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Abstract:    In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the 
general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a 
series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and 
expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method. 
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INTRODUCTION 
 

Functionally graded materials (FGM) possess 
elastic constants and density that vary gradually with 
location within the material. In one kind of FGM, 
only the elastic constants vary continuously along one 
or more directions, and in the other kind, only the 
density varies gradually with location. We call the 
later one density functionally graded materials.  

Functionally graded materials have attracted 
much interest. Tutuncu and Ozturk (2001) obtained 
closed-form solutions for stress and displacements in 
functionally graded pressure vessels subjected to 
internal pressure alone by using the infinitesimal 
theory of elasticity. Sankar (2001) derived an elastic-
ity solution for a functionally graded beam, in which 
the Young’s modulus was assumed to vary exponen-
tially through the thickness when subjected to trans-
verse loads. Anderson (2003) presented an analytical 
three-dimensional elasticity solution for the stresses 
and displacements of  a  sandwich  composite  with  a 

 
 
 

functionally graded core subjected to arbitrary 
transverse pressure distribution. Wu and Tsai (2004) 
obtained the three-dimensional solution for the static 
analysis of functionally graded annular spherical 
shells in conjunction with the methods of differential 
quadrature (DQ) and asymptotic expansion. 

In this paper, the specific solutions of orthotropic 
plane problems with body forces are derived based on 
the basic equations. First, the specific solutions for 
cantilever beam with body forces depending only on z 
or on x coordinate are given by two integral functions. 
Then, a series of beam problems with density func-
tionally graded orthotropic media is solved by the 
trial-and-error method. The problems include that of 
cantilever beam with body forces depending only on z 
or on x coordinate and expressed by z or x polynomial. 
Analytical solutions for various problems are ob-
tained by the principle of superposition. 
 

 
SPECIFIC SOLUTIONS TO DENSITY 
FUNCTIONALLY GRADED BEAM 
 
Body forces depend only on z coordinate 
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( ), ( )x zf Q z f P z= −    = −                                     (1) 
 
It is easy to see that Eqs.(3) and (4) in Jiang and 

Ding (2005) have the specific solution for displace-
ment as follows 
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Substituting Eq.(2) into Eq.(2) in Jiang and Ding 
(2005) leads to the stress specific solution 
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From Eq.(4), we find that the beam has uni-

formly distributed stresses *
xzτ and *

zσ on surfaces 

(z=±h/2), and distributed loads *
xzτ and *

xσ  along 
height at the two ends (x=0, L). 
 
Body forces depend only on x coordinate 
 

( ), ( )x zf Q x f P x= −   = −                                    (5) 
 
It is easy to verify that Eqs.(3) and (4) in Jiang 

and Ding (2005) have displacement specific solution 
as follows 
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c c
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where G(x) and F(x) are expressed as Eq.(3). 

Substituting Eq.(6) into Eq.(2) in Jiang and Ding 
(2005) leads to the stress specific solution 
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From Eq.(7), we find that the beam has distrib-

uted loads *
xzτ and *

zσ  on surfaces (z=±h/2) along 

length, and uniformly distributed loads *
xzτ  and *

xσ  

along height at the two ends (x=0, L). 
 
 

ANALYTICAL SOLUTIONS FOR DENSITY 
FUNCTIONALLY GRADED CANTILEVER 
BEAMS 
 

For orthotropic plane problem, the solution for 
Eqs.(1) and (2) in Jiang and Ding (2005) should be 
expressed by the superposition principle as follows 

 
* *

0 0,u u u w w w= +   = +                                     (8a) 
* * *

0 0 0, ,x x x z z z xz xz xzσ σ σ σ σ σ τ τ τ= +   = +   = +   (8b)  
                        

where u0, w0, σx0, σz0 and τxz0 are the general solutions 
expressed as Eq.(5) in Jiang and Ding (2005) for 
beams without body forces, and u*, w*, *

xσ , *
zσ and *

xzτ  
are the specific solutions expressed as Eqs.(2) and (4) 
or Eqs.(6) and (7) for beams with body forces de-
pendent only on z or on x coordinate.  

