
Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 118

PipeCF: a DHT-based Collaborative Filtering
recommendation system*

SHEN Rui-min (申瑞民), YANG Fan (杨 帆), HAN Peng (韩 鹏), XIE Bo (谢 波)
(Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, China)

E-mail: {rmshen, fyang, phan, bxie}@sohu.com
Received Dec. 30, 2003; revision accepted Apr. 11, 2004

Abstract: Collaborative Filtering (CF) technique has proved to be one of the most successful techniques in recommendation
systems in recent years. However, traditional centralized CF system has suffered from its limited scalability as calculation com-
plexity increases rapidly both in time and space when the record in the user database increases. Peer-to-peer (P2P) network has
attracted much attention because of its advantage of scalability as an alternative architecture for CF systems. In this paper, authors
propose a decentralized CF algorithm, called PipeCF, based on distributed hash table (DHT) method which is the most popular P2P
routing algorithm because of its efficiency, scalability, and robustness. Authors also propose two novel approaches: significance
refinement (SR) and unanimous amplification (UA), to improve the scalability and prediction accuracy of DHT-based CF algo-
rithm. The experimental data show that our DHT-based CF system has better prediction accuracy, efficiency and scalability than
traditional CF systems.

Key words: Collaborative Filtering, Distributed hash table, Significance refinement, Unanimous amplification
doi:10.1631/jzus.2005.A0118 Document code: A CLC number: TP391.7

INTRODUCTION

Since David et al.(1992) published the first ac-
count of using Collaborative Filtering (CF) for in-
formation filtering, CF has proved to be one of the
most successful techniques in recommendation sys-
tems. Its key idea is that users will prefer those items
that people with similar interests prefer, or even that
dissimilar people do not prefer. According to different
techniques used, CF algorithms can be divided into
memory-based algorithms and model-based algo-
rithms. Breese et al.(1998) empirically analyzed the
above two kinds of CF algorithms. Our work is based
on memory-based CF algorithms which are the most
popular CF algorithms up to now. The main process
can be separated into three steps as addressed by
Herlocker et al.(1999): (1) Similarity weight: Weigh

all users with respect to similarity with the active user
whose preferences are to be predicted; (2) Selecting
neighborhoods: Select those users used to make pre-
diction; (3) Rating normalization and prediction
making: Normalize and calculate the weighted sum of
selected users’ ratings, then make prediction based on
that. Herlocker et al.(1999) presented an algorithmic
framework for performing CF.

Resinck et al.(1994)’s GroupLens was the first
CF algorithm to automate prediction and used a
memory-based algorithm. Like most memory-based
algorithms, GroupLens need to compute across the
whole user database to calculate the similarities be-
tween active user and other users to make prediction.
Upendra and Pattie (1995) only used those neighbors
whose correlations were greater than a given thresh-
old to make prediction. This approach not only re-
duced the calculation complexity but also improved
the performance. By choosing top-N users with the
highest correlations, the same improvement can also

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

 * Project (No. 60372078) supported by the National Natural Science
Foundation of China

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 119

be obtained. However, all the other users’ similarities
still have to be calculated and its complexity in-
creased quickly both in time and space as the record in
the database increases.

Basically, there are two ways to reduce this
calculation complexity. The first one is using a
model-based algorithm which first constructs certain
mathematical models, such as Bayesian Network,
Bayesian Classifiers etc. to describe the users and/or
their ratings, then learns these models from the data-
base and uses them to make prediction. However,
these approaches also needed complex calculation
when compiling models and also require a central
database to keep all the user data which is not easy to
achieve sometimes because of technical reasons and
privacy reasons.

The second way is to implement CF in a decen-
tralized way. In fact, as Peer-to-peer (P2P) gains more
and more popularity, some researchers began to con-
sider it as an alternative architecture for reducing the
calculation complexity (Amund, 2001; Olesson, 2003;
Canny, 2002). When implementing CF in a distrib-
uted way, the originally centralized user database
should be maintained in a distributed way which
means that each peer will only keep a fraction of the
user database; and that the prediction should be made
locally. When making prediction for a particular user,
the needed record should first be retrieved from the
user’s own database and calculated locally. In order to
do this, the following two problems have to be ad-
dressed: (1) How to store the user database distributed
efficiently so that the needed information can be
found efficiently; (2) How to identify those records
needed to make prediction for a particular user and
fetch them efficiently, as retrieving all other users’
votes back is not only unreasonable but also unnec-
essary.

