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Abstract:    Clustering, as a powerful data mining technique for discovering interesting data distributions and patterns in the 
underlying database, is used in many fields, such as statistical data analysis, pattern recognition, image processing, and other 
business applications. Density-based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) is a good 
performance clustering method for dealing with spatial data although it leaves many problems to be solved. For example, 
DBSCAN requires a necessary user-specified threshold while its computation is extremely time-consuming by current method 
such as OPTICS, etc. (Ankerst et al., 1999), and the performance of DBSCAN under different norms has yet to be examined. In 
this paper, we first developed a method based on statistical information of distance space in database to determine the necessary 
threshold. Then our examination of the DBSCAN performance under different norms showed that there was determinable relation 
between them. Finally, we used two artificial databases to verify the effectiveness and efficiency of the proposed methods. 
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INTRODUCTION 
 

Clustering, groups database data into meaningful 
subclasses in such a way that minimizes the in-
tra-differences and maximizes the inter-differences of 
these subclasses, is one of the most widely studied 
problems in data mining. Clustering technique is 
applied in many areas, such as statistical data analysis, 
pattern recognition, image processing, and other 
businesses applications. Up to now, many clustering 
algorithms have been proposed, in which famous 
algorithms contributed from the database community 
include classical k-NN (Han, 2001), DBSCAN 
(Ankerst et al., 1999), CURE (Guha et al., 1998), 
STING (Zhang et al., 1997), CLIGUE (Agrawal et al., 

1998), WAVECLUSTER (Sheikholeslami et al., 
1998), CHAMETEON (Karypos et al., 1993) and 
MSE (Nakamura and Kehtarnavaz, 1998). All these 
algorithms attempt to solve the clustering problems. 
      To apply the DBSCAN algorithm to large-scale 
spatial databases, this work aims 

(1) to develop a method to cope with the open 
problem in DBSCAN algorithm, i.e. a necessary 
density threshold, which still fails to be solved effi-
ciently now; 

(2) to examine the performance of DBSCAN 
under different norms and obtain new insights; 

(3) and based on the above two algorithms, to 
carry out three experiments to demonstrate their effi-
ciency of handling outliers and verify their effec-
tiveness. 

This paper is organized as follows. Section 2 
presents a summary on the DBSCAN algorithm, and 
analyzes its limitations and drawbacks when dealing 
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with large-scale databases. A method for determining 
the necessary density threshold is developed in Sec-
tion 3. Two applications of artificial databases to 
demonstrate these algorithms’ efficiency and effec-
tiveness are given in Section 4. Section 5 presents the 
conclusion. 
 
 
RELATED WORKS 
 
DBSCAN algorithm 

DBSCAN is a clustering algorithm that relies on 
a density-based notion of clusters. It is designed to 
discover the arbitrary-shaped clusters while being 
able to handle noise or outliers effectively. The key 
idea in DBSCAN is that for each data object of any 
cluster, the neighborhood of a given radius (EPS) has 
to contain at least a minimum number (Minpts) of 
objects. We give an overview of the major notions 
related to DBSCAN algorithm as follows (Ester et al., 
1996). 
Definition 1 (directly density-reachable)    An object 
p is directly density-reachable from an object q with 
respect to (wrt) EPS and Minpts in the set of objects D 
if 

(1) p∈NEPS(q) (NEPS(q) is the subset of D con-
tained in the EPS-neighborhood of q). 

(2) Card(NEPS(q))≥Minpts, where Card(⋅) means 
the number of objects in a set. 
Definition 2 (core object and border object)    An 
object is a core object if it satisfies Condition 2 of 
Definition 1, and a border object is such an object that 
is not a core one itself but directly density-reachable 
from another core object. 
Definition 3 (density-reachable)    An object p is 
density-reachable from an object q wrt EPS and 
Minpts in the set of objects D, denoted as ,p Dq>  if 
there exists a chain of objects p1, …, pn, p1=q, pn=p 
such that pi∈D and pi+1 is directly density-reachable 
from pi wrt EPS and Minpts. 
Definition 4 (density-connected)    An object p is 
density-connected to an object q with respect to EPS 
and Minpts in the set of objects D if there exists an 
object o∈D such that both p and q are den-
sity-reachable from o wrt EPS and Minpts in D. 
Definition 5 (cluster)    A cluster C wrt EPS and 
Minpts in D is a non-empty subset of D satisfying the 
following conditions: 

(1) maximality: ∀p, q∈D, if p∈C and q Dp>  
with respect to EPS and Minpts, then also q∈C. 

