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Abstract:    A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A 
quasi-filled function satisfying our definition is presented. This function contains only one parameter. The properties of the pro-
posed quasi-filled function and the method using this quasi-filled function to solve nonlinear integer programming problem are 
also discussed in this paper. Numerical results indicated the efficiency and reliability of the proposed quasi-filled function algo-
rithm. 
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INTRODUCTION 
 

We consider the following nonlinear integer 
programming problem 
 

(PI)     minf(x),   s.t. x∈XI                             (1) 
 
where XI⊂In is a bounded and closed box set con-
taining more than one point; In is the set of integer 
points in Rn. 

Notice that the formulation in (PI) allows the set 
XI to be defined by equality constraints as well as 
inequality constraints. Furthermore, when f(x) is co-
ercive, i.e., f(x) →+∞ as ||x||→∞, there always exists a 
box which contains all discrete global minimizers of 
f(x), thus constituting an unconstrained nonlinear 
integer programming problem  
 

(UPI)     minf(x),   s.t. x∈In                           (2) 

that can be reduced into an equivalent problem for-
mulation in (PI). In other words, both unconstrained 
and constrained nonlinear integer programming 
problem can be considered in (PI). 
 
 
PRELIMINARIES 
 

Now, we recall some definitions involved in 
nonlinear integer programming problem. 
Definition 1 (Zhu, 2000)    For any x∈In, the 
neighborhood of x is defined by N(x)={x, x±ei: i=1, 2, 
…, n}, where ei is the n-dimensional vector with the 
ith component equal to one and other components 
equal to zero. Let N0(x)=N(x)\{x}. 
Definition 2 (Zhu, 2000)    An integer point x0∈XI is 
called a local minimizer of f(x) over XI if there exists a 
neighborhood N(x0) for any x∈N(x0)∩XI, holds for f(x) 
≥f(x0); an integer point x0∈XI is called a global 
minimizer of f(x) over XI  if for any x∈XI, holds for 
f(x)≥f(x0). In addition, if f(x)>f(x0) for all x∈N0(x0)∩ 
XI (x∈XI\{x0}), then x0 is called a strictly local (global) 
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minimizer of f(x) over XI. 
Theorem 1 (Zhang et al., 1999)    If x0∈XI is a global 
minimizer of f(x) over XI, then x0∈XI must be a local 
minimizer of f(x) over XI . 

The local minimizer of f(x) over XI  is obtained 
by using following Algorithm 1 (Zhu, 2000). 
Algorithm 1 (Zhu, 2000) 

Step 1: Choose any integer x0∈XI. 
Step 2: If x0 is a local minimizer of f(x) over XI, 

then stop; otherwise, we can obtain a x∈N(x0)∩XI, 
have f(x)<f(x0). 

Step 3: Let x0:=x, go to Step 2. 
 
 
A QUASI-FILLED FUNCTION AND ITS 
PROPERTIES 
 

In this section, we propose a quasi-filled func-
tion of f(x) at a current local minimizer *

1x  and will 

discuss its properties. Let *
1x  be the current local 

minimizer of f(x) (obtained by Algorithm 1 (Zhu, 
2000)). Let 

 
*

1 1{ : ( ) ( )}I IS x X f x f x X= ∈ ≥ ⊂  
*

2 1{ : ( ) ( )}I IS x X f x f x X= ∈ < ⊂ . 
 

Definition 3    *
1
( )

x
P x  is called a quasi-filed function 

of f(x) at a local minimizer *
1x  for nonlinear integer 

programming problem if *
1
( )

x
P x  has the following 

properties: 
(i) *

1
( )

x
P x  has no local minimizer in the set 

S1\{x0}. The prefixed point x0 is in the S1; 
(ii) If *

1x  is not a global minimizer of f(x), then 
there exists a local minimizer x1 of *

1
( ),

x
P x  such that 

f(x1)<f( *
1x ), that is, x1∈S2. 

Definition 3 is different from that of the filled 
function in (Ge, 1990; Ge and Qin, 1990; Zhu, 2000; 
Lucid and Piccialli, 2002); Definition 3 based on the 
discrete set in the Euclidean space and x0 is not nec-
essarily the local minimizer of *

1
( )

x
P x . 

Similar to (Zhu, 2003), we present a 
one-parameter quasi-filled function of f(x) at local 
minimizer *

1x  as follows: 

*
1 0

0, ,
( ) ( )

A x x
P x x xη= −  

* 2
1( (exp([min{ ( ) ( ),0}] ) 1))A f x f xϕ− ⋅ − −      (3) 

 
where A>0 is a parameter, prefixed point x0∈XI  
satisfying *

0 1( ) ( ).f x f x≥  
η(t) and ϕ(t) must satisfy the following condi-

tions: 
(a) η(t) and ϕ(t) are strictly monotonously in-

creasing function for any t∈[0,+∞); 
(b) η(0)=0 and ϕ(0)=0; 
(c) ϕ(t)→C>B≥ 0max ( )

Ix X
x xη

∈
−  as x→+∞. 

