
Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1432

Genetic programming-based chaotic time series modeling*

ZHANG Wei (张 伟)†, WU Zhi-ming (吴智铭), YANG Gen-ke (杨根科)
(Department of Automation, Shanghai Jiaotong University, Shanghai 200030, China)

†E-mail: zhang_wi@sjtu.edu.cn

Received Sept. 18, 2003; revision accepted Dec. 12, 2003

Abstract: This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is
used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm
is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of
Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models.
Experiments showed the effectiveness of such improvements on chaotic time series modeling.

Key words: Chaotic time series analysis, Genetic programming modeling, Nonlinear Parameter Estimation (NPE), Particle

Swarm Optimization (PSO), Nonlinear system identification
doi:10.1631/jzus.2004.1432 Document code: A CLC number: TN914

INTRODUCTION

Chaos is based on the principle that simple
deterministic laws can exhibit complex external
behavior (Hegger and Kantz, 2000); although it is
quite difficult to reveal such simple laws from the
system’s external behavior only. This is mainly due
to the dissipation and sensitivity to initial condi-
tions (SIC) properties of the chaotic systems (Wei
et al., 2002). Linear system theory has developed
for many years, but has proved to be incapable of
sufficiently modeling the chaotic time series. The
identification and modeling of nonlinear systems is
still a very active field of research at present.

Artificial Neural Networks (ANN) and Poly-
nomials (Jian and Zheng, 2002) are two methods for
global modeling. But they both cannot give simple
and elegant model representations. Essentially
speaking, they are more appropriate to be regres-

sion and approaching tools than to be modeling
tools. They are less powerful in revealing the sys-
tem dynamic laws and are difficult to be integrated
with the pre-discovered knowledge on chaotic
systems. Generic Programming (GP) (Pan et al.,
1998) proposed in this paper is integrated with
Nonlinear Time Series Analysis (NTSA) to model
the chaotic time series. A prototype named GPM is
implemented by mix-programming of C++ and
MATLAB. The NTSA results not only guide the
evolution of GPM, but also give the final criteria of
the model quality according to chaotic system in-
variants instead of generally used mean square error
(MSE). Particle Swarm Optimization (PSO) tech-
nique is introduced in GPM to overcome the dif-
ficulty of Nonlinear Parameter Estimation (NPE) of
dynamic model structures, which can reduce the
computations and improve the efficiency of GPM.

This paper is organized as follows: Section 2
introduces the architecture design of GPM; Section
3 gives the detail descriptions of the GP-based
chaotic modeling techniques in GPM; Section 4
gives several modeling examples and summarizes

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

* Project (Nos. 60174009 and 70071017) supported by the National
Natural Science Foundation of China

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1433

some modeling experiments, and finally Section 5
presents the conclusion.

ARCHITECTURE OF GPM

The GPM is implemented with C++ and
MATLAB. The data flow is illustrated in Fig.1.

Generally, there should be some stationary
validation and noise reduction steps on the actual
measured time series before further analysis. GPM
uses wavelets analysis to filter the non-stationary
trends and noises. The results of GPM may not
converge if there is too much noise in the time
series. Then the time series should be analyzed by
NTSA techniques to reveal the necessary informa-
tion such as the embedding dimension m, the largest
Lyapunov exponent λ and the maximum prediction
length L on the chaotic system. This information
will further guide the evolution of the GP’s mod-
eling process. The GP here is responsible for ex-
ploring appropriate model structures. The unknown
parameters in the model are estimated through the

NPE module. Usually the GPM will output a group
of candidate models, so we should examine these
models to select the best one.

Fig.2 illustrates the organization and hierarchy
of each module in GPM.