Our main contributions are:
(1) We propose a novel distributed hash table

(DHT) based technique for implementing efficient
user database management and retrieval in decen-
tralized CF system;

(2) We propose a heuristic algorithm for fetching
similar users from DHT overlay network and do rec-
ommendation locally;

(3) We propose two novel approaches: signifi-
cance refinement (SR) and unanimous amplification
(UA), to improve the performance of our DHT-based

CF algorithm.
The rest of this paper is organized as follows. In

Section 2, several related works are presented and
discussed. In Section 3, we introduce the architecture
and key features of our DHT-based CF system. Two
techniques: SR and UA are proposed to improve the
scalability and prediction accuracy of DHT-based CF
algorithm. In Section 4, the experimental results of
our system are presented and analyzed. Finally we
make a brief concluding remark and touch on future
work in Section 5.

RELATED WORK

Memory-based CF algorithm

Generally, the task of CF is to predict the votes
of active users from the user database which consists
of a set of votes vij corresponding to the vote of user i
on item j. Memory-based CF algorithm calculates this
prediction as a weighted average of other users votes
on that item by using the formula:

, ,
1

(,)()
n

a j a i j i
i

P v a j v vκ ϖ
=

= + −∑ (1)

where Pa, j denotes the prediction of the vote for active
user a on item j, and n is the number of users in user
database. iv is the mean vote for user i as expressed
by:

,
1

| |
i

i i j
j Ii

v v
I ∈

= ∑ (2)

where Ii is the set of items on which user i has voted.
The weights ϖ(a, j) reflect the similarity between
active user and users in the user database. κ is a
normalizing factor to make the absolute values of the
weights sum up to unity.

Most memory-based algorithms use Eq.(1) to
make prediction and differ only on the ways they
calculate the weights. Two most used metrics to cal-
culate the similarities between users are:

1. Pearson correlation coefficient
Pearson correlation coefficient was first intro-

duced into Collaborative Filtering as a weighting
method in the GroupLens project. The correlation

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 120

between user a and i is:

, ,

2 2
, ,

()()
(,)

() ()

a j a i j ij

a j a i j ij j

v v v v
a i

v v v v
ϖ

− −
=

− −

∑
∑ ∑

 (3)

where the summation is calculated over those items
for which both users a and i have voted.

2. Vector similarity
Vector similarity was first used to measure the

similarity between two documents, with each viewed
as a vector of word frequency; and their similarity was
computed as the cosine of the angle between these
two vectors. In Collaborative Filtering, we treat each
user record as a document and their votes as fre-
quency of items. So the weights can now be calcu-
lated as:

, ,

2 2
, ,

(,)
a i

a j i j

j a k i kk I k I

v v
a i

v v
ϖ

∈ ∈

= ∑
∑ ∑

 (4)

Existing peer-to-peer system

In recent years, more and more P2P systems
have been deployed on the Internet. Among all these
applications, three main classes of P2P applications
have emerged: parallelizable, content and file man-
agement, and collaborative.

1. Parallelizable
Parallelizable P2P applications split a large task

into smaller sub-pieces that can be executed in par-
allel over a number of independent peer nodes. Most
implementations of this model have focused on
computation-intensive applications. The general idea
behind these applications is that idle cycles from any
computer connected to the Internet can be leveraged
to solve difficult problems that require extreme
amounts of computation. Most often, the same task is
performed on each peer using different sets of pa-
rameters. Examples of implementations include code
breaking, portfolio pricing, risk hedge calculation,
market and credit evaluation, and demographic
analysis.

2. Content and file management
Content and file management P2P applications

mainly focus on how to store information on and
retrieve information from various peers in the net-
work. The model that popularizes this class of appli-

cation is the content exchange model. Applications
like Napster and Gnutella allow peers to search for
and download files, which are primarily music files.
In recent years, the foundations of P2P file systems
have been explored by a number of research projects.
In addition to file sharing, these applications focus
more on Collaborative Filtering techniques that build
searchable indices over a P2P network. Technologies
like JXTA Search can be used in conjunction with
P2P file sharing application like Gnutella to enable
more up-to-date searches over a large, distributed
body of information.