In the following we will prove that the above 
constructed function *

1 0, ,
( )

A x x
P x  satisfies the condi-

tions (i) and (ii) of Definition 3, i.e., it is a quasi-filled 
function of f(x) at a local minimizer *

1x  satisfying 
Definition 3. First, we give a Lemma 1 as follows: 
Lemma 1    For any integer point x∈XI, if x≠x0, then 
there exists a d∈D={±ei : i=1, 2, …, n} such that 
 

0 0x d x x x+ − < −                             (4) 
 

Proof    Since x≠x0, there exists an i∈{1, 2, …, n} 
such that xi≠x0i. If xi>x0i, then d=−ei. On the other 
hand, if xi<x0i, then d=ei. 
Theorem 2    *

1 0, ,
( )

A x x
P x  has no local minimizer in the 

integer set S1\{x0} for any A>0. 
Proof    For any x∈S1 and x≠x0, by using Lemma 1 we 
know there exists a d∈D, such that 
 

0 0x d x x x+ − < −  

 
Consider the following two cases: 
(1) If *

1( )f x ≤f(x+d)≤f(x) or *
1( )f x ≤f(x)≤f(x+d), 

then  
 
       *

1 0
0, ,

( ) ( )
A x x

P x d x d xη+ = + −  
* 2
1( (exp([min{ ( ) ( ),0}] ) 1))A f x d f xϕ− ⋅ + − −

            0 0( ) ( )x d x x xη η= + − < − *
1 0, ,

( )
A x x

P x=  

 
Therefore, x is not a local minimizer of function 

*
1 0, ,

( )
A x x

P x . 
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(2) If  f(x+d)< *
1( )f x ≤f(x), then  

 
*
1 0

0, ,
( ) ( )

A x x
P x d x d xη+ = + −  

* 2
1( (exp([min{ ( ) ( ),0}] ) 1))A f x d f xϕ− ⋅ + − −

             0( )x d xη= + −  
* 2
1( (exp([ ( ) ( )] ) 1))A f x d f xϕ− ⋅ + − −  

*
1 0

0 0 , ,
( ) ( ) ( )

A x x
x d x x x P xη η≤ + − < − =

 
Therefore, it is shown that x is not a local minimizer 
of function *

1 0, ,
( )

A x x
P x . 

By Theorem 2, we know that the constructed 
function *

1 0, ,
( )

A x x
P x  satisfies the first property of 

Definition 3 without any further assumption on the 
parameter A. 

Since XI=S1∪S2, Theorem 2 implies the fol-
lowing corollary. 
Corollary 1    Any local minimizers of function 

*
1 0, ,

( )
A x x

P x  except x0 must be in the integer set S2. 

However, if A=0, then *
1 0

0, ,
( ) ( )

A x x
P x x xη= −  

has a unique local minimizer x0 in the XI. Since f(x0)≥ 
*
1( )f x , that is, x0∈S1, *

1 0, ,
( )

A x x
P x  has no local mini-

mizers in the set S2 and *
1 0, ,

( )
A x x

P x  is not a quasi-filled 

function of f(x) at a local minimizer *
1x . So we have a 

question of how large the parameter A would be such 
that a local minimizer can be in the set S2. In fact, we 
have the following theorem. 
Theorem 3    *

1 0, ,
( )

A x x
P x  has local minimizer in the 

integer set S2 if S2≠∅ and A>0 satisfies the following 
condition: 
 

1

* * 2
1

( )
exp([ ( ) ( )] ) 1

BA
f x f x

ϕ−

>
− −

                     (5) 

 
where *x  is a global minimizer of f(x). 
Proof    Since S2≠∅ and *x  is a global minimizer of 
f(x), we have *( )f x < *

1( ),f x and  
 

*
1 0

* *
0, ,

( ) ( )
A x x

P x x xη= −  
* * 2

1( (exp([min{ ( ) ( ),0}] ) 1))A f x f xϕ− ⋅ − −

                *
0( )x xη= −  

* * 2
1( (exp([ ( ) ( )] ) 1))A f x f xϕ− ⋅ − −  

* * 2
1( (exp([ ( ) ( )] ) 1))B A f x f xϕ≤ − ⋅ − −  

 
when A>0 and satisfies Eq.(5), we have 

*
1 0, ,

( ) 0
A x x

P x < . 

