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Abstract:    Collaborative Filtering (CF) technique has proved to be one of the most successful techniques in recommendation 
systems in recent years. However, traditional centralized CF system has suffered from its limited scalability as calculation com-
plexity increases rapidly both in time and space when the record in the user database increases. Peer-to-peer (P2P) network has 
attracted much attention because of its advantage of scalability as an alternative architecture for CF systems. In this paper, authors 
propose a decentralized CF algorithm, called PipeCF, based on distributed hash table (DHT) method which is the most popular P2P 
routing algorithm because of its efficiency, scalability, and robustness. Authors also propose two novel approaches: significance 
refinement (SR) and unanimous amplification (UA), to improve the scalability and prediction accuracy of DHT-based CF algo-
rithm. The experimental data show that our DHT-based CF system has better prediction accuracy, efficiency and scalability than 
traditional CF systems. 
 
Key words: Collaborative Filtering, Distributed hash table, Significance refinement, Unanimous amplification  
doi:10.1631/jzus.2005.A0118                     Document code:  A                    CLC number:  TP391.7 
 
 
INTRODUCTION 
 

Since David et al.(1992) published the first ac-
count of using Collaborative Filtering (CF) for in-
formation filtering, CF has proved to be one of the 
most successful techniques in recommendation sys-
tems. Its key idea is that users will prefer those items 
that people with similar interests prefer, or even that 
dissimilar people do not prefer. According to different 
techniques used, CF algorithms can be divided into 
memory-based algorithms and model-based algo-
rithms. Breese et al.(1998) empirically analyzed the 
above two kinds of CF algorithms. Our work is based 
on memory-based CF algorithms which are the most 
popular CF algorithms up to now. The main process 
can be separated into three steps as addressed by 
Herlocker et al.(1999): (1) Similarity weight: Weigh 

all users with respect to similarity with the active user 
whose preferences are to be predicted; (2) Selecting 
neighborhoods: Select those users used to make pre-
diction; (3) Rating normalization and prediction 
making: Normalize and calculate the weighted sum of 
selected users’ ratings, then make prediction based on 
that. Herlocker et al.(1999) presented an algorithmic 
framework for performing CF. 

Resinck et al.(1994)’s GroupLens was the first 
CF algorithm to automate prediction and used a 
memory-based algorithm. Like most memory-based 
algorithms, GroupLens need to compute across the 
whole user database to calculate the similarities be-
tween active user and other users to make prediction. 
Upendra and Pattie (1995) only used those neighbors 
whose correlations were greater than a given thresh-
old to make prediction. This approach not only re-
duced the calculation complexity but also improved 
the performance. By choosing top-N users with the 
highest correlations, the same improvement can also 
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be obtained. However, all the other users’ similarities 
still have to be calculated and its complexity in-
creased quickly both in time and space as the record in 
the database increases.  

Basically, there are two ways to reduce this 
calculation complexity. The first one is using a 
model-based algorithm which first constructs certain 
mathematical models, such as Bayesian Network, 
Bayesian Classifiers etc. to describe the users and/or 
their ratings, then learns these models from the data-
base and uses them to make prediction. However, 
these approaches also needed complex calculation 
when compiling models and also require a central 
database to keep all the user data which is not easy to 
achieve sometimes because of technical reasons and 
privacy reasons.  

The second way is to implement CF in a decen-
tralized way. In fact, as Peer-to-peer (P2P) gains more 
and more popularity, some researchers began to con-
sider it as an alternative architecture for reducing the 
calculation complexity (Amund, 2001; Olesson, 2003; 
Canny, 2002). When implementing CF in a distrib-
uted way, the originally centralized user database 
should be maintained in a distributed way which 
means that each peer will only keep a fraction of the 
user database; and that the prediction should be made 
locally. When making prediction for a particular user, 
the needed record should first be retrieved from the 
user’s own database and calculated locally. In order to 
do this, the following two problems have to be ad-
dressed: (1) How to store the user database distributed 
efficiently so that the needed information can be 
found efficiently; (2) How to identify those records 
needed to make prediction for a particular user and 
fetch them efficiently, as retrieving all other users’ 
votes back is not only unreasonable but also unnec-
essary.  