(2) connectivity: ∀p, q∈C, p is den-
sity-connected to q with respect to EPS and Minpts in 
D. 
Definition 6 (noise)    Let C1, …, Ck be the clusters 
with respect to EPS and Minpts in D, then we define 
the noise as the set of objects in D not belonging to 
any cluster Ci, i.e. noise={p∈D|∀i:p∉Ci}. 

The procedure for finding a cluster is based on 
the fact that a cluster can be determined uniquely by 
any of its core objects: 

(1) Given an arbitrary object p for which the core 
object condition holds, the set { | }o o Dp> of all ob-
jects o density-reachable from p in D forms a com-
plete cluster C and p∈C. 

(2) Given a cluster C and an arbitrary core object 
p∈C, C equals the set { | }.o o Dp>  

To find a cluster, DBSCAN starts with an arbi-
trary object p in D and retrieves all objects of D den-
sity-reachable from p with respect to EPS and Minpts. 
If p is a border object, no objects are den-
sity-reachable from p and p is assigned to noise 
temporarily. Then DBSCAN handles the next object 
in database D. Retrieval of density-reachable objects 
is performed by successive region queries. A region 
query returns all objects intersecting a specified query 
region efficiently by R*-trees. Before clustering the 
database, R*-tree should be built in advance 
(Bechmann et al., 1990).  
       However, there are some DBSCAN algorithm 
problems limiting its applications. Here the most 
fundamental are the following well-known open 
problems: 
P1    DBSCAN requires the user to specify a global 
threshold EPS (Minpts is often fixed to 4 to reduce the 
computational amount). In order to determine EPS, 
DBSCAN has to calculate the distance between an 
object and its kth (k=4) nearest neighbor for all ob-
jects. It sorts all objects according to the previously 
calculated distance and plots the sorted k-dist graph 
from OPTICS (Ankerst et al., 1999). In addition, 
DBSCAN is based on R*-tree or other analogous data 
structures, and calculates the k-dist value on the entire 
database. The two procedures are the most 
time-consuming phases in the whole clustering 
process, but their computational loads are not in-
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cluded in time consumption as in O(nlogn), so the 
actual time consumption of DBSCAN may be larger 
than that of O(nlogn). Clustering procedure is very 
expensive so that it is computationally prohibitive for 
large databases. EPS and Minpts determine a density 
threshold, thus DBSCAN becomes a typical den-
sity-based clustering method. Furthermore, the 
Minpts usually is fixed to 4, thus the density threshold 
is perfectly determined by EPS. 
P2    In most cases, the performance of an existing 
clustering algorithm is different under different norms. 
We have examined the performance of DBSCAN and 
obtained some new insights. 
P3    In fact, a single threshold can hardly distinguish 
all clusters in a large spatial database when there are 
density-skewed clusters. In order to cope with similar 
problems, there exist algorithms such as 
CHAMELETON, etc. adopting different thresholds 
by partitioning the database. Database partitioning is 
favorable for clustering efficiency, but the partition-
ing technique is not easy to implement. After im-
plementing partition for a database, merging and 
synthesizing, partitioned sub-clusters with different 
EPS values should be adopted. This may lead to fur-
ther uncertainty of clustering results when we fail to 
find a clear guidance rule. Furthermore, there appear 
problems on how and when one should partition the 
database.   

In this paper we only focus on P1 and P2, while 
P3 and other problems will be discussed in Yue et 
al.(2004).  

 
Clustering validity and popular norms 

As said before, although DBSCAN algorithm 
can perform the clustering procedure in a database 
with EPS, it still leaves the user with the responsibil-
ity of selecting density thresholds leading to the dis-
covery of acceptable clusters. This is, of course, a 
problem common with many other clustering algo-
rithms. Such threshold settings usually require em-
pirical methods to search for and are difficult to be 
determined, especially when there is no prior 
knowledge of them in real world. 