3. Collaborative
Collaborative P2P applications allow users to

collaborate, in real time, without relying on a central
server to collect and relay information. Instant mes-
saging is one subclass of this class of application.
Services, such as Yahoo! Messenger, AOL, and Jab-
ber instant messaging, have become more and more
popular among Internet users. Similarly, shared ap-
plications, which allow people (e.g., business col-
leagues), who are possibly thousands of miles apart,
to interact while viewing and editing the same in-
formation simultaneously, are also emerging. Exam-
ples include Buzzpad and distributed PowerPoint.
Games are a final type of collaborative P2P applica-
tion. P2P games are hosted on all peer computers and
updates are distributed to all peers without requiring a
central server. Example games include NetZ 1.0 by
Quazal, Scour Exchange by Centers pan, Descent, and
Cybiko.

DHT routing algorithms

Unfortunately, the initial designs for P2P sys-
tems have significant scaling problems; for example,
Napster has a centralized directory service, and
Gnutella employs a flooding-based search mechanism
that is not suitable for large systems.

In response to these scaling problems, several
research groups proposed a new generation of scal-
able P2P systems that support distributed hash table
(DHT) functionality, such as CAN (Ratnasamy et al.,
2001), Chord (Stocal et al., 2001), Pastry (Rowstron
and Druschel, 2001), and Tapestry (Zhao et al., 2001).
In these DHT systems, each file is associated with a
key (produced, for instance, by hashing the file name)
and each node in the system is responsible for storing
a certain range of keys. There is one basic operation in

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 121

these DHT systems, lookup(key), which returns the
identity (e.g., the IP address) of the node that stores
the object with the certain key. This operation allows
peers to store and retrieve files based on their keys,
thereby supporting the hash-table-like interface.

The core of these DHT systems is the routing
algorithm. A DHT overlay network is composed of
several DHT nodes, with each node having some
other nodes as its neighbors. When a lookup(key) is
issued, the lookup request will be routed through the
overlay network to the node, which stores the file with
that key.

Each of the proposed DHT systems listed above
–Tapestry, Pastry, Chord, and CAN–employ a dif-
ferent routing algorithm. All of them take, as input, a
key and, in response, route a message to the node
responsible for that key. The keys are strings of digits
of some length. Nodes have identifiers, taken from the
same space as the keys (i.e., same number of digits).
Each node maintains a routing table consisting of a
small subset of nodes in the system. When a node
receives a query for a key for which it is not respon-
sible, the node routes the query to the neighbor node
that makes the most “progress” towards resolving the
query. The notion of progress differs from algorithm
to algorithm, but in general is defined in terms of
some distance between the identifier of the current
node and the identifier of the queried key.

The primary goals of DHT are to be an efficient,
scalable, and robust P2P routing algorithm aimed to
reduce the number of P2P hops which are involved
when we locate a certain file, and to reduce the
amount of routing state that should be preserved at
each peer. In Chord (Stocal et al., 2001), each peer

keeps track of information on logN other peers (N is
the total number of peers in the community). When a
peer joins and leaves the overlay network, this highly
optimized version of DHT algorithm will only require
notifying logN peers about that change.

OUR DHT-BASED CF APPROACH

Architecture of DHT-based CF system

The main difference between our DHT-based CF
system and traditional centralized CF system is that
both the maintenance of user database and the com-
plex computation task of making prediction are done
in a decentralized way. Each user keeps his votes
locally. The system generates a unique key for each
particular <ITEM_ID, VOTE> tuple of each user by
hashing it. So each user will have M keys, with M
being the number of items he has rated. These keys
are then used to construct a DHT overlay network as
described in Section 2.3. When a user wants to look
up other similar users which have the same particular
<ITEM_ID, VOTE> tuple, it can fetch them from the
DHT overlay network efficiently. So with the DHT
overlay network, all the users in the CF system are
connected together and can find their wanted similar
neighbors efficiently through a DHT routing algo-
rithm. Fig.1 gives the architecture of our DHT-based
CF system.

Basic DHT-based CF algorithm

On the basis of the decentralized storage of user
votes, we introduce our decentralized CF algorithm,
called DHT-based CF algorithm, shown in Fig.2.

