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Abstract:    Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired 
results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of 
fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at 
last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and 
spoilage risk. The satisfactory results obtained did not require much computation effort. 
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INTRODUCTION 
 

Long well known industrial beer fermentation 
is usually carried out in open loop conditions, using 
a predefined and empirically established tempera-
ture profile. The off-line measurement of the wort 
density, which is well correlated to the fermentable 
sugar concentration, is widely used on industrial 
scale for monitoring the fermentation. However, for 
optimization of operational conditions and process 
control purposes, we need a mathematical model 
for accurately simulating the industrial process 
under different operational conditions. There is no 
steady state in the process, and model equations are 
generally non-linear. 

Further work based on the model is finding an 
optimal or pseudo-optimal operation regime, which 
calls for an efficient algorithm to fulfill this purpose. 
Ant algorithm is a new general-purpose heuristic 
algorithm, which was first applied in TSP (Trav-
eling Salesman Problem) problems, inspired by the 

behavior of real ant colonies, in particular, by their 
foraging behavior. It is a population-based ap-
proach using positive feedback as well as greedy 
search. The effectiveness of its different versions as 
powerful tools for solving complicated optimiza-
tion problems was demonstrated in a number of 
applications (Dorigo et al., 2002), which gave us 
inspiration to apply it in dynamic process optimi-
zation problems. 

In order to implement ant algorithm in 
optimization appropriately, two aspects should be 
taken into consideration:  

1) Selecting a suitable version of ant algorithm 
(Ant Colony System-ACS algorithm was finally 
adopted in this paper);  

2) Adapting algorithm to the specific 
optimization problem with some revisions to the 
original one. Enough attention should be paid to 
the stochastic greedy rule (the state transition rule) 
and the pheromone updating rule, which are the 
essences of the algorithm. The optimization of the 
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process (in forms of some mathematical equations) 
has been accomplished with the help of MATLAB, 
which is a high-performance language for tech-
nical computing.  

 
 

PROCESS DESCRIPTION AND MATHEMATIC- 
AL MODEL 
 

Beer fermentation exhibits complex charac-
teristics. During the process, sugars are converted 
to ethanol. Without mechanical stirring, tempera-
ture is the most important manipulated intervention 
in the process. Low temperature makes the process 
time-consuming, and high temperature accelerates 
the process greatly. The later one (above 15 °C) will 
cause the loss of some ethanol efficiency, and 
multiply the risk of spoilage. Some byproducts 
(especially ethyl acetate and diacetyl), in addition 
to ethanol, are produced depending on temperature. 
They must be constrained within certain limits, in 
order to eliminate bad effects on flavor and aroma. 
The brewery uses a specific temperature profile 
(which is often confidential) to drive the process.  

This work is aimed at finding an optimized 
temperature profile characterized by good ethanol 
efficiency, no spoilage risks, and being not over the 
concentration limits of ethyl acetate and diacetyl. 
For this purpose, a useful kinetic model 
(Andres-Toro et al., 1998) was adopted.  

It should be noted that there is a heating circuit 
in the experimental set-up, because the model pa-
rameter values were calculated from the experi-
mental data obtained under isothermal runs (al-
though the same model can be applied at the 
non-isothermal pilot plant scale). To keep a con-
stant temperature, it is essential to have both 
cooling and heating circuits. However, in many 
breweries, fermentation tanks only have cooling 
circuits, so the increase of temperature relies on the 
heat released by the biochemical process itself. A 
conclusion can be drawn from this fact that if the 
optimized temperature profile could be used in real 
plants, it should obey the rule that once the tem-
perature has been decreased, it cannot go up again 
(Increase Once Rule, in short). Because the tem-

perature increase cannot be controlled in plants in 
the later parts of the fermentation process.  