Our main contributions are:  
(1) We propose a novel distributed hash table 

(DHT) based technique for implementing efficient 
user database management and retrieval in decen-
tralized CF system;  

(2) We propose a heuristic algorithm for fetching 
similar users from DHT overlay network and do rec-
ommendation locally;  

(3) We propose two novel approaches: signifi-
cance refinement (SR) and unanimous amplification 
(UA), to improve the performance of our DHT-based 

CF algorithm. 
The rest of this paper is organized as follows. In 

Section 2, several related works are presented and 
discussed. In Section 3, we introduce the architecture 
and key features of our DHT-based CF system. Two 
techniques: SR and UA are proposed to improve the 
scalability and prediction accuracy of DHT-based CF 
algorithm. In Section 4, the experimental results of 
our system are presented and analyzed. Finally we 
make a brief concluding remark and touch on future 
work in Section 5. 
 
 
RELATED WORK 
 
Memory-based CF algorithm 

Generally, the task of CF is to predict the votes 
of active users from the user database which consists 
of a set of votes vij corresponding to the vote of user i 
on item j. Memory-based CF algorithm calculates this 
prediction as a weighted average of other users votes 
on that item by using the formula: 
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where Pa, j denotes the prediction of the vote for active 
user a on item j, and n is the number of users in user 
database. iv  is the mean vote for user i as expressed 
by: 
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where Ii is the set of items on which user i has voted. 
The weights ϖ(a, j) reflect the similarity between 
active user and users in the user database. κ is a 
normalizing factor to make the absolute values of the 
weights sum up to unity.  

Most memory-based algorithms use Eq.(1) to 
make prediction and differ only on the ways they 
calculate the weights. Two most used metrics to cal-
culate the similarities between users are:  

1. Pearson correlation coefficient 
Pearson correlation coefficient was first intro-

duced into Collaborative Filtering as a weighting 
method in the GroupLens project. The correlation 
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between user a and i is: 
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where the summation is calculated over those items 
for which both users a and i have voted. 

2. Vector similarity 
Vector similarity was first used to measure the 

similarity between two documents, with each viewed 
as a vector of word frequency; and their similarity was 
computed as the cosine of the angle between these 
two vectors. In Collaborative Filtering, we treat each 
user record as a document and their votes as fre-
quency of items. So the weights can now be calcu-
lated as: 
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Existing peer-to-peer system 

In recent years, more and more P2P systems 
have been deployed on the Internet. Among all these 
applications, three main classes of P2P applications 
have emerged: parallelizable, content and file man-
agement, and collaborative. 

1. Parallelizable  
Parallelizable P2P applications split a large task 

into smaller sub-pieces that can be executed in par-
allel over a number of independent peer nodes. Most 
implementations of this model have focused on 
computation-intensive applications. The general idea 
behind these applications is that idle cycles from any 
computer connected to the Internet can be leveraged 
to solve difficult problems that require extreme 
amounts of computation. Most often, the same task is 
performed on each peer using different sets of pa-
rameters. Examples of implementations include code 
breaking, portfolio pricing, risk hedge calculation, 
market and credit evaluation, and demographic 
analysis.  

2. Content and file management 
Content and file management P2P applications 

mainly focus on how to store information on and 
retrieve information from various peers in the net-
work. The model that popularizes this class of appli-

cation is the content exchange model. Applications 
like Napster and Gnutella allow peers to search for 
and download files, which are primarily music files. 
In recent years, the foundations of P2P file systems 
have been explored by a number of research projects. 
In addition to file sharing, these applications focus 
more on Collaborative Filtering techniques that build 
searchable indices over a P2P network. Technologies 
like JXTA Search can be used in conjunction with 
P2P file sharing application like Gnutella to enable 
more up-to-date searches over a large, distributed 
body of information. 

3. Collaborative 
Collaborative P2P applications allow users to 

collaborate, in real time, without relying on a central 
server to collect and relay information. Instant mes-
saging is one subclass of this class of application. 
Services, such as Yahoo! Messenger, AOL, and Jab-
ber instant messaging, have become more and more 
popular among Internet users. Similarly, shared ap-
plications, which allow people (e.g., business col-
leagues), who are possibly thousands of miles apart, 
to interact while viewing and editing the same in-
formation simultaneously, are also emerging. Exam-
ples include Buzzpad and distributed PowerPoint. 
Games are a final type of collaborative P2P applica-
tion. P2P games are hosted on all peer computers and 
updates are distributed to all peers without requiring a 
central server. Example games include NetZ 1.0 by 
Quazal, Scour Exchange by Centers pan, Descent, and 
Cybiko. 