PRINCIPLE AND DETAIL DESCRIPTION OF
GPM

Model structure selection and model parame-
ter estimation are two fundamental problems in
system identification fields. Generally, the model-
ing process will assume some kinds of model
structure, then further efforts focus on model re-
finement and parameter estimation, for example,
the ARMA modeling and polynomial modeling
(Jian and Zheng, 2002). But these methods are less
effective when dealing with nonlinear chaotic sys-
tems because of the dissipation and SIC property.
Chaotic systems usually contain positive feedback
components, delay components or interaction
components. The ordinary model structures are usu-

Nonlinear time series analysis (NTSA)

Stationary validation
noise reduction

Genetic programming
(model generation, model

output calculation and
model evaluation

Model
selection

Nonlinear parameter
estimation (NPE)

Measured
series

Time series X

 Maximum
prediction length

Dimension Delay Dimension, Lyapunov exponent
and other system invariants

X Models
Final
model

Model structure Parameter values

Fig.1 Architecture of GPM

Fig.2 Organization and hierarchy of each module in GPM

GPM Center Control (C++)

Init (Matlab)
initialization preprocessing

Evaluate (Matlab)
GP individual evaluation

Report (Matlab)
model selection and output

NTSA (Matlab)
nonlinear time series analysis

NPE (Matlab)
nonlinear parameter estimation

GenModelOutput (Matlab)
generate model output series

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1434

ally less powerful in expressing such models. Fur-
thermore, these methods tend to be diverged and the
results are too complex when the input dataset be-
comes large. So we had better explore more func-
tion space to get better models for chaotic systems,
especially for those models with simple expressions.
This can be achieved through genetic programming
in GPM.

The next problem after establishing the model
structure is the model parameter estimation. Since
the model structures generated by GPM are highly
dynamic and usually nonlinear, they are difficult
for most of the classical parameter estimation al-
gorithms to be used. So the PSO algorithm (Ken-
nedy and Eberhart, 1995; Shi and Eberhart, 1998) is
introduced to assume this duty. It has relatively less
computation than other random algorithms such as
GA.

Genetic programming

Genetic Programming (GP) is responsible for
searching appropriate model structures in the
function space. In GPM, each model is represented
as a symbol tree structure (Koza, 1990). The leaf
nodes are selected from Terminator Set (TS), and
the internal nodes are selected from Function Set
(FS). The model expression can be generated
through the tree’s first-order traverse algorithm.
Essentially speaking, the maximum model space
explored is the span of both function set and ter-
minator set. The process of modeling is mainly the
search process in this span space for appropriate
models.

In GPM, TSmax={CONSTANT, X}, FSmax={add,
multiply, sub, divide, cos, sin, acos, exp}. X denotes
the independent variables and CONSTANT denotes
the constant coefficient in the model. For a specific
problem, we can choose the operators that have the
most ability to express system dynamics according
to our knowledge of the system.

Some GP modeling systems introduced z op-
erator, namely, the delay operator (Leung and Va-
radan, 2002; Varadan and Leung, 2001), to increase
the model dimensions, which can enhance the
model ability in expressing complex behaviors. In
fact, the dimension information can be analyzed

approximately through NTSA techniques.
The GP operators are designed as follows (Pan

et al., 1998):
a) Initialize: the process of GP individual’s

initialization is essentially the process of tree ran-
dom generation. Half of the individuals are gener-
ated according to the depth-first principle, and the
others are generated according to width-first prin-
ciple. Some pre-defined patterns can also be added
into the initial population to improve the modeling
efficiency.

b) Crossover: the crossover operator involves
two parent trees. Firstly, two crossover points are
selected randomly in the parents respectively, then
the two offsprings are generated by exchanging the
two sub-trees rooted with the crossover points.

c) Mutate: Similar to the crossover operator,
one mutation point must be chosen in the tree
randomly at first. If the mutation point is a leaf node,
do the following operations in equal probability:
replace the current node with another valid termi-
nator operator in TS or replace the current node with
a randomly generated tree. While, if the mutation
point is not a leaf node, do the following in equal
probability: remove the sub-tree rooted as the mu-
tation point and replace it with a terminator op-
erator, or remove the sub-tree and replace it with a
randomly generated tree.