User_1 User_2 User_3 User_4 User_5

DHT overlay network

Local vote vector

Item_ID_1 5.0
Item_ID_2 9.0

…
Item_ID_n 2.0

Cached vote vectors
Item_ID_4 4.0 User_3

…
Item_ID_4 4.0 User_K

Local vote vector
Item_ID_1 5.0
Item_ID_2 7.5

…
Item_ID_n 6.0

Cached vote vectors
Item_ID_4 5.0 User_2

…
Item_ID_4 5.0 User_F

Local vote vector
Item_ID_1 5.5
Item_ID_2 2.5

…
Item_ID_n 9.0

Cached vote vectors
Item_ID_3 4.0 User_3

…
Item_ID_3 4.0 User_K

Local vote vector
Item_ID_1 9.5
Item_ID_2 3.0

…
Item_ID_n 7.5

Cached vote vectors
Item_ID_2 4.0 User_3

…
Item_ID_2 4.0 User_T

Local vote vector
Item_ID_1 1.0
Item_ID_2 5.0

…
Item_ID_n 9.0

Cached vote vectors
Item_ID_1 3.0 User_5

…
Item_ID_1 3.0 User_K

Fig.1 Architecture of DHT-based CF system

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 122

Algorithm: DHT-based Collaborative Filtering
Input: training set, test set, a target item and a given top K

selection
Output: mean absolute error of prediction
Method:

(1) Construct a DHT overlay network (we simulate
its two main functions: put(key) and lookup(key)).

(2) Every user of training set hashes <ITEM_ID,
VOTE> as a key and put all the keys to the DHT overlay
network by calling put(key) function.

(3) Each instance of the test set fetches similar
neighbors from the DHT overlay network by calling
lookup(key) function. All fetched users’ votes construct a
local training set LOCAL_TRAINING_SET.

(4) Each instance of the test set searches the top K
neighbors from LOCAL_TRAINING_SET and computes
the corresponding prediction for the target item.

(5) Compute the mean absolute error of prediction
and output.

Fig.2 DHT-based Collaborative Filtering

There are two key pieces to our decentralized CF
system: the lookup mechanism used to locate similar
users and fetch their actual rating. The decentralized
storage (and hence decentralized retrieval) in decen-
tralized CF system makes the CF calculation inher-
ently scalable (every user do recommendation locally
instead of depending on a centralized server); the hard
part is finding the similar peers from which to retrieve
the actual rating. We devise a scalable solution to the
problem of locating similar users in decentralized CF
system, i.e., give a user vote vector; we can find the IP
address of the node(s) which is similar to the user.
By using a DHT-based routing algorithm, our solution
can achieve:

(1) Scalability: it must be designed to scale to
several million nodes.

(2) Efficiency: similar users should be located
with reasonable speed and low overhead in terms of
the message traffic generated.

(3) Balanced load: in keeping with the decen-
tralized nature, the total resource load (traffic, storage,
etc.) should be roughly balanced across all the nodes
in the system.

The neighbor choosing strategy of DHT-based
CF algorithm is based on the heuristic principle that
people with similar interests rate at least one item with
similar votes as we can see in Fig.5. So we only select
similar users in the subset in which users have the
same <ITEM_ID, VOTE> tuple. The key idea of our
algorithm is hashing every user for every rated item.

Our DHT-based CF algorithm includes two main
DHT functions: put(key) and lookup(key), and Figs.3
and 4 illustrate them respectively.

Algorithm: DHT-based CF puts a peer P’s vote vector to

DHT overlay network
Input: test set (P’s vote vector)
Output: NULL
Method:

(1) P generates a unique 128-bit DHT key Klocal (i.e.
hash the system unique username).

(2) P hashes one <ITEM_ID, VOTE> tuple to key K,
and routes it with test set (P’s vote vector) to the neighbor
Pi whose local key Ki_local is the most similar to K.

(3) When Pi receives the PUT message with K, it
caches it. And if the most similar neighbor is not itself, it
just routes the message to its neighbor whose local key is
most similar to K.

(4) For each rated item, P repeats Steps 2 and 3.

Fig.3 DHT-based Collaborative Filtering Put

Algorithm: DHT-based CF looks up similar users for a

peer P
Input: test set (P’s vote vector)
Output: training set (retrieved similar users vote vectors)
Method:

(1) P generates a unique 128-bit DHT key Klocal (i.e.
hash the system unique username).

