ARCHITECTURE OF GPM 
 

The GPM is implemented with C++ and 
MATLAB. The data flow is illustrated in Fig.1. 

Generally, there should be some stationary 
validation and noise reduction steps on the actual 
measured time series before further analysis. GPM 
uses wavelets analysis to filter the non-stationary 
trends and noises. The results of GPM may not 
converge if there is too much noise in the time 
series. Then the time series should be analyzed by 
NTSA techniques to reveal the necessary informa-
tion such as the embedding dimension m, the largest 
Lyapunov exponent λ  and the maximum prediction 
length L on the chaotic system. This information 
will further guide the evolution of the GP’s mod-
eling process. The GP here is responsible for ex-
ploring appropriate model structures. The unknown 
parameters in the model are estimated  through  the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NPE module. Usually the GPM will output a group 
of candidate models, so we should examine these 
models to select the best one.  

Fig.2 illustrates the organization and hierarchy 
of each module in GPM. 
 
 
PRINCIPLE AND DETAIL DESCRIPTION OF 
GPM 
 

Model structure selection and model parame-
ter estimation are two fundamental problems in 
system identification fields. Generally, the model-
ing process will assume some kinds of model 
structure, then further efforts focus on model re-
finement and parameter estimation, for example, 
the ARMA modeling and polynomial modeling 
(Jian and Zheng, 2002). But these methods are less 
effective when dealing with nonlinear chaotic sys-
tems because of the dissipation and SIC property. 
Chaotic systems usually contain positive feedback 
components, delay components or interaction 
components. The ordinary model structures are usu- 
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ally less powerful in expressing such models. Fur-
thermore, these methods tend to be diverged and the 
results are too complex when the input dataset be-
comes large. So we had better explore more func-
tion space to get better models for chaotic systems, 
especially for those models with simple expressions. 
This can be achieved through genetic programming 
in GPM.  

The next problem after establishing the model 
structure is the model parameter estimation. Since 
the model structures generated by GPM are highly 
dynamic and usually nonlinear, they are difficult 
for most of the classical parameter estimation al-
gorithms to be used. So the PSO algorithm (Ken-
nedy and Eberhart, 1995; Shi and Eberhart, 1998) is 
introduced to assume this duty. It has relatively less 
computation than other random algorithms such as 
GA.  

 
Genetic programming 

Genetic Programming (GP) is responsible for 
searching appropriate model structures in the 
function space. In GPM, each model is represented 
as a symbol tree structure (Koza, 1990). The leaf 
nodes are selected from Terminator Set (TS), and 
the internal nodes are selected from Function Set 
(FS). The model expression can be generated 
through the tree’s first-order traverse algorithm. 
Essentially speaking, the maximum model space 
explored is the span of both function set and ter-
minator set. The process of modeling is mainly the 
search process in this span space for appropriate 
models.  

In GPM, TSmax={CONSTANT, X}, FSmax={add, 
multiply, sub, divide, cos, sin, acos, exp}. X denotes 
the independent variables and CONSTANT denotes 
the constant coefficient in the model. For a specific 
problem, we can choose the operators that have the 
most ability to express system dynamics according 
to our knowledge of the system.  

Some GP modeling systems introduced z op-
erator, namely, the delay operator (Leung and Va-
radan, 2002; Varadan and Leung, 2001), to increase 
the model dimensions, which can enhance the 
model ability in expressing complex behaviors. In 
fact, the dimension information can be analyzed 

approximately through NTSA techniques. 
The GP operators are designed as follows (Pan 

et al., 1998): 
a) Initialize: the process of GP individual’s 

initialization is essentially the process of tree ran-
dom generation. Half of the individuals are gener-
ated according to the depth-first principle, and the 
others are generated according to width-first prin-
ciple. Some pre-defined patterns can also be added 
into the initial population to improve the modeling 
efficiency.  

b) Crossover: the crossover operator involves 
two parent trees. Firstly, two crossover points are 
selected randomly in the parents respectively, then 
the two offsprings are generated by exchanging the 
two sub-trees rooted with the crossover points.  

c) Mutate: Similar to the crossover operator, 
one mutation point must be chosen in the tree 
randomly at first. If the mutation point is a leaf node, 
do the following operations in equal probability: 
replace the current node with another valid termi-
nator operator in TS or replace the current node with 
a randomly generated tree. While, if the mutation 
point is not a leaf node, do the following in equal 
probability: remove the sub-tree rooted as the mu-
tation point and replace it with a terminator op-
erator, or remove the sub-tree and replace it with a 
randomly generated tree.  