Nonlinear parameter estimation of dynamic
models

Since a good model structure may be dimin-
ished or even die out in GP’s evolution due to im-
proper parameters, GPM separates the process of
parameter estimation from model exploring in order
to match the models with their appropriate pa-
rameter values. The model formula with unknown
parameters is generated from the tree structure
according to the following rules:

a) The model formula is generated from the
tree structure according to first-order tree travers-
ing;

b) Each function operator and terminator op-
erator can be attached with a multiplicative coeffi-
cient as the model parameter;

c) If the terminator is a CONSTANT operator,

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1435

then replace CONSTANT with a model parameter.
No additional multiplicative coefficient should be
attached;

d) If the function operator is linear such as plus,
minus, multiply and divide, no additional coeffi-
cients should be attached, because such coefficients
are redundant when considering their child nodes.

For example, the model formula generated

from the tree structure in Fig.3 is: plus(times(mi-
nus(A(1)*X(1), A(2)), A(3)*X(1)), A(4)). In GPM,
X(k) denotes delaying the input series to k time
units.

Different from the NPE algorithms on known
model structure, the model formula generated in
GPM is highly dynamic. Furthermore, improper
model structures may be generated during the
process of crossover and mutation. Even the ap-
propriate model structures may generate improper
output because of invalid input or parameter values.
They all lead to the difficulties of parameter esti-
mation in GPM. The Particle Swarm Optimization
(PSO) algorithm (Kennedy and Eberhart, 1995; Shi
and Eberhart, 1998) is introduced in GPM in order
to get better parameter values to overcome such
difficulties.

PSO is a kind of group intelligence algorithm
like GA (Xie et al., 2003). Each individual in PSO
is represented as a flying particle without volume in

the parameter space. The particle can adjust its
flying speed and directions according to its own
history and the group’s experience. Compared with
the classical GA algorithm, the PSO usually em-
ploys small population (4−30) and fewer genera-
tions (usually<200). Moreover, the PSO is rela-
tively simple and can be efficiently implemented,
which can reduce the computations and improve the
performance of GPM.

Evaluating the model output

After being given the model structure, the pa-
rameter values and the model input, we can parse
the model formula and evaluate its output. For
simplicity and efficiency, we still adopt the mean
square error (MSE) as the criterion to judge the
model quality during GP’s evolution. In addition,
the traditional GP-based modeling methods can
only deal with small datasets, because the noise in
the model input tends to cause the modeling results
to diverge when the input dataset becomes large.
For chaotic systems, the SIC property enhances
such trends. The chaotic nature allows only
short-term prediction of future values of the model
output (Kantz and Schreiber, 1997). In order to deal
with large datasets and their chaotic nature, we
adopt multi-stage prediction (Fig.4) to calculate the
model output series.

Essentially the model output series in GP is the
concatenation of the prediction values with model
input draw-out from the original measured series.
Since the largest Lyapunov exponent λ describes
the diverging rate of chaotic trajectories, the
maximum prediction length L can be estimated
approximately as L≈1/λ (Lv et al., 2002). Consid-
ering the chaotic property SIC, the value of L can be
extended moderately larger than 1/λ when the model
input series has high precision and little noise.

.1.plus
.2.times

.3.minus
.4.X(1)
.4.constant

.3.X1
.2.constant

Fig.3 Tree representation of a GP individual

Initial value Initial value Initial value

Prediction value Prediction value
Prediction

value …

… Actual measured series

Model output series

Expected output series

Fig.4 Evaluating model output with multi-stage prediction

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1436

Evaluation of genetic individuals
The individual evaluating strategies decide the

GP evolution directions. In GPM, the fitness value
of individual i is calculated as follows:

1() / ()
1 ()

fitness i h
precision i

α=
+

where
1

ˆ() [() ()],
n

k

precision i x k x k
=

= −∑ which de-

notes the model precision, {x(k), k=1,2,…,n} is the
model input series and ˆ{ (), 1,2,... }x k k n = is the
model output series. The transformation 1/(1+pre-
cision(i)) makes the individuals with small preci-
sion values have high fitness. It can also smooth the
large fluctuations of model precisions, which can
improve the GP’s effectiveness. α(h) is a tuning
parameter, with its value decided by the tree depth h.
It controls the model complexity and makes the
GPM tend to search for those models with simpler
structures.