The problem of how EPS is chosen is closely 
related to what number of clusters is chosen. Once all 
densities of clusters in a database are nearly consis-
tent, the determination of number of clusters will be 
nearly the same for EPS. Motivated by that, we shall 

recall some results on the clustering validity. It is well 
known that the number of clusters is the most im-
portant parameter in the clustering results and de-
termines the structure of the clustering space. In 
contrast to the number of clusters, other parameters 
have second order effects on the clustering results in 
the dataset. In present methods for testing cluster 
validity (Halkidi et al., 2002), it is very difficult to 
evaluate the actual number of clusters in a dataset 
especially when there are arbitrary-shaped clusters 
inside it even though the dataset belongs to low di-
mensional space. Nevertheless, we assume the largest 
density of object in each cluster is approximately 
consistent and discuss the difficulty of distinguishing 
density-skewed clusters in Yue et al.(2004). Now as 
far as DBSCAN is concerned, it is clear that the 
clustering outcome such as the number of clusters, 
prototype locations, and “belongingness” of samples 
are governed by EPS selection. Changing EPS results 
in the migration of prototypes as well as their creation 
and elimination. The fundamental issue addressed 
here is the determination of an optimal scale size of 
EPS in a fast and efficient way. 

In order to supply a benchmark to compare the 
current validity, we recall the notion of lifetime and 
drift speed of the MSE algorithm (Nakamura and 
Kehtarnavaz, 1998), which reflects respectively the 
long lasting or persistent clustering and stability of 
prototypes or reaching a stable state of clusters. Both 
notions are closely related to scale size which is a 
generally the ease EPS. The survival duration of a 
scale-space blob over a range of scales is referred to 
as lifetime. Adopting the same terminology here, the 
term lifetime in MSC algorithm is defined as follows. 
Definition 7 (lifetime τ) 
 

τ=δmax(c)−δmin(c)                                             (1) 
 

where δmax(c) and δmin(c) denote the maximum and 
minimum scale sizes, respectively, with the number 
of clusters c.  

When τ attains its maximal value, the corre-
sponding number of clusters has its optimal value. 
Definition 8 (drift speed ρ) 
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where vip indicates the location of the ith prototype in 
the pth dimension.  

As can be noticed in the above definition, the 
drift speed changes as a result of varying the scale size. 
Drift speed gives an indication of the stability of pro-
totypes. Prototypes are said to reach a stable state 
when their drift speed is minimized. It is therefore 
meaningful to define the locations of prototypes as the 
smallest value of the drift speed. This provides a way 
for obtaining an optimal scale size *δ  as 
 

1* * *
min max: min ( )   [ ( ), ( )]c c

δ
δ ρ δ δ δ δ−= ∀ ∈                (3) 

 
For the special example, DBSCAN is clearly 

governed by the above results, which can be incor-
porated into many clustering algorithms.  

What follows is threshold EPS design detailedly 
discussed in Section 3 below. 
 
 
DETERMINING EPS FROM STATISTICAL INFO- 
RMATION 
 

In this section, we utilize statistical information 
to acquire the density threshold by a fast and efficient 
way.  

 
Main properties of DBSCAN algorithm 

After examining the clustering procedure by 
DBSCAN, we can obtain some conclusions. 
Proposition 1    Given a dataset, there exist the fol-
lowing results: 

1) All core objects with respect to a higher den-
sity threshold or a lower EPS are completely con-
tained in the set of core objects with respect to a lower 
density threshold.  

2) A cluster disappears as EPS increases if and 
only if its core object of largest density disappears.  

3) If two sets of aggregating objects belong to 
the same cluster, there exists at least a core object at 
their intersection. Furthermore, an object Q is an 
outlier of EPS when Card(NEPS(Q))=1; an object Q is 
border object iff 2≤Card(NEPS(Q))<4 and there exists 
a core object in NEPS(Q). 

Results 1) to 3) in Proposition 1 can be deduced 
directly by the procedures of DBSCAN algorithm, 
and they supply guideline for our experiments and 
analysis. We notice that in order to find an optimal 

threshold similar to EPS, the searching procedure in 
CHAMELEON algorithm, etc. should be scanned 
many times in the database. However, if such a gen-
eralized programming for DBSCAN algorithm is 
employed, many more times of scanning are required 
than those in previous case; so that the DBSCAN 
algorithm scarcely has any advantages in time cost. 
Thus, we must perform special searching procedure 
for EPS. 