 
DHT routing algorithms 

Unfortunately, the initial designs for P2P sys-
tems have significant scaling problems; for example, 
Napster has a centralized directory service, and 
Gnutella employs a flooding-based search mechanism 
that is not suitable for large systems. 

In response to these scaling problems, several 
research groups proposed a new generation of scal-
able P2P systems that support distributed hash table 
(DHT) functionality, such as CAN (Ratnasamy et al., 
2001), Chord (Stocal et al., 2001), Pastry (Rowstron 
and Druschel, 2001), and Tapestry (Zhao et al., 2001). 
In these DHT systems, each file is associated with a 
key (produced, for instance, by hashing the file name) 
and each node in the system is responsible for storing 
a certain range of keys. There is one basic operation in 
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these DHT systems, lookup(key), which returns the 
identity (e.g., the IP address) of the node that stores 
the object with the certain key. This operation allows 
peers to store and retrieve files based on their keys, 
thereby supporting the hash-table-like interface.  

The core of these DHT systems is the routing 
algorithm. A DHT overlay network is composed of 
several DHT nodes, with each node having some 
other nodes as its neighbors. When a lookup(key) is 
issued, the lookup request will be routed through the 
overlay network to the node, which stores the file with 
that key.  

Each of the proposed DHT systems listed above 
–Tapestry, Pastry, Chord, and CAN–employ a dif-
ferent routing algorithm. All of them take, as input, a 
key and, in response, route a message to the node 
responsible for that key. The keys are strings of digits 
of some length. Nodes have identifiers, taken from the 
same space as the keys (i.e., same number of digits). 
Each node maintains a routing table consisting of a 
small subset of nodes in the system. When a node 
receives a query for a key for which it is not respon-
sible, the node routes the query to the neighbor node 
that makes the most “progress” towards resolving the 
query. The notion of progress differs from algorithm 
to algorithm, but in general is defined in terms of 
some distance between the identifier of the current 
node and the identifier of the queried key. 

The primary goals of DHT are to be an efficient, 
scalable, and robust P2P routing algorithm aimed to 
reduce the number of P2P hops which are involved 
when we locate a certain file, and to reduce the 
amount of routing state that should be preserved at 
each peer. In Chord (Stocal  et  al.,  2001),  each  peer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

keeps track of information on logN other peers (N is 
the total number of peers in the community). When a 
peer joins and leaves the overlay network, this highly 
optimized version of DHT algorithm will only require 
notifying logN peers about that change. 
 
 
OUR DHT-BASED CF APPROACH 
 
Architecture of DHT-based CF system  

The main difference between our DHT-based CF 
system and traditional centralized CF system is that 
both the maintenance of user database and the com-
plex computation task of making prediction are done 
in a decentralized way. Each user keeps his votes 
locally. The system generates a unique key for each 
particular <ITEM_ID, VOTE> tuple of each user by 
hashing it. So each user will have M keys, with M 
being the number of items he has rated. These keys 
are then used to construct a DHT overlay network as 
described in Section 2.3. When a user wants to look 
up other similar users which have the same particular 
<ITEM_ID, VOTE> tuple, it can fetch them from the 
DHT overlay network efficiently. So with the DHT 
overlay network, all the users in the CF system are 
connected together and can find their wanted similar 
neighbors efficiently through a DHT routing algo-
rithm. Fig.1 gives the architecture of our DHT-based 
CF system.  
 