2abs() / 2 4

() abs() 4 2
abs() else

hh h h
h h h h

h h
α

−′ − ≥
 ′= − × ≤
 ′− 

where h′ denotes the expected model tree depth.
The default value is h′=2.5. When the depth is
larger than 4, the exponential gene 2h−2 will further
punish the individual in order to decrease the model
complexity.

Model comparison

Can the established model faithfully reflect the
system dynamics or not? Most of the modeling
methods prove this equivalence through the dif-
ference of model output series and expected output
series, for example, the MSE criterion. But for
chaotic systems, the established model should not
only approach the expected output series under
specific initial values, but also should have the
same dynamic properties as that of the model input
series. So it is necessary to introduce some chaotic

system’s invariants as the criteria of model quality.
Here, the largest Lyapunov exponent λ and the
correlation dimension D are chosen to serve as such
criteria. They can be estimated from time series
directly (Rosenstein et al., 1993).

Selection of candidate models

Usually, GP can generate a group of models to
be further investigated. In addition, the best model
output by GP may not be the best one that reflects
system dynamics well because of the noise, bias and
system’s internal complexity. So we should select
the most appropriate model from GP’s outputs. The
model should reveal the system dynamics and the
chaotic nature as stated in Section “Model com-
parison”. The selection process is essentially the
process of judging which model is the best one to fit
the system dynamics. Different from the model
output calculation in Section “Evaluating the model
output”, the model output series here is generated
by iterative calculation to arbitrary length from any
valid initial values. If the model output has similar
chaotic invariants as the measured series does, we
can determine that this model reflects the chaotic
dynamics well.

MODELING EXPERIMENTS AND
DISCUSSION

Logistic series modeling

The Logistic map

x(n)=rx(n−1)(1−x(n−1)) x∈(0, 1), n∈N

is a typical discrete chaotic map. It exhibits com-
plex behaviors when r>3.5699. This experiment
investigates the performance of GPM modeling
from known chaotic systems. The model input se-
ries are generated from the logistic map with r=4
and initial value x(0)=0.2 (Fig.5a). The length of
the series is 10000 so that it is long enough to es-
timate the chaotic invariants. The reconstruction
delay τ, embedding dimension m, correlation di-
mension D, and the largest Lyapunov exponent λ,
can be estimated from the logistic series respec-

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1437

tively as 8, 4, 3.13 and 0.51. Thus the maximum
prediction length is about L≈1/λ≈2 steps. Because
this series has high data precision and S/N ratio, the
L can be set a bit longer. In this experiment it is set
to 3. Considering that most chaotic systems are
governed by their internal low-dimensional laws,
and the embedding dimensions m estimated from
time series tend to be larger than the modeling di-
mension necessary, we can try the modeling dimen-

sion from small values first. It is first set to 1 in the
experiment.

Table 1 lists the candidate models found by
GPM on logistic series. The GP population size M=5,
maximum generation Gen=10, the crossover prob-
ability Pc=0.8, the mutation probability Pm=0.6, the
expected tree depth h′=2.5, function set FS={plus,
minus, times}, and terminator set TS={CONSTANT,
X(1)}. These individuals are selected because they
have relatively high fitness values, and they contain
the nonlinear structure that may exhibit chaotic
behaviors. For high efficiency, the PSO-NPE al-
gorithm embedded in GP usually has fewer parti-
cles and generations. We can increase the particle
count and generations in the model-selection stage
to get better results. For example, the estimated
parameter set of model 4 in Table 1 is A={10.0000,
−10.0000, 0.3993} which uses 20 particles and 80
generations, and the MSE between expected output
and model output is as low as 0.0739. The model's
output and the differences between actual output and
expected output are illustrated in Figs. 5b and 5c
respectively. The model formula can be re-organized
as x(n)=3.993x(n−1)(1−x(n−1)), which is quite
similar to the logistic model above. The model
series also has similar Lyapunov exponent 0.54 as
the original series has. This fact confirms the model
4 can reveal logistic dynamics. In addition, the
parameter set in model 3 after elaborate estimation is
A={−8.2138, −4.7130, 1.1438, 4.0018}, and
MSE=0.0704. The model can be re-organized as
x(n)=4.0018x(n−1)−4.0042x2(n−1). It is also equiva-