In the next sections, we will consider two kinds 
of density functionally graded cantilever beam shown 
in Fig.1 of Jiang and Ding (2005). The boundary 
conditions are 

 
/ 2 : 0, 0z xzz h σ τ= ± =   =                                         (9a) 
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( , 0) 0,  0,  / 0= = = = ∂ ∂ =:x L z u w w x                     (9c) 
 
The solution for the first kind of cantilever beam 
with body forces depending only on z coordinate 
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where ρ  is the density, g  is the acceleration of gravity, 
and dn (n=0,1,2,3) are material constants. 

Substituting Eq.(10) into Eq.(3) leads to  
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The corresponding specific solution can be obtained 
by substituting Eq.(11) into Eqs.(2) and (4) 



Jiang et al. / J Zhejiang Univ SCI   2005 6A(3):155-158 157

3
* * 2

033

10,
( 1)( 2)

nn
n

n

d g
u w z

c n n h
+

=

=   = −
+ +∑      (12) 

3 3
* 1 * 113

0 033

*

, ,
( 1) ( 1)

0

n nn n
x zn n

n n

xz

c d g d g
z z

c n h n h
σ σ

τ

+ +

= =

= −   = −
+ +

=                                                                     (13)

∑ ∑

        
It is apparent that the boundary displacement 

conditions Eq.(9c) at the fixed end (x=L) are satisfied 
by Eq.(12). At the same time, we find that the specific 
solution Eq.(13) may cause normal surface tractions 
(z=±h/2) 
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To satisfy the surface tractions conditions 

Eq.(9a), we only need to superpose the specific solu-
tion Eqs.(12) and (13) on the solution Eq.(10) in Jiang 
and Ding (2005) for cantilever beam without body 
forces and under uniform loads on upper and bottom 

surfaces (z=±h/2), where 1 1 3
1 ,

8 8
gh d dβ  = + 

 
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 
 In order to satisfy the tractions 

conditions Eq.(9b), the above solution should be 
superposed on the solution Eq.(19) in Jiang and Ding 

(2005), where
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The solution for the second kind of cantilever 
beam with body forces depending only on x coor-
dinate 
 

3

0

0, , ( / )n
x z n

n

f f g c x Lρ ρ
=

=   =   = ∑                   (15) 

 
From Eq.(3), we have 
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Substituting Eq.(16) into Eqs.(6) and (7) yields 
the corresponding specific solution 
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It is apparent that the specific stress solution 

Eq.(18) satisfy the traction boundary conditions 
Eq.(9b) at the free end (x=0) automatically, and may 
cause the fourth power of x tangential tractions on the 
two surfaces (z=±h/2) 
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To satisfy the surface tractions conditions 

Eq.(9a), we should superpose the  solution Eq.(18) on 
the solutions Eqs.(27a), (27b), (27c), (27d), (27e) and 
(28a), (28b), (28c), (28d), (28e) in Jiang and Ding 

(2005), where 1 0 ,T c g= 1
2 ,

2
c g

T
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= 2
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To satisfy the displacement conditions Eq.(9c) at 
the fixed end (x=L), we should superpose the specific 
solution Eq.(17) on the rigid body displacements 
solutions as follows 
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EXAMPLES 
 