 
Determination of EPS from statistical analysis 

Some signs are firstly defined as follows. Set D 
consisting of n objects, there exist in total 2

nC  dif-
ferent distances between two arbitrary objects in D 
and let the set of all these distances be S. Following 
this, all distances in S may be decomposed into three 
classes: one consisting of intradistances (i.e., the 
within-cluster distances) and denoted by S1; another 
consisting of interdistances (i.e., the between-cluster 
distances) and denoted by S2, the last consisting of the 
distances to outliers in D and denoted by S3. Clearly, 
S1∪S2⊂S. Now, we expect to detect approximately 
the presence position of optimal EPS with the aid of 
analysis of distance space S on D. Our deduction 
begins with an interesting question, how many intra-
distances are contained in S? Let our analysis below 
answer it. Set D that consists of c clusters with the 
number of points as n1, n2, …, nc in decreasing order; 
then the ratio of the number of intradistances to that of 
interdistances in S is 

 
1

2 1 1

1 1 1
:
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A direct calculation of Eq.(4) rarely gives us the 

generalized conclusion as there may be countless 
combinations of n1, n2, …, nc, so we resort to using an 
arithmetic series to approximate this number group of 
clusters. Let S be an arithmetic series such as a, a−d, 
a−2d, …, a−(c−1)d with tolerance d approximating n1, 
n2, …, nc, where a is the largest number of this series 
and n=c[2a+(c−1)d]/2. Then as a→∞, the limitation 
on the number of intradistances versus that of total 
distances in S, which is the modified version of Eq.(4), 
can be represented as  

 

2 2
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It follows that 
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This result reveals an important fact that relative 

to the total number of distances in S, the number of 
intradistances is by far less than that of interdistances 
when D is a large spatial dataset. Of course, Eq.(5) 
holds only if the distance number of each cluster tends 
to consistence or d→0. However, there exist differ-
ences among all numbers of clusters in general. In 
order that these different cases can be resolved, we set 
d=δa, 0<δ≤1, obtaining 
 

2 2 2 2 2
( 1)

1
lim / [1 ( 1) )] / 4 /(4 )

c

a m d na m
C C c c cδ δ− −→∞ =

= + − ≈∑  

    (6) 
 

For example, in a large dataset with 20 clusters 
and δ=0.2, we approximately obtain results by Eq.(6) 
as 0.01. Now we rearrange all distances in S in in-
creasing order. Most intradistances are smaller than 
interdistances and have closer correlation to EPS than 
the interdistances have. For any point in D, there exist 
equally 2

1nC − distances from it to the rest of the points. 
If we set a threshold ε between maximal distance dmax 

and minimal dmin, then S is partitioned into two sets, 
S1 with smaller distances and S2 with larger ones. We 
can decide that the larger densities of points would 
gain the larger presence frequency in S1; and that most 
members in S1 are intradistances in general. If we let 
the threshold be EPS in DBSCAN, then when the 
presence times of a point are higher than 4, it should 
be a core point, but not a border point or an outlier. 
Thus, determination of an accurate threshold is the 
key to determination of core points. After all, the 
intradistances comprise a trivial part of members in S. 
It is clear that they have numerical advantages in S1 
over distances of the same scale, because they are 

located in the dense areas. We have a threshold EPS 
partition S into two components, S1 and S2 and let ε0 
refer to the top 2 2[ /(4 ) ]nc Cδ  minimal distances in S1. 
After ranking all points in D, we retrieve points one 
by one according to the presence frequency in S1 till 

2 2[ /(4 ) ].nc Cδ  How can we determine the values of 
the parameters δ and c in Eq.(6)? We shall determine 
c by the validity index in Eq.(1) and δ  by drift speed 
in Section 4. In addition, c is the experimental pa-
rameter, and there exist many comparable results such 
as the equation c n≤  (Halkidi et al., 2002). Taking 
the number of clusters as c in Eq.(6) is a good strategy. 
We can obtain a fast and efficient equation for EPS 
whose searching procedure is given below. The re-
maining step is devoted to the clustering procedure 
like that of DBSCAN, whose results are the number 
of clusters by validity index and EPS, shown in Table 
1.  
            