Table 1 Candidate models of logistic series

 Candidate models (Parameter value ignored)
1 plus(times(minus(A(1)*X(1), A(2)), A(3)*X(1)), A(4))
2 plus(times(minus(A(1)*X(1), A(2)), A(3)), A(4)*X(1))
3 plus(times(minus(A(1)*X(1), A(2)*X(1)), A(3)*X(1)), A(4)*X(1))
4 times(plus(A(1), A(2)*X(1)), A(3)*X(1))
5 plus(times(minus(A(1)*X(1), A(2)*X(1)), plus(A(3), A(4))), A(5)*X(1))
6 times(plus(A(1), A(2)*X(1)), times(plus(A(3), A(4)*X(1)), A(5)*X(1)))
7 times(plus(A(1), plus(A(2), A(3)*X(1))), times(plus(A(4)*X(1), A(5)*X(1)), minus(A(6)*X(1), A(7)*X(1))))
8 times(plus(A(1), A(2)*X(1)), plus(A(3)*X(1), A(4)))
9 plus(minus(A(1)*X(1), A(2)), minus(A(3)*X(1), A(4)*X(1)))

A denotes the parameter vector, X denotes the independent variable, and “plus”, “times”, “minus” denote the arithmetic operator “+”, “*”,
“−” respectively

Fig.5 Model’s expected output series (a), actual output
series (b), and their differences (c)
The model output is generated according to multi-stage
prediction algorithm in Section “Evaluating the model
output”. The maximum prediction length L=3, model di-
mension m=1

 X
′−

X

 X
′

 X

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1438

lent to the logistic model. So the GPM can recon-
struct correct models successfully from logistic se-
ries.

Chebyshev series modeling

The chaotic Chebyshev-map (Leung and Va-
radan, 2002) is as follows:

x(n)=cos(1.8cos−1(x(n−1)))

In order to investigate the effect of GPM with noisy
input, we pollute the Chebyshev series with white
noise up to SNR=35 db. The best model achieved by
the LS-GP algorithm (Leung and Varadan, 2002)
with such input after 51 generations is:

x(n)=1.9832cos(0.6545x(n)+0.0183sin−1x(n−3))

Leung and other authors improved the standard
LS-GP to ILS-GP and got the following results
(Leung and Varadan, 2002):

x(n)=1.0025cos(1.8003cos−1(1.0000x(n)))

For the same data set, GPM can rapidly converge to
the optimal model structure:

x(n)=A(1)cos(A(2)cos−1(A(3)x(n−1)))

The parameter set estimated by PSO is A={0.9954,
1.8024, 1.0000}. So we conclude that GPM can get
satisfactory results with moderately noise-polluted
input series. This is mainly because GPM integrates
the results of NTSA. The system’s information such
as the system dimension and the maximum predic-
tion length can be analyzed in advance. So we need
not depend on the modeling algorithm to “search
and try” the appropriate dimensions; thus the effi-
ciency and accuracy can be improved.

Some experience on GPM parameter tuning and
modeling

Different from other global modeling method
such as ANN, the GPM can easily integrate known
knowledge and experience about the system, so that
it can get better modeling results. Another advan-

tage is that the GPM may find simple and elegant
model expressions. But the quality of final results
depends heavily on the GPM parameters. Correct
and exact knowledge on system dimension, model
structure pattern, maximum prediction length, op-
erators in FS and TS and the quality of the initial
population will be beneficial for improving the
modeling quality.