(2) P hashes one <ITEM_ID, VOTE> tuple to key K,
and routes it with test set (P’s vote vector) to the neighbor
Pi whose local key Ki_local is most similar to K.

(3) When Pi receives the LOOKUP message with K,
if Pi has enough cached vote vectors with the same key K,
it returns the vectors back to P, otherwise it just routes the
message to its neighbor whose local key is most similar to
K. Anyway, P will finally get similar users and the cor-
responding vote vectors for key K.

(4) For each rated item, P repeats Steps 2 and 3. Then
P outputs all the received similar users’ vote vectors.

Fig.4 DHT-based Collaborative Filtering Lookup

DHT-based CF Put algorithm is used to con-
struct a DHT overlay network and fill data in it.
DHT-based CF Lookup algorithm is used to lookup
and fetch similar users with the same <ITEM_ID,
VOTE> tuple in order to construct a local training set
to make recommendation. The main purpose of Steps
2 and 3 in Fig.3 is to make every peer in the DHT
overlay network keep several buckets which contain a
group of users with the same <ITEM_ID, VOTE>
tuple, from which the Lookup algorithm can fetch
similar users later in its Steps 2 and 3.

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 123

Extensions to memory-based algorithm
1. Significance refinement (SR)
In the basic DHT-based CF algorithm, we return

all users which have the same <ITEM_ID, VOTE>
tuple as that of the active user and find that the algo-
rithm has an O(N) fetched user number (N is the total
user number) as Fig.7 shows. In fact, as Breese pre-
sented in (Breese et al., 1998) by the term inverse user
frequency, universally liked items are not as useful as
less common items in capturing similarity. So we
introduce a new concept significance refinement (SR)
which reduces the returned user number of the basic
DHT-based CF algorithm by limiting the number of
returned users for each <ITEM_ID, VOTE> tuple. We
term the algorithm improved by SR as Return K
which means “for every item, the DHT-based CF
algorithm returns no more than K users with the same
<ITEM_ID, VOTE> tuple”. The experimental result
showed that this method reduced the returned user
number dramatically and improved the prediction
accuracy.

2. Unanimous amplification (UA)
Enlightened by the method of case amplification

(Breese et al., 1998) which emphasizes the contribu-
tion of the most similar users to the prediction by
amplifying the weights close to 1, we argue that we
should give special award to the users who rated some
items with the same vote by amplifying their weights,
which we term unanimous amplification. We trans-
form the estimated weights as follows:

, ,

, , ,

, ,

, 0
, 0
,

a i a i

a i a i a i

a i a i

w N
w w N

w N
α γ
β γ

=
′ = < ≤
 >

 (5)

Where Na,i denotes the number of items for which user
a and user i have the same votes. In our experiment,
typical value for α was 2.0, for β was 4.0, and for γ
was 4. Experimental result showed that the UA ap-
proach improved the prediction accuracy of both the
traditional and DHT-based CF algorithms.

EXPERIMENTAL EVALUATION

In this section, we describe the dataset, metrics
and methodology for the comparison between tradi-

tional and DHT-based CF algorithm, and present the
results of our experiments.

Dataset

We used EachMovie dataset (EachMovie, 1997)
to evaluate the performance of the improved algo-
rithm. The EachMovie dataset was provided by the
Compaq System Research Center, which ran the
EachMovie recommendation service for 18 months to
experiment with a Collaborative Filtering algorithm.
The information they gathered during that period
consisted of 72 916 users, 1 628 movies, and 2 811 983
numeric ratings ranging from 0 to 5. To speed up our
experiments, we only used a subset of the EachMovie
dataset which contains 500−5000 users.

Metrics and methodology

The metrics for evaluating the accuracy of a
prediction algorithm can be divided into two main
categories: statistical accuracy metrics and deci-
sion-support metrics. Statistical accuracy metrics
evaluate the accuracy of a predictor by comparing
predicted values with user-provided values. Deci-
sion-support accuracy measures how well predictions
help user select high-quality items. We use Mean
Absolute Error (MAE), a statistical accuracy metrics,
to report prediction experiments as it is most com-
monly used and easy to understand:

, ,| |
| |

a j a ja T
v p

MAE
T

∈
−

= ∑ (6)

where va, j is the rating given to item j by user a, is the
predicted value of user a on item j, T is the test set, |T|
is the size of the test set.