 
Nonlinear parameter estimation of dynamic 
models 

Since a good model structure may be dimin-
ished or even die out in GP’s evolution due to im-
proper parameters, GPM separates the process of 
parameter estimation from model exploring in order 
to match the models with their appropriate pa-
rameter values. The model formula with unknown 
parameters is generated from the tree structure 
according to the following rules:  

a) The model formula is generated from the 
tree structure according to first-order tree travers-
ing; 

b) Each function operator and terminator op-
erator can be attached with a multiplicative coeffi-
cient as the model parameter; 

c) If the terminator is a CONSTANT operator, 
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then replace CONSTANT with a model parameter. 
No additional multiplicative coefficient should be 
attached;  

d) If the function operator is linear such as plus, 
minus, multiply and divide, no additional coeffi-
cients should be attached, because such coefficients 
are redundant when considering their child nodes.  

 
 
 
 
 
 
 
 
 

 
For example, the model formula generated 

from the tree structure in Fig.3 is: plus(times(mi-
nus(A(1)*X(1), A(2)), A(3)*X(1)), A(4)). In GPM, 
X(k) denotes delaying the input series to k time 
units. 

Different from the NPE algorithms on known 
model structure, the model formula generated in 
GPM is highly dynamic. Furthermore, improper 
model structures may be generated during the 
process of crossover and mutation. Even the ap-
propriate model structures may generate improper 
output because of invalid input or parameter values. 
They all lead to the difficulties of parameter esti-
mation in GPM. The Particle Swarm Optimization 
(PSO) algorithm (Kennedy and Eberhart, 1995; Shi 
and Eberhart, 1998) is introduced in GPM in order 
to get better parameter values to overcome such 
difficulties.  

PSO is a kind of group intelligence algorithm 
like GA (Xie et al., 2003). Each individual in PSO 
is represented as a flying particle without volume in  

 
 
 
 
 
 
 
 

the parameter space. The particle can adjust its 
flying speed and directions according to its own 
history and the group’s experience. Compared with 
the classical GA algorithm, the PSO usually em-
ploys small population (4−30) and fewer genera-
tions (usually<200). Moreover, the PSO is rela-
tively simple and can be efficiently implemented, 
which can reduce the computations and improve the 
performance of GPM.  
 
Evaluating the model output 

After being given the model structure, the pa-
rameter values and the model input, we can parse 
the model formula and evaluate its output. For 
simplicity and efficiency, we still adopt the mean 
square error (MSE) as the criterion to judge the 
model quality during GP’s evolution. In addition, 
the traditional GP-based modeling methods can 
only deal with small datasets, because the noise in 
the model input tends to cause the modeling results 
to diverge when the input dataset becomes large. 
For chaotic systems, the SIC property enhances 
such trends. The chaotic nature allows only 
short-term prediction of future values of the model 
output (Kantz and Schreiber, 1997). In order to deal 
with large datasets and their chaotic nature, we 
adopt multi-stage prediction (Fig.4) to calculate the 
model output series. 

Essentially the model output series in GP is the 
concatenation of the prediction values with model 
input draw-out from the original measured series. 
Since the largest Lyapunov exponent λ describes 
the diverging rate of chaotic trajectories, the 
maximum prediction length L can be estimated 
approximately as L≈1/λ (Lv et al., 2002). Consid-
ering the chaotic property SIC, the value of L can be 
extended moderately larger than 1/λ when the model 
input series has high precision and little noise.  
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Evaluation of genetic individuals 
The individual evaluating strategies decide the 

GP evolution directions. In GPM, the fitness value 
of individual i is calculated as follows: 
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cision(i)) makes the individuals with small preci-
sion values have high fitness. It can also smooth the 
large fluctuations of model precisions, which can 
improve the GP’s effectiveness. α(h) is a tuning 
parameter, with its value decided by the tree depth h. 
It controls the model complexity and makes the 
GPM tend to search for those models with simpler 
structures.  
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where h′ denotes the expected model tree depth. 
The default value is h′=2.5. When the depth is 
larger than 4, the exponential gene 2h−2 will further 
punish the individual in order to decrease the model 
complexity.  
 
Model comparison  

Can the established model faithfully reflect the 
system dynamics or not? Most of the modeling 
methods prove this equivalence through the dif-
ference of model output series and expected output 
series, for example, the MSE criterion. But for 
chaotic systems, the established model should not 
only approach the expected output series under 
specific initial values, but also should have the 
same dynamic properties as that of the model input 
series. So it is necessary to introduce some chaotic 

system’s invariants as the criteria of model quality. 
Here, the largest Lyapunov exponent λ and the 
correlation dimension D are chosen to serve as such 
criteria. They can be estimated from time series 
directly (Rosenstein et al., 1993).  