During the early stage, GPM may generate
large number of invalid models and some mean-
ingless trivial models. But they will be decreased
under appropriate evaluation strategies. Editing
operator can help to reduce the number of “illegal”
individuals. Avoiding too complex structure can
also be of some help because complex structures
have relatively higher probability to be “illegal”.
Furthermore, the simple models are often superior
to complex models in revealing system dynamic
laws.

The nonlinear parameter estimation of the dy-
namical structures is another difficulty in GPM,
because the estimation algorithms often encounter
senseless model output such as invalid value, in-
finity output, etc. Besides these, the searching
ranges of parameter space also affect the NPE re-
sults, especially under nonlinear and chaotic con-
ditions.

In most cases, the population size and evolution
generation need not to be too large. Most of the
above experiments have population size of 10−30
and generation number of 10−50. This is because
the GPM emphasize model space exploring. It does
not require the last population to converge to the
strived for optimal model. As described in Section
3.5, the optimal model of GP under the criterion of
MSE may not be the most appropriate model.

CONCLUSION

Chaos is based on the principle that simple
deterministic laws can generate complex behaviors.
GPM provides a “try-and-test” method to reveal
simple laws in the model space from the system’s
external measurements. It can get simple model
expressions and can easily integrate known system

Zhang et al. / J Zhejiang Univ SCI 2004 5(11):1432-1439 1439

knowledge. The experiment results on chaotic data
series proved that the GPM can find appropriate
models successfully. The models have similar
system invariants as the measured series indicates,
which shows the effectiveness of this method.

References
Hegger, R., Kantz, H., 2000. Practical Implementation of

Nonlinear Time Series Methods, The TISEAN Soft-
ware Package Online Documentation. http://www.
mpiipks-dresden.mpg.de/~tisean.

Jian, X.C., Zheng, J.L., 2002. A chaotic global modeling
method based on orthogonal polynomials. Acta Elec-
tronica Sinica, 30(1):76-78.

Kantz, H., Schreiber, T., 1997. Nonlinear Time Series
Analysis. Cambridge University Press.

Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimiza-
tion. Proc IEEE Int. Conf on Neural Networks,
p.1942-1948.

Koza, J.R., 1990. Genetic Programming, A Paradigm for
Genetically Breeding Populations of Computer Pro-
grams to Solve Problems. Stanford University Report,
Report No. STAN-CS-90-1394, http://www.genetic-
programming.com/jkpubs72to93.html#anchor484765.

Leung, H., Varadan, V., 2002. System Modelling and Design

Using Genetic Programming. The 1st IEEE Interna-
tional Conference on Cognitive Informatics, Banff,
Canada.

Lv, J.H., Lu, J.N., Chen, S.H., 2002. Nonlinear Time Series
Analysis and Applications. Wuhan University Press,
Wuhan (in Chinese).

Pan, Z.J., Kang, L.S., Chen, Y.T., 1998. Evolutionary
Computation. Tsinghua University Press and Guangxi
Scientific and Technology Press (in Chinese).

Rosenstein, J.R., Collins, J.J., Luca, C.J., 1993. A practical
method for calculating largest Lyapunov exponents
from small data sets. Physica D, 65:117-134.

Shi, Y.H., Eberhart, R., 1998. A Modified Particle Swarm
Optimizer. Proc IEEE Int. Conf on Evolutionary
Computation, p.69-73.

Varadan, V., Leung, H., 2001. Reconstruction of polyno-
mial systems from noisy time series measurements
using genetic programming. IEEE Trans. Industrial
Electronics, 48(4):742-748.

Xie, X.F., Zhang, W.J., Yang Z.L., 2003. Overview of
particle swarm optimization. Control and Decision.
18(2):129-134 (in Chinese).

Wei, R., Lu, J.G., Li, J., Wang, Z.Q., 2002. A new wavelet
model for identification of discrete chaotic systems
and qualitative analysis of model. Acta Electronica
Sinica, 30(1):73-75.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