We selected 2000 users and chose one user as
active user per time and the remaining users as his
candidate neighbors, because every user only rec-
ommended himself locally. We used the mean pre-
diction accuracy of all the 2000 users as the system’s
prediction accuracy. For every user’s recommenda-
tion calculation, our tests were performed using 80%
of the user’s ratings for training, with the remainder
being used for testing.

Experimental result

We designed several experiments for evaluating
our algorithm and analyzing the effect of various

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 124

factors (e.g., SR and UA, etc.) by comparison. All our
experiments were run on a Windows 2000 based PC
with Intel Pentium 4 processor having a speed of 1.8
GHz and 512 MB of RAM.

1. The efficiency of neighbor choosing
We used a dataset of 5000 users and show among

the users chosen by DHT-based algorithm, how many
are in the top-100 users most similar to the active
users which will be chosen by traditional CF algo-
rithms in Fig.5. We can see from the data that when
the total user number rises above 1000, more than 80
users who are most similar to the active users are
chosen by our DHT-based algorithm.

2. Performance comparison
We compared the prediction accuracy of tradi-

tional CF algorithm and DHT-based CF algorithm
while we apply both top-all and top-100 user selection
on them. The results are shown as Fig.6 showing that
the DHT-based algorithm has better prediction accu-
racy than the traditional CF algorithm. From the resu-

lt, we find that by eliminate those users who have a
high co-relation between the active users but no same
ratings, the prediction accuracy can be increased.

3. The effect of significance refinement
We limited the number of returned user for each

<ITEM_ID, VOTE> tuple to 2 and 5 and do the ex-
periment. By which we mean that for each <ITEM_ID,
VOTE> tuple, our algorithm will return at most 2 or 5
users. The user for each <ITEM_ID, VOTE> tuple
was chosen randomly. The result of the number of
user chosen and the prediction accuracy are shown in
Fig.7 and Fig.8 respectively. The result shows that:

(1) “Return all” had an O(N) returned user
number and its prediction accuracy was also not sat-
isfying;

(2) “Return 2” had the least returned user num-
ber but the worst prediction accuracy;

(3) “Return 5” had the best prediction accuracy
and the scalability was still reasonably good (the re-
turned user number was still limited to a constant as

 Fig.7 The Effect on scalability of SR on DHT-based CF

algorithm

Si
ze

 o
f u

se
rs

 in
 to

p
10

0
(p

re
di

ct
 2

0%
)

Fig.5 How many users of DHT-based CF which have same
<ITEM_ID, VOTE> tuple are in the traditional CF’s top
100

Fig.6 DHT-based CF vs traditional CF

Fig.8 The Effect on prediction accuracy of SR on
DHT-based CF algorithm

Vector similarity
Pearson similarity

Traditional top all
DHT top all (return all)
Traditional top 100
DHT top 100 (return all)

Si
ze

 o
f D

H
T

us
er

s (
pr

ed
ic

t 2
0%

)

M
ea

n
ab

so
lu

te
 e

rr
or

 (p
re

di
ct

 2
0%

)
M

ea
n

ab
so

lu
te

 e
rr

or
 (p

re
di

ct
 2

0%
)

Return all
Return 5
Return 2

DHT top 100 (return all)
DHT top 100 (return 5)
DHT top 100 (return 2)

500 1500 2500 3500 4500

92
90
88
86
84
82
80
78
76
74
72
70

Total size of train set (#of users)
400 600 800 1000 1200 1400 1600 1800

0.875

0.87

0.865

0.86

0.855

0.85

0.845

0.84

Total size of train set (#of users)

Total size of train set (#of users) Total size of train set (#of users)

1000

800

600

400

200

0
400 600 800 1000 1200 1400 1600 1800 400 600 800 1000 1200 1400 1600 1800

0.875

0.87

0.865

0.86

0.855

0.85

0.845

0.84

Shen et al. / J Zhejiang Univ SCI 2005 6A(2):118-125 125

the total user number increased).
4. The effect of unanimous amplification
We adjusted the weights for each user by using

Eq.(5) while setting the value for α as 2.0, β as 4.0, γ
as 4 by our experience and did the experiment again.
We used the top-100 and “Return all” selection
method. The result showed that the UA approach
improved the prediction accuracy of both the tradi-
tional and the DHT-based CF algorithm. From Fig.9
we can see that when the UA approach is applied, the
two kinds of algorithms have almost the same
performance.