 
Selection of candidate models 

Usually, GP can generate a group of models to 
be further investigated. In addition, the best model 
output by GP may not be the best one that reflects 
system dynamics well because of the noise, bias and 
system’s internal complexity. So we should select 
the most appropriate model from GP’s outputs. The 
model should reveal the system dynamics and the 
chaotic nature as stated in Section “Model com-
parison”. The selection process is essentially the 
process of judging which model is the best one to fit 
the system dynamics. Different from the model 
output calculation in Section “Evaluating the model 
output”, the model output series here is generated 
by iterative calculation to arbitrary length from any 
valid initial values. If the model output has similar 
chaotic invariants as the measured series does, we 
can determine that this model reflects the chaotic 
dynamics well.  
 
 
MODELING EXPERIMENTS AND 
DISCUSSION 
 
Logistic series modeling 

The Logistic map 
 
x(n)=rx(n−1)(1−x(n−1))   x∈(0, 1), n∈N 

 
is a typical discrete chaotic map. It exhibits com-
plex behaviors when r>3.5699. This experiment 
investigates the performance of GPM modeling 
from known chaotic systems. The model input se-
ries are generated from the logistic map with r=4 
and initial value x(0)=0.2 (Fig.5a). The length of 
the series is 10000 so that it is long enough to es-
timate the chaotic invariants. The reconstruction 
delay τ, embedding dimension m, correlation di-
mension D, and the largest Lyapunov exponent λ, 
can be estimated from the logistic series respec-
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tively as 8, 4, 3.13 and 0.51. Thus the maximum 
prediction length is about L≈1/λ≈2 steps. Because 
this series has high data precision and S/N ratio, the 
L can be set a bit longer. In this experiment it is set 
to 3. Considering that most chaotic systems are 
governed by their internal low-dimensional laws, 
and the embedding dimensions m estimated from 
time series tend to be larger than the modeling di-
mension necessary, we can try the modeling dimen- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sion from small values first. It is first set to 1 in the 
experiment.  

Table 1 lists the candidate models found by 
GPM on logistic series. The GP population size M=5, 
maximum generation Gen=10, the crossover prob-
ability Pc=0.8, the mutation probability Pm=0.6, the 
expected tree depth h′=2.5, function set FS={plus, 
minus, times}, and terminator set TS={CONSTANT, 
X(1)}. These individuals are selected because they 
have relatively high fitness values, and they contain 
the nonlinear structure that may exhibit chaotic 
behaviors. For high efficiency, the PSO-NPE al-
gorithm embedded in GP usually has fewer parti-
cles and generations. We can increase the particle 
count and generations in the model-selection stage 
to get better results. For example, the estimated 
parameter set of model 4 in Table 1 is A={10.0000, 
−10.0000, 0.3993} which uses 20 particles and 80 
generations, and the MSE between expected output 
and model output is as low as 0.0739. The model's 
output and the differences between actual output and 
expected output are illustrated in Figs. 5b and 5c 
respectively. The model formula can be re-organized 
as x(n)=3.993x(n−1)(1−x(n−1)), which is quite 
similar to the logistic model above. The model 
series also has similar Lyapunov exponent 0.54 as 
the original series has. This fact confirms the model 
4 can reveal logistic dynamics. In addition, the 
parameter set in model 3 after elaborate estimation is 
A={−8.2138, −4.7130, 1.1438, 4.0018}, and 
MSE=0.0704. The model can be re-organized as 
x(n)=4.0018x(n−1)−4.0042x2(n−1). It is also equiva- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Candidate models of logistic series 
 

 Candidate models (Parameter value ignored) 
1 plus(times(minus(A(1)*X(1), A(2)), A(3)*X(1)), A(4)) 
2 plus(times(minus(A(1)*X(1), A(2)), A(3)), A(4)*X(1)) 
3 plus(times(minus(A(1)*X(1), A(2)*X(1)), A(3)*X(1)), A(4)*X(1)) 
4 times(plus(A(1), A(2)*X(1)), A(3)*X(1)) 
5 plus(times(minus(A(1)*X(1), A(2)*X(1)), plus(A(3), A(4))), A(5)*X(1)) 
6 times(plus(A(1), A(2)*X(1)), times(plus(A(3), A(4)*X(1)), A(5)*X(1))) 
7 times(plus(A(1), plus(A(2), A(3)*X(1))), times(plus(A(4)*X(1), A(5)*X(1)), minus(A(6)*X(1), A(7)*X(1)))) 
8 times(plus(A(1), A(2)*X(1)), plus(A(3)*X(1), A(4))) 
9 plus(minus(A(1)*X(1), A(2)), minus(A(3)*X(1), A(4)*X(1))) 