 
 

OPTIMIZATION PROBLEM STATEMENT 
 

The optimization of fermentation process is a 
multi-objective optimization problem. An objective 
function used to evaluate how good the fermenta-
tion is, should take time and efficiency criteria, 
together with some constrains, into consideration. 
The original one (Andres-Toro et al., 1997a) is a 
group of five functions; each of them has a 
sub-objective. To make values of functions com-
parable, some modifications to the original 
sub-objective parameters were done: 

Ethanol production must be as high as possi-
ble: 

Function I: 
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Diacetyl and ethyl acetate concentration 
should be limited: 

Functions II and III: 
 

J3= −5.73×exp(11×Cdy(t)−11.51)            (9)                        
    J4= −1.16×exp(6.7×Cea(t)−66.77)              (10) 
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in which Cdy(t) and Cea(t) can be calculated from the 
next two functions: 
 

ea s
eas

d ( ) d ( )
( )

d d
C t C t

Y
t t

= −                  (11) 

      dy
dy s act ab dy e

d ( )
( ) ( ) ( ) ( )

d
C t

C t X t C t C t
t

µ µ= −     (12)                              

 
Spoilage risk along the process: 
Function IV: 
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Brisk changes in temperature should be pe-

nalized: 
Function V: 
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Grouping all the five functions: 
 
                     Jmax=J1+J2+J3+J4+J5                      (15)

                                         
The value obtained depends on the tempera-

ture profile applied by the brewery along the fer-
mentation process. That means a dynamic optimi-
zation problem: the objective function should be 
maximized by the application of a certain tem-
perature profile. 

For the application of ant colony system al-
gorithm, the format of this objective function has to 
be changed: 

 
 Jmin=CONS−Jmax                         (16) 

 
where CONS (CONS>Jmax) is a positive integer, and  
Jmin should be minimized. In addition, the tem-
perature profile obtained should obey the Increase 
Once Rule. 

 
 

OPTIMIZATION WITH ANT COLONY SYSTEM 
ALGORITHM 
 

Ant colony optimization (ACO) is a particular 

successful research direction in ant algorithm. Ant 
colony system (ACS) algorithm, one version of 
ACO, was introduced by Dorigo and Gambardella 
(1997) to improve the performance of Ant System 
(Dorigo et al.,1996), that was able to find good so-
lutions for only small TSP problems within a rea-
sonable time. The ACS differs from AS in three 
main aspects: 1) the state transition rule provides a 
direct way to achieve balance between exploration 
of new edges and exploitation of a prior and accu-
mulated knowledge on the problem; 2) the global 
updating rule is applied only to edges which belong 
to the best tour; 3) while ants construct a solution, a 
local pheromone updating rule (local updating rule, 
for short) is applied to shuffle the tours. In this way 
ants will make better use of pheromone information. 
These three modifications enable ACS to solve large 
problems effectively. With about 160 nodes for ants 
to visit, ACS algorithm has been chosen to deal with 
this optimization problem. 

To apply ACS algorithm, a piecewise ap-
proximation of the temperature profile by a series 
of breakpoints is made. The breakpoints in a tem-
perature profile are the visited nodes in an ants’ tour, 
and are regularly spaced, every one hour. Between 
each time interval, the temperature is constant. 
Integer numbers between 0 °C and 16 °C are used to 
represent temperature and fixed fermentation time 
is 160 hours. Until now, the construction graph is 
clear. There are 161 nodes for each ant to build a 
complete tour (a temperature profile). Each node 
will be the integer temperature value at the end of 
each time interval. At the beginning of each time 
interval, an ant will decide the temperature in the 
next time interval. After this kind of discretization, 
Jmin and other parameter values can be easily cal-
culated at each end of the time intervals according 
to 16 equations listed above. 

Fig.1 is an industrial temperature profile 
(Andres-Toro et al., 1998). If the process follows 
this trajectory, and CONS is set as 1000 (this value 
is decided according to some literature and it should 
be bigger than the suggested maximal value of Jmax), 
values of Jmin along the process are shown in Fig.2 
showing that the value of Jmin decreases as time 
goes on. So it is feasible to minimize Jmin by ACS 
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approach. Here Jmin is like tour length in TSP 
problems, and the only difference is that Jmin in-
creases negative values along the tour construction.  