CONCLUSION

In this paper, we propose a novel decentralized
CF system by using distributed hash table (DHT)
technique to implement efficient user database man-
agement and retrieval. Then we propose a heuristic
algorithm to fetch similar users from the DHT overlay
network and do recommendation locally. Finally, we
propose two novel approaches: significance refine-
ment (SR) and unanimous amplification (UA) to im-
prove the performance of our DHT-based CF algo-
rithm. The experimental data showed that our
DHT-based CF system had better prediction accuracy,
efficiency and scalability than traditional CF systems.

Our future work includes investigation on a more
efficient decentralized user database management and
K-Nearest Neighbor (KNN) methods which can dy-
namically self-organize users (Wang, 2002; Krämer
and Schmidt, 2001) with similar interests in combin-
ing content-based filtering techniques. We would also
like to investigate the influence of parameters
choosing in UA.

References
Amund, T., 2001. Peer-to-peer Based Recommendations for

Mobile Commerce. Proceedings of the First International
Mobile Commerce Workshop, ACM Press, Rome, Italy,
p.26-29.

Breese, J., Heckerman, D., Kadie, C., 1998. Empirical Analy-
sis of Predictive Algorithms for Collaborative Filtering.
Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, p.43-52.

Canny, J., 2002. Collaborative Filtering with Privacy. Pro-
ceedings of the IEEE Symposium on Research in Security
and Privacy, Oakland, CA, p.45-57.

David, G., David, N., Brian, O.M., Douglas, T., 1992. Using
Collaborative Filtering to weave an information tapestry.
Communications of the ACM, 35(12):61-70.

EachMovie, 1997. EachMovie Collaborative Filtering Data Set.
http://research.compaq.com/SRC/eachmovie.

Herlocker, L.J., Konstan, A.J., Borchers, A., Riedl, J., 1999.
An Algorithmic Framework for Performing Collaborative
Filtering. Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval, p.230-237.

Krämer, B.J., Schmidt, H.W., 2001. Component and tools for
on-line education. European Journal of Education,
36(2):14-41.

Olesson, T., 2003. Bootstrapping and Decentralizing Recom-
mender Systems, Licentiate Thesis. Department of In-
formation Technology, Uppsala University and SICS,
Uppsala, Sweden.

Resinck., P., Neophytos, I., Mitesh, S., Peter, B., John, R.,
1994. GroupLens: An Open Architecture for Collabora-
tive Filtering of Netnews. Proceedings of the 1994 ACM
conference on Computer Supported Cooperative Work,
Chapel Hill, North Carolina, United States, p.175-186.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.,
2001. A Scalable Content-addressable Network. ACM
SIGCOMM, San Diego, CA, USA, 2001.

Rowstron, A., Druschel, P., 2001. Pastry: Scalable, Distributed
Object Location and Routing for Large Scale Peer-to-peer
Systems. IFIP/ACM Middleware, Hedelberg, Germany.

Stocal, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrish-
nan, H., 2001. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. ACM SIGCOMM, San
Diego, CA, USA, p.149-160.

Upendra, S., Pattie, M., 1995. Social Information Filtering:
Algorithms for Automating “Word of Mouth”. Proceed-
ings of the SIGCHI Conference on Human factors in
Computing Systems, Denver, Colorado, United States,
p.210-217.

Wang, F., 2002. Self-organizing Communities Formed by
Middle Agents. Proceedings of the First International
Conference on Autonomous Agents and Multi-agent
Systems, Bologna, Italy, p.1333-1339.

Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D., 2001. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location
and Routing. Tech. Rep. UCB/CSB-0-114, UC Berkeley,
EECS.

Fig.9 The effect on prediction accuracy of unanimous
amplification

M
ea

n
ab

so
lu

te
 e

rr
or

 (p
re

di
ct

 2
0%

) Traditional
DHT
Traditional-UA-improved
DHT-UA-improved

Total size of train set (#of users)
400 600 800 1000 1200 1400 1600 1800

0.86
0.855

0.85
0.845

0.84
0.835

0.83
0.825

0.82