A denotes the parameter vector, X denotes the independent variable, and “plus”, “times”, “minus” denote the arithmetic operator “+”, “*”,   
“−” respectively 

Fig.5  Model’s expected output series (a), actual output
series (b), and their differences (c) 
The model output is generated according to multi-stage
prediction algorithm in Section “Evaluating the model
output”. The maximum prediction length L=3, model di-
mension m=1 

   
   

  X
′−

X 
   

   
   

   
   

   
   

   
   

  X
′  

   
   

   
   

   
   

   
   

   
  X

 



Zhang et al. / J Zhejiang Univ SCI   2004 5(11):1432-1439 1438

lent to the logistic model. So the GPM can recon-
struct correct models successfully from logistic se-
ries.  

 
Chebyshev series modeling 

The chaotic Chebyshev-map (Leung and Va-
radan, 2002) is as follows: 

 
x(n)=cos(1.8cos−1(x(n−1))) 

 
In order to investigate the effect of GPM with noisy 
input, we pollute the Chebyshev series with white 
noise up to SNR=35 db. The best model achieved by 
the LS-GP algorithm (Leung and Varadan, 2002) 
with such input after 51 generations is:  
 

x(n)=1.9832cos(0.6545x(n)+0.0183sin−1x(n−3)) 
 

Leung and other authors improved the standard 
LS-GP to ILS-GP and got the following results 
(Leung and Varadan, 2002): 
 

x(n)=1.0025cos(1.8003cos−1(1.0000x(n))) 
 

For the same data set, GPM can rapidly converge to 
the optimal model structure: 
 

x(n)=A(1)cos(A(2)cos−1(A(3)x(n−1))) 
 

The parameter set estimated by PSO is A={0.9954, 
1.8024, 1.0000}. So we conclude that GPM can get 
satisfactory results with moderately noise-polluted 
input series. This is mainly because GPM integrates 
the results of NTSA. The system’s information such 
as the system dimension and the maximum predic-
tion length can be analyzed in advance. So we need 
not depend on the modeling algorithm to “search 
and try” the appropriate dimensions; thus the effi-
ciency and accuracy can be improved. 
 
Some experience on GPM parameter tuning and 
modeling 

Different from other global modeling method 
such as ANN, the GPM can easily integrate known 
knowledge and experience about the system, so that 
it can get better modeling results. Another advan-

tage is that the GPM may find simple and elegant 
model expressions. But the quality of final results 
depends heavily on the GPM parameters. Correct 
and exact knowledge on system dimension, model 
structure pattern, maximum prediction length, op-
erators in FS and TS and the quality of the initial 
population will be beneficial for improving the 
modeling quality.  

During the early stage, GPM may generate 
large number of invalid models and some mean-
ingless trivial models. But they will be decreased 
under appropriate evaluation strategies. Editing 
operator can help to reduce the number of “illegal” 
individuals. Avoiding too complex structure can 
also be of some help because complex structures 
have relatively higher probability to be “illegal”. 
Furthermore, the simple models are often superior 
to complex models in revealing system dynamic 
laws.  

The nonlinear parameter estimation of the dy-
namical structures is another difficulty in GPM, 
because the estimation algorithms often encounter 
senseless model output such as invalid value, in-
finity output, etc. Besides these, the searching 
ranges of parameter space also affect the NPE re-
sults, especially under nonlinear and chaotic con-
ditions.  

In most cases, the population size and evolution 
generation need not to be too large. Most of the 
above experiments have population size of 10−30 
and generation number of 10−50. This is because 
the GPM emphasize model space exploring. It does 
not require the last population to converge to the 
strived for optimal model. As described in Section 
3.5, the optimal model of GP under the criterion of 
MSE may not be the most appropriate model.  
 
 
CONCLUSION 
 

Chaos is based on the principle that simple 
deterministic laws can generate complex behaviors. 
GPM provides a “try-and-test” method to reveal 
simple laws in the model space from the system’s 
external measurements. It can get simple model 
expressions and can easily integrate known system 
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knowledge. The experiment results on chaotic data 
series proved that the GPM can find appropriate 
models successfully. The models have similar 
system invariants as the measured series indicates, 
which shows the effectiveness of this method. 
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