Basic DHT-based CF algorithm 

On the basis of the decentralized storage of user 
votes, we introduce our decentralized CF algorithm, 
called DHT-based CF algorithm, shown in Fig.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

User_1                           User_2                              User_3                             User_4                             User_5      

DHT overlay network

   
Local vote vector 

Item_ID_1 5.0 
Item_ID_2 9.0 

… 
Item_ID_n 2.0 

Cached vote vectors
Item_ID_4 4.0 User_3

… 
Item_ID_4 4.0 User_K

Local vote vector
Item_ID_1 5.0 
Item_ID_2 7.5 

… 
Item_ID_n 6.0

Cached vote vectors
Item_ID_4 5.0 User_2

… 
Item_ID_4 5.0 User_F

Local vote vector
Item_ID_1 5.5 
Item_ID_2 2.5 

… 
Item_ID_n 9.0

Cached vote vectors
Item_ID_3 4.0 User_3

… 
Item_ID_3 4.0 User_K

Local vote vector 
Item_ID_1 9.5 
Item_ID_2 3.0 

… 
Item_ID_n 7.5 

Cached vote vectors 
Item_ID_2 4.0 User_3

… 
Item_ID_2 4.0 User_T

Local vote vector 
Item_ID_1 1.0 
Item_ID_2 5.0 

… 
Item_ID_n 9.0 

Cached vote vectors 
Item_ID_1 3.0 User_5 

… 
Item_ID_1 3.0 User_K 

Fig.1  Architecture of DHT-based CF system
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Algorithm: DHT-based Collaborative Filtering 
Input: training set, test set, a target item and a given top K 

selection 
Output: mean absolute error of prediction 
Method: 

(1) Construct a DHT overlay network (we simulate 
its two main functions: put(key) and lookup(key)). 

(2) Every user of training set hashes <ITEM_ID, 
VOTE> as a key and put all the keys to the DHT overlay 
network by calling put(key) function. 

(3) Each instance of the test set fetches similar 
neighbors from the DHT overlay network by calling 
lookup(key) function. All fetched users’ votes construct a 
local training set LOCAL_TRAINING_SET. 

(4) Each instance of the test set searches the top K 
neighbors from LOCAL_TRAINING_SET and computes 
the corresponding prediction for the target item. 

(5) Compute the mean absolute error of prediction 
and output. 
 

Fig.2  DHT-based  Collaborative Filtering 
 

There are two key pieces to our decentralized CF 
system: the lookup mechanism used to locate similar 
users and fetch their actual rating. The decentralized 
storage (and hence decentralized retrieval) in decen-
tralized CF system makes the CF calculation inher-
ently scalable (every user do recommendation locally 
instead of depending on a centralized server); the hard 
part is finding the similar peers from which to retrieve 
the actual rating. We devise a scalable solution to the 
problem of locating similar users in decentralized CF 
system, i.e., give a user vote vector; we can find the IP 
address of the node(s) which is similar to the user.     
By using a DHT-based routing algorithm, our solution 
can achieve: 

(1) Scalability: it must be designed to scale to 
several million nodes. 

(2) Efficiency: similar users should be located 
with reasonable speed and low overhead in terms of 
the message traffic generated. 

(3) Balanced load: in keeping with the decen-
tralized nature, the total resource load (traffic, storage, 
etc.) should be roughly balanced across all the nodes 
in the system. 

The neighbor choosing strategy of DHT-based 
CF algorithm is based on the heuristic principle that 
people with similar interests rate at least one item with 
similar votes as we can see in Fig.5. So we only select 
similar users in the subset in which users have the 
same <ITEM_ID, VOTE> tuple. The key idea of our 
algorithm is hashing every user for every rated item. 

Our DHT-based CF algorithm includes two main 
DHT functions: put(key) and lookup(key), and Figs.3 
and 4 illustrate them respectively.  

 
Algorithm: DHT-based CF puts a peer P’s vote vector to 

DHT overlay network 
Input: test set (P’s vote vector) 
Output: NULL 
Method: 

(1) P generates a unique 128-bit DHT key Klocal (i.e. 
hash the system unique username).  

(2) P hashes one <ITEM_ID, VOTE> tuple to key K, 
and routes it with test set (P’s vote vector) to the neighbor 
Pi whose local key Ki_local is the most similar to K. 

(3) When Pi receives the PUT message with K, it 
caches it. And if the most similar neighbor is not itself, it 
just routes the message to its neighbor whose local key is 
most similar to K. 

(4) For each rated item, P repeats Steps 2 and 3. 
 

Fig.3  DHT-based  Collaborative Filtering Put 

 
Algorithm: DHT-based CF looks up similar users for a 

peer P 
Input: test set (P’s vote vector) 
Output: training set (retrieved similar users vote vectors) 
Method: 

(1) P generates a unique 128-bit DHT key Klocal (i.e. 
hash the system unique username).  