Informally, ants search the optimal tempera-
ture profile as follows: m ants are initially posi-
tioned on (t(0), T(0)): it represents coordinate in 
construction graph, in which X axis represents time 
and Y axis represents temperature. Here, t(0) is the 
beginning of the first time interval, and next time 
interval begins at t(1). That means there are 161 X 
axis coordinates: t(i), i=0,1,…, 160. Using 10 °C 
(T(0) set as this value) as the beginning of the so-
lution is recommended by the industrial tempera-
ture profile shown in Fig.1. When the program goes 
into the inner loop, each ant begins to build a tour (a 
feasible temperature profile). Take an ant k 
(k=1,2,…,m) for example, if it is now in node r: 
(t(i),T(i)), i=0,1,…,160, it should choose the next 
node s: (t(i+1), T(i+1)) to move to. There are 17 
choices available: (t(i+1), 0), (t(i+1), 1), (t(i+1), 
2), …, (t(i+1), 16). N(r) is the set consisting of these 
choices. Jmin(i+1, j), j=0,1,…,16, can be easily 
calculated. Each of them corresponds to a choice of 
node (t(i+1), j). Then the state transition rule is 
applied: 
 

( ) 0arg max { ( , )[ ( , )] }   if  
                                                 otherwise
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where τ(r, u) is the amount of pheromone trail on 
edge. There are 160 time intervals, and in each of it, 
a matrix (17×17) is used to record the intensity of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the trail. η(r, u) is a heuristic function given by the 
next Eq.(18):      
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where J= min min( 1, ) [ , ( )]J i j J i T i+ − . 

β is a parameter which weighs the relative 
importance of pheromone versus heuristic value. q 
is a value chosen randomly with uniform probabil-
ity in [0,1], q0 (0≤q0≤1) is a parameter, and S is a 
random variable selected according to the distri-
bution given by Eq.(19), which gives the probabil-
ity with which an ant in node r choose the node s to 
move to. 
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While building a solution, ants visit nodes and 

change their amount of pheromone trail by applying 
the following local updating rule: 
 

 τ(r, s)←(1−ρ)τ(r,  s)+ρ∆τ(r, s)            (20)                        
 

where ρ (0<ρ<1) is the pheromone decay parameter. 
∆τ(r, s)=τ0 is the initial pheromone level.  

After all ants had completed their tours, global 
updating is performed. The pheromone amount is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Objective function value along the process
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updated by applying the follow global updating rule. 
To simplify the problem, global updating rule only 
apply to those tours that once belonged to the 
global-best-tour: 

 
τ(r, s)←(1−α)τ(r,  s)+α⋅(Jmin gb)−1 

                   if (r, s)∈global-best-tour            (21) 
 

0<α<1 is the pheromone decay parameter, and 
Jmin gb is the Jmin value of the global best temperature 
profile from the beginning of the trail. 

A version of ant colony system algorithm for 
this case is rapidly developed by MATLAB lan-
guage. 

Initial tests were done with recommended 
parameter settings (Dorigo and Gambardella, 1997): 
m=10; β=2; q0=0.9; α=ρ=0.1; CONS=1000; 
τ0=(161×(1000−541.5504))−1; iteration number=5. 
After several runs, the parameter β changes to 4; q0 
changes to 0; iteration number changes to 10. With 
these parameters, a promising temperature profile 
has been achieved. 

                 
    

RESULTS AND DISCUSSION 
 

The temperature profile obtained using ACS 
algorithm for the selected parameters in this paper 
is shown in Fig.3. This jagged profile calls for a 
smoothing process. This process can be done by 
means of average calculation for every 40 hours of 
the obtained temperature profile. Four new tem-
perature values are obtained and placed in the cen- 
 
 
 
 
 
 
 
 
 
 
 
 
 

ter point of every time range (40 hours). From 0 to 
20 hours (expressed as [0,20]), the temperature (T) 
is the first mean value (expressed as mean1); 
[20,40], T changes from mean1 to mean2 (straight 
line links this two values); [40,60], T=mean2; 
[60,80], T changes from mean2 to mean2+(mean3− 
mean2)/2; [80,100], T changes from mean2+ 
(mean3−mean2)/2 to mean3; [100,120], T=mean3; 
[120,140], T changes from mean3 to mean4; 
[140,160], T=mean4. Fig.4 shows the final tem-
perature profile, which is suitable for implementa-
tion, obtained after smoothing process. 