Table 1  Pseudo code of DBSI algorithm 
Determination of EPS based on statistical information 
(DBSI) 
Construct distance space S. 
Calculate the number of clusters, c, by Eqs.(1) and (2);
Construct intradistance space S1. 
Calculate δ  by Eq.(3); 

Search the top [δ /(4c2) 2
nC ] distances in S. 

Return real number of clusters by validity index and 
EPS. 

  
  
ACTIONS OF DBSCAN UNDER DIFFERENT 
NORMS 
 

Most of clustering algorithms are very pa-
rameter-sensitive, i.e., a slight change of settings may 
lead to considerably different clustering partition of 
objects in a database, thus weakening its stabilization. 
Simultaneously, notice that to minimize intradistance 
and to maximize interdistance are necessary cluster-
ing equipments. We construct the validity index in 
terms of Eq.(1) and examine the clustering stabiliza-
tion by different norms and Eq.(2). DBSCAN was 
implemented via the following steps:  

1. Compute lifetime s by using Eq.(1); 
2. Identify appropriate number of clusters c* by 

using Eq.(2);  
3. Compute the appropriate δ by the drift speed 
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in Eq.(3).  
The first and second steps provide the number of 

clusters. Clearly if the number of clusters is known to 
begin with, these steps can be bypassed. The third 
step generates the difference values of the arithmetic 
series. In order to calculate Eq.(3), the appropriate 
objective function based on δ should be built up. In 
this paper, we employ the total sum of the in-
terdistances between two arbitrary spherical 
neighborhoods of the prototype through their total 
sum of least squares. The behavior of typical 
DBSCAN with different norms has not been analyzed 
by applicable theoretical results. Now we first present 
new insight in order to provide theoretical support for 
explanations of our experiments.     

When a small number of samples are available 
for clustering, the results under different norms give a 
rather large distinction. The essential reason lies, we 
think, in the difference of geometric distance on dif-
ferent norms. We try to make a quick comparison 
between various types of Lp norms that are the most 
popular norms and considered in this paper. Let us 
consider two arbitrary points a, b, for the sake of 
simplicity, in a 2-dimensional Euclidean space in 
Fig.1.   

 

 
 
 
 
 
 
 
 

Fig.1  Three different norms of Lp 

 
We can think of the L2 norm distance as the 

distance from one point to the other in the (arbitrary) 
slope defined by those points. With the L1 norm, we 
can measure the distance considering that we could 
move only horizontally or vertically from one point to 
another, and summing both the horizontal and vertical 
movements. With the L∞ norm, again we can move 
only horizontally or vertically from one point to an-
other, but only the biggest of the horizontal or vertical 
distances matters. We can easily see that the “paths” 
for measuring each of the distances form a 
right-angled triangle; the L2 norm distance is the size 

of the hypotenuse, the L1 norm distance is the sum of 
the sizes of cathetus, and the L∞ norm distance is the 
largest cathetus. Clearly, for any points a, b the ine-
quality between the distances in the three different 
norms: 
 
                2 1|| || || || || ||a b a b a b∞− ≤ − ≤ −                  (7) 
 
holds. Therefore, we can think of L2 norm as some- 
thing between L∞ norm and L1 norm. Note that for 
points in a line parallel to one of the axes, Eq.(7) 
attains the equal sign. It is obvious that the varying 
rates under different norms are different for the same 
series of possible distances. As DBSCAN is con-
cerned with a small amount of samples, we can expect 
that when point b is taken as the prototype of a cluster, 
the larger distance values between two points or the 
higher resolution rate are available. Intuitively, this 
case is just like looking at a cluster with different 
diploid magnifiers or clustering norms. Unfortunately, 
as the scale of different norms increases, this noise 
will have serious effects since its action is magnified. 
Another observation that we can make for DBSCAN 
in this paper is that as the number of test samples gets 
larger, and the clustering results distinctly as different 
norms get narrower when the test samples are ex-
tremely dense. Consequently, the results of using L1, 
L2 and L∞ norms will be closer and closer to each 
other and applicable samples cannot be dense enough, 
so the analysis of distinction under different norms is 
necessary.  