(2) P hashes one <ITEM_ID, VOTE> tuple to key K, 
and routes it with test set (P’s vote vector) to the neighbor 
Pi whose local key Ki_local is most similar to K. 

(3) When Pi receives the LOOKUP message with K, 
if Pi has enough cached vote vectors with the same key K, 
it returns the vectors back to P, otherwise it just routes the 
message to its neighbor whose local key is most similar to 
K. Anyway, P will finally get similar users and the cor-
responding vote vectors for key K. 

(4) For each rated item, P repeats Steps 2 and 3. Then 
P outputs all the received similar users’ vote vectors. 
 

Fig.4  DHT-based  Collaborative Filtering Lookup 
 

DHT-based CF Put algorithm is used to con-
struct a DHT overlay network and fill data in it. 
DHT-based CF Lookup algorithm is used to lookup 
and fetch similar users with the same <ITEM_ID, 
VOTE> tuple in order to construct a local training set 
to make recommendation. The main purpose of Steps 
2 and 3 in Fig.3 is to make every peer in the DHT 
overlay network keep several buckets which contain a 
group of users with the same <ITEM_ID, VOTE> 
tuple, from which the Lookup algorithm can fetch 
similar users later in its Steps 2 and 3. 
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Extensions to memory-based algorithm 
1. Significance refinement (SR) 
In the basic DHT-based CF algorithm, we return 

all users which have the same <ITEM_ID, VOTE> 
tuple as that of the active user and find that the algo-
rithm has an O(N) fetched user number (N is the total 
user number) as Fig.7 shows. In fact, as Breese pre-
sented in (Breese et al., 1998) by the term inverse user 
frequency, universally liked items are not as useful as 
less common items in capturing similarity. So we 
introduce a new concept significance refinement (SR) 
which reduces the returned user number of the basic 
DHT-based CF algorithm by limiting the number of 
returned users for each <ITEM_ID, VOTE> tuple. We 
term the algorithm improved by SR as Return K 
which means “for every item, the DHT-based CF 
algorithm returns no more than K users with the same 
<ITEM_ID, VOTE> tuple”.  The experimental result 
showed that this method reduced the returned user 
number dramatically and improved the prediction 
accuracy.  

2. Unanimous amplification (UA) 
Enlightened by the method of case amplification 

(Breese et al., 1998) which emphasizes the contribu-
tion of the most similar users to the prediction by 
amplifying the weights close to 1, we argue that we 
should give special award to the users who rated some 
items with the same vote by amplifying their weights, 
which we term unanimous amplification. We trans-
form the estimated weights as follows: 
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Where Na,i denotes the number of items for which user 
a and user i have the same votes. In our experiment, 
typical value for α was 2.0, for β was 4.0, and for γ 
was 4.  Experimental result showed that the UA ap-
proach improved the prediction accuracy of both the 
traditional and DHT-based CF algorithms. 
 
 
EXPERIMENTAL EVALUATION 
 

In this section, we describe the dataset, metrics 
and methodology for the comparison between tradi-

tional and DHT-based CF algorithm, and present the 
results of our experiments.  

 
Dataset 

We used EachMovie dataset (EachMovie, 1997) 
to evaluate the performance of the improved algo-
rithm. The EachMovie dataset was provided by the 
Compaq System Research Center, which ran the 
EachMovie recommendation service for 18 months to 
experiment with a Collaborative Filtering algorithm. 
The information they gathered during that period 
consisted of 72 916 users, 1 628 movies, and 2 811 983 
numeric ratings ranging from 0 to 5. To speed up our 
experiments, we only used a subset of the EachMovie 
dataset which contains 500−5000 users.  
 
Metrics and methodology 

The metrics for evaluating the accuracy of a 
prediction algorithm can be divided into two main 
categories: statistical accuracy metrics and deci-
sion-support metrics. Statistical accuracy metrics 
evaluate the accuracy of a predictor by comparing 
predicted values with user-provided values. Deci-
sion-support accuracy measures how well predictions 
help user select high-quality items. We use Mean 
Absolute Error (MAE), a statistical accuracy metrics, 
to report prediction experiments as it is most com-
monly used and easy to understand: 
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where va, j is the rating given to item  j by user a, is the 
predicted value of user a on item  j, T is the test set, |T| 
is the size of the test set.  