In the following analysis, the weight of the beam 
ρ0hLg is assumed to be a constant, i.e. 
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where ρ0 is the average density. Substituting Eqs.(10) 
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and (15) into Eq.(22), we have 2
0 0 12

d
dρ = +  for the 

first kind of beam and 31 2
0 0 2 3 4

cc c
cρ = + + +  for the 

second kind of beam. 
Based on the above equations, all the displace-

ments and stresses at any inner or boundary point of 
the cantilever beam can be obtained. In the calcula-
tion, we set L=150 mm, h=6 mm and ρ0=7800 kg/m3. 
The material constants are shown in Table 1, and the 
deflections of the beam w (x=z=0) are listed in Table 2 
showing that the deflection w caused by the six kinds 
of functionally graded density cantilever beam de-
pend only on x coordinate and z coordinate, respec-
tively, i.e., when density depends on x coordinate: 
(case 1) c0=ρ0, c1=c2=c3=0; (case 2) c1=2ρ0, 
c0=c2=c3=0; (case 3) c2=3ρ0, c0=c1=c3=0; (case 4) 

c3=4ρ0, c0=c1=c2=0; (case 5) c0=c1=c2=c3= 0
12
25

ρ and 

(case 6) 0 0
1 ,
4

c ρ=  1 0
1 ,
2

c ρ=  2 0
3 ,
4

c ρ= 3 0.c ρ=  

When density depends on z coordinate: (case 1) d0=ρ0, 
d1=d2=d3=0; (case 2) d0=d1=ρ0, d2=d3=0; (case 3) 
d2=12ρ0, d0=d1=d3=0; (case 4) d0=d3=ρ0, d1=d2=0; 

(case 5) 0 1 2 3 0
12
13

d d d d ρ= = = =  and (case 6) 

0 1 3 0
1
2

d d d ρ= = = , 2 06d ρ= . 

 
 
 
 
 
 

References 
Anderson, T.A., 2003. A 3D elasticity solution for a sandwich 

composite with functionally graded core subjected to 
transverse loading by a rigid sphere. Composite Struc-
tures, 60:265-274. 

Jiang, A.M., Ding, H.J., 2005. The analytical solutions for 
orthotropic cantilever beams (I): Subjected to surface 
forces. Journal of Zhejinag University SCIENCE, 6A(2): 
126-131. 

Sankar,  B.V.,  2001.  An  elasticity  solution  for  functionally 
 
 
 
 

It is obvious that the deflections of the 
orthotropic cantilever beam caused by body forces are 
different, whereas the results of body force depending 
on z coordinate are the same as that of a homogeneous 
beam as the body force of each unit length is a con-
stant value, and the deflection caused by body force 
depending only on x coordinate for the fourth case is 
the minimum, which is nearly twenty three percent of 
the homogeneous one. 
 
 
CONCLUSION 
 

The analytical solutions for orthotropic density 
functionally graded cantilever beams derived in this 
paper by the superposition principle and the 
trial-and-error method are very explicit and conven-
ient, and are also useful for study of other problems 
with more complicated loads and boundary condi-
tions. Moreover, these analytical solutions can serve 
as benchmarks for numerical methods such as the 
finite element method, the boundary element method, 
etc.  
 
 
 
 
 
 
 
 
 
 
 
 

 
graded beams. Composites Science and Technology, 
61:689-696. 

Tutuncu, N., Ozturk, M., 2001. Exact solutions for stress in 
functionally graded pressure vessels. Composites: Part B, 
32:683-686. 

Wu, C.H., Tsai, Y.H., 2004. Asymptotic DQ solutions of 
functionally graded annular spherical shells. European 
Journal of Mechanics A/Solids, 23:283-299. 

Table 1  Material properties 
 

c11 (N/m2) c13 (N/m2) c33 (N/m2) c55 (N/m2) 

1.66×1011 7.8×1010 1.62×1011 4.3×1010 

 
Table 2  Deflection w of cantilever beam with body force 

 

Density ρ case (1) (2) (3) (4) (5) (6) 
On x (m) 0.1253E-4  0.6663E-5 0.4148E-5 0.2830E-5 0.8618E-5 0.6544E-5 
On z (m) 0.1253E-4  0.1253E-4 0.1253E-4 0.1253E-4 0.1253E-4 0.1253E-4 