We have observed that good clustering per-
formance is closely related to the magnifier for border 
objects. An extremely important result is that if we 
choose the average density of all border objects as the 
benchmark, then the largest magnifier time by dif-
ferent norms may gain the best clustering results. 
Some explainable examples are exhibited in experi-
ments in Section 5. We think these results are inevi-
table, because the case corresponds to the case when 
the boundary of clusters is the clearest same time, 
they are most stabilized. 
 
 
EXPERIMENTS 
 
Actions of DBSCAN under different norms 

The experiment was performed in real dataset in 

x 

y L1 

L2

L∞ 

b 

a
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2-dimensional space. The sample dataset contained 
total 2000 samples. There were 20 clusters in which 
six clusters contained less than 20 samples; the largest 
one contained 1220 samples while the smallest one 
contained only 10 samples. In addition, they were 
density-skewed. We use DBSCAN under different 
norms. The clustering results are listed in Table 2. 
The results showed that if the average density of all 
border points was close to the density determined by 
EPS in DBSCAN, the accuracy was the highest; on 
the contrary that larger difference in density led to 
lower accuracy. The stabilization of clusters was also 
examined in order to verify the relation between the 
stabilization index and the different norms. When the 
average density of border objects gained the largest 
magnification by a norm, the stabilization was the 
best. 

 
Table 2  Results of DBSCAN under different norms 

Norms                       L1               L2          L3           L6           L∞ 
 

Average density       1.1         1.0        1.4          1.3         0.9 
Missing samples    18/4.1   24/3.2    10/10.2    13/1.2   29/1.3 
Missing clusters        9            8            3             3            5 
Run time (s)             14          17          15            7           25 
 

Notes: EPS=12.00, where “/” corresponds to the results under different 
norms 

 
Comparison of the clustering results based on 
DBSI and k-dist graph 

This test was carried out to compare the effi-
ciency and effectiveness on the DBSI and k-dist for 
determining EPS. The source dataset came from the 
database SIMEIM (http://home.wi.rr.com/wiscwx/). 
Most clusters had normal distribution in 8-dimension- 
al space; and the test was performed for clustering 
associated with six groups of data including five 
clusters with 100 samples, 11 clusters with 500 sam-
ples, 26 clusters with 2000 samples, 35 clusters with 
4000 samples, 45 clusters with 5000 samples and 60 
clusters with 6000 samples. These corresponding 
clustering results are shown in Fig.2 and Fig.3. The 
first and second datasets overlapped and there were 
different number of clusters in which the maximal 
cluster contained 40 and the minimal cluster con-
tained only 19 samples. 

The third and fourth datasets contained den-
sity-skewed clusters, all of which had similar densi-
ties. The fifth and sixth datasets included two of the 
above cases simultaneously. In time cost for the same 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset, the clustering algorithm based on k-dist graph 
requires much more than that in DBSI; which is the 
reason why we give more emphasis on the latter, but 
the former gives higher accuracy that was reflected by 
the missing ratio of samples. The larger the number of 
clusters, the larger was the difference. A high accu-
racy over a wider range than that of the former, but 
whether this result is inevitable is still unsolved and 
will be further discussed. 
 
 
CONCLUSION 
 

In this paper, although our discussion has largely 
focused on 2-dimensional space, application of the 
proposed algorithms to higher dimensional database 
(e.g., 2−10 dimensional) should be no problem. With 
the DBSCAN algorithm in this paper, we introduce an 
approach based on statistical information instead of 
OPTICS by which EPS can be searched in wider 
range. We evaluated comprehensively the perform-
ance of the new algorithms through using three ex-
periments, which showed that these algorithms are 
effective and efficient in clustering large spatial da-
tabases; and that DBSI has almost the same accuracy 
as OPTICS. After considering the choice of different 

Fig.3  Comparison of missing ratio 
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Fig.2  Comparison of run time
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norms, the results of DBSI seem to be better. How-
ever, some assumptions in the paper are not valid for 
arbitrary circumstances such as the series-tolerance- 
based approach. Establishing an ideal adaptive and 
interactive density-based clustering algorithm that 
needs as little user involvement as possible is our aim 
in this work. 
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