We selected 2000 users and chose one user as 
active user per time and the remaining users as his 
candidate neighbors, because every user only rec-
ommended himself locally. We used the mean pre-
diction accuracy of all the 2000 users as the system’s 
prediction accuracy. For every user’s recommenda-
tion calculation, our tests were performed using 80% 
of the user’s ratings for training, with the remainder 
being used for testing. 
 
Experimental result 

We designed several experiments for evaluating 
our algorithm and analyzing the effect of various 
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factors (e.g., SR and UA, etc.) by comparison. All our 
experiments were run on a Windows 2000 based PC 
with Intel Pentium 4 processor having a speed of 1.8 
GHz and 512 MB of RAM.  

1. The efficiency of neighbor choosing 
We used a dataset of 5000 users and show among 

the users chosen by DHT-based algorithm, how many 
are in the top-100 users most similar to the active 
users which will be chosen by traditional CF algo-
rithms in Fig.5. We can see from the data that when 
the total user number rises above 1000, more than 80 
users who are most similar to the active users are 
chosen by our DHT-based algorithm. 

2. Performance comparison 
We compared the prediction accuracy of tradi-

tional CF algorithm and DHT-based CF algorithm 
while we apply both top-all and top-100 user selection 
on them. The results are shown as Fig.6 showing that 
the DHT-based algorithm has better prediction accu-
racy than the traditional CF algorithm. From the resu-  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

lt, we find that by eliminate those users who have a 
high co-relation between the active users but no same 
ratings, the prediction accuracy can be increased. 

3. The effect of significance refinement 
We limited the number of returned user for each 

<ITEM_ID, VOTE> tuple to 2 and 5 and do the ex-
periment. By which we mean that for each <ITEM_ID, 
VOTE> tuple, our algorithm will return at most 2 or 5 
users. The user for each <ITEM_ID, VOTE> tuple 
was chosen randomly. The result of the number of 
user chosen and the prediction accuracy are shown in 
Fig.7 and Fig.8 respectively. The result shows that: 

(1) “Return all” had an O(N) returned user 
number and its prediction accuracy was also not sat-
isfying;  

(2) “Return 2” had the least returned user num-
ber but the worst prediction accuracy; 

(3) “Return 5” had the best prediction accuracy 
and the scalability was still reasonably good (the re-
turned user number was still limited to  a  constant  as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.7  The Effect on scalability of SR on DHT-based CF

algorithm 
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Fig.5  How many users of DHT-based CF which have same
<ITEM_ID, VOTE> tuple are in the traditional CF’s top
100 

Fig.6  DHT-based CF vs traditional CF

Fig.8  The Effect on prediction accuracy of SR on
DHT-based CF algorithm 
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the total user number increased). 
4. The effect of unanimous amplification 
We adjusted the weights for each user by using 

Eq.(5) while setting the value for α as 2.0, β as 4.0, γ 
as 4 by our experience and did the experiment again. 
We used the top-100 and “Return all” selection 
method. The result showed that the UA approach 
improved the prediction accuracy of both the tradi-
tional and the DHT-based CF algorithm. From Fig.9 
we can see that when the UA approach is applied, the 
two kinds of algorithms have almost the same 
performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In this paper, we propose a novel decentralized 
CF system by using distributed hash table (DHT) 
technique to implement efficient user database man-
agement and retrieval. Then we propose a heuristic 
algorithm to fetch similar users from the DHT overlay 
network and do recommendation locally. Finally, we 
propose two novel approaches: significance refine-
ment (SR) and unanimous amplification (UA) to im-
prove the performance of our DHT-based CF algo-
rithm. The experimental data showed that our 
DHT-based CF system had better prediction accuracy, 
efficiency and scalability than traditional CF systems. 

Our future work includes investigation on a more 
efficient decentralized user database management and 
K-Nearest Neighbor (KNN) methods which can dy-
namically self-organize users (Wang, 2002; Krämer 
and Schmidt, 2001) with similar interests in combin-
ing content-based filtering techniques. We would also 
like to investigate the influence of parameters 
choosing in UA. 
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Fig.9  The effect on prediction accuracy of unanimous
amplification 
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