Using this smoothed temperature profile, the 
behavior of the kinetic variables of the fermentation 
process model can be shown in Figs.5, 6, 7 and 8. 
Fig.5 illustrates time courses of the total suspended 
biomass and its components: active, latent, and 
dead cells. Fig.6 is the sugar concentration curve, 
Fig.7 is the ethanol concentration curve and Fig.8 
illustrates diacetyl concentration.  

Several runs have been made changing the 
initial parameters related to the ACS algorithm. It is 
not recommended to use a large number of itera-
tions to get “better results”, because of the fol-
lowing reasons: (1) After 20 iterations, Jmin seems 
to be constant in the experiment; (2) More iterations 
means much more time to get satisfactory result; (3) 
Most importantly, the trend of the industrial tem-
perature profile together with Increase Once Rule 
will keep some results out of feasible solutions. So 
it is better to have more runs with moderate itera-
tions in each run than the contrary approach. Ac-
tually, in these runs Jmin are always satisfactory, but 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.3  Optimal temperature profile obtained by ACS
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Fig.4  Smoothed temperature profile 
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Table 1  Comparison table 
 

 Industrial temperature profile
Temperature profile 

obtained by GA 
Temperature profile 

obtained by ACS 
Jmax

 
546.3 585.5214 585.5865 

Computation effort (s)  NA 30.87 
 

sometimes results are infeasible solutions. After 
reviewing all the results, the best temperature pro-
file with minimum Jmin was selected and smoothed 
for feasible implementation. This new temperature 
profile is obtained not only by minimizing the value 
of Jmin, which ensures getting the required ethanol 
level without sacrificing the quality of beer, but 
also by taking application factors into considera-
tion. 

Table 1 shows the results and comparison with 
previous results found in the literature. 
 
 
CONCLUSION 
 

In this paper, with the help of MATLAB lan-  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

guage, ACS algorithm is first applied to the beer 
fermentation process optimization problem. The 
promising results of this work show that the ACS 
approach can compete with the original GA ap-
proach (Andres-Toro et al., 1997a; 1997b; 
Carrillo-Ureta et al., 2001) in terms of solution 
quality and computation speed in this problem and 
indicate the potential of ACS as a reliable and 
useful tool for solving dynamic process optimiza-
tion problems. 

Further work to be done includes: using ACS 
algorithm in continuous spaces without discretiza-
tion approximation; getting a smooth profile 
without an additional smoothing process; and con-
sidering other industrial implementation aspects: 
economic factors, energy management, etc. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Suspended biomass behavior 
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Fig.6  Time course of sugar concentration
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Fig.7  Time course of ethanol concentration
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Fig.8  Time course of diacetyl concentration
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Appendix B 
 
ACS algorithm: 
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Loop   /* at this level each loop is called an iteration*/ 
   Each ant is positioned on a starting node 

 Loop   /* at this level each loop is called a step*/ 
Each ant applies a state transition rule to incrementally build a solution 

                              and a local pheromone updating rule 
               Until all ants have built a complete solution 
                A global pheromone updating rule is applied 

Until  End_condition 

Table 2  Nomenclature used
 

Parameter Description Unit Parameter Description Unit 
Xact Suspended active biomass g/L  µlag Specific rate of activation h−1 
Xhg Suspended lag biomass g/L  µx Specific yeast growth rate h−1 
Xsd Suspended dead biomass g/L  µdt Inhibition rate of yeast growth  h−1 

Xinc(0) Inoculum value: 4 g/L  µs Substrate consumption rate h−1 
Ce(t) Ethanol concentration g/L  ks Sugar inhibition parameter g/L 
Cs(t) Sugar concentration g/L  f Fermentation inhibitor factor  
Cea(t) Ethyl acetate concentration 10−6  µe Ethanol production rate h−1 
Cdy(t) Diacetyl concentration 10−6  Yeas Ethyl acetate coefficient rate  
Cs0(t) Initial sugar concentration value: 130 g/L  µdy Diacetyl appearance rate  

t Time H  µab Diacetyl reduction rate  
T Temperature  °C  µsd Specific yeast settling down rate h−1 