On the other hand, for any y∈S1, we have 
 

*
1 0

0, ,
( ) ( )

A x x
P y y xη= −  

* 2
1( (exp([min{ ( ) ( ),0}] ) 1))A f y f xϕ− ⋅ − −

                        0( ) 0y xη= − ≥  
 
Therefore, the global minimizer of *

1 0, ,
( )

A x x
P x  must 

exist in the set S2. By Theorem 1 we know that 
*
1 0, ,

( )
A x x

P x  has local minimizer in the set S2. 

In summary, by Theorems 2 and 3, if parameter 
A is large enough then the constructed function 

*
1 0, ,

( )
A x x

P x  does satisfy the conditions of Definition 3. 

i.e., function *
1 0, ,

( )
A x x

P x  is a quasi-filled function. 

However, we know the value of *
1( ),f x and 

generally we do not know the global minimal value or 
global minimizer of f(x), so it is difficult to find the 
lower bound of parameter A in Theorem 3. 

But for practical consideration, problem (PI) 
might be solved if we can find an x∈XI such that 
f(x)< *( )f x +ε, where *( )f x is the global minimal 
value of problem (PI), and ε is a given desired opti-
mality tolerance. So we consider the case when the 
current local minimizer *

1x  satisfies *
1( )f x ≥ *( )f x +ε. 

In the following Theorem 4 we develop a lower 
bound of parameter A which depends only on the 
given optimality tolerance ε. 
Theorem 4    Suppose that ε is a small positive con-

stant, and 
1

2

( )
exp( ) 1

BA ϕ
ε

−

>
−

. Then for any current 

local minimizer *
1x of  f(x) such that *

1( )f x ≥ *( )f x +ε, 
quasi-filled function *

1 0, ,
( )

A x x
P x  has local minimizer 

in the set S2, where x* is a global minimizer of f(x). 
Proof    Since exp(t)−1 is a strictly monotonously 
increasing function for any t∈[0, +∞] and *

1( )f x − 
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*( )f x ≥ε, we have 
 

* * 2 2
1exp([ ( ) ( )] ) 1 exp( ) 1f x f x ε− − ≥ − , 

that is 
1 1

* * 2 2
1

( ) ( )
exp([ ( ) ( )] ) 1 exp( ) 1

B B
f x f x

ϕ ϕ
ε

− −

≤
− − −

 

 
Hence, if  
 

1

2

( )
exp( ) 1

BA ϕ
ε

−

>
−

,  

then  
1

* * 2
1

( )
exp([ ( ) ( )] ) 1

BA
f x f x

ϕ−

>
− −

,  

 
and by Theorem 3, the conclusion of this Theorem 
holds. 

About prefixed point x0∈S1, we have the fol-
lowing property. 
Theorem 5    The prefixed point x0∈S1 is a local 
minimizer of *

1 0, ,
( )

A x x
P x  if x0∈S1 is a local minimizer 

of f(x). 
Proof    Since x0∈S1 is a local minimizer of f(x), there 
exists a neighborhood N(x0), for any x∈N(x0)∩XI we 
have f(x)≥f(x0)≥f( *

1x ), therefore 
 

( )*
1 0

0, ,
( )

A x x
P x x xη= −  

* 2
1( (exp([min{ ( ) ( ),0}] ) 1))A f x f xϕ− ⋅ − −  

( ) ( )0 0 0x x x xη η= − ≥ − = *
1 0

0, ,
( )

A x x
P x  

 
holds for any x∈N(x0)∩XI.  That is, x0∈S1 is a local 
minimizer of *

1 0, ,
( )

A x x
P x . 

We construct the following auxiliary nonlinear 
integer programming problem (API) related to the 
problem (PI): 

 
(API)    min *

1 0, ,
( )

A x x
P x ,   s.t. x∈XI                (6) 

 
According to the above discussions, given any 

desired tolerance ε>0, if 
1

2

( ) ,
exp( ) 1

BA ϕ
ε

−

>
−

then 

*
1 0, ,

( )
A x x

P x  is a quasi-filled function of f(x) at its cur-

rent local minimizer *
1x  which satisfies that 

f( *
1x )≥f( *x )+ε. Thus if we use a local minimization 

method to solve problem (API) from any initial point 
on XI, then by the properties of quasi-filled function, 
it is obvious that the minimization sequence 
converges either to the prefixed point x0 or to a point 
x′∈XI such that f(x′)<f( *

1x ). If we find such an x′, then 
using a local minimization method to minimize f(x) 
on XI from initial point x′, we can find a point x″∈XI 
such that f(x″)<f(x′) which is better than *

1x . This is 
the main idea of the algorithm presented in the next 
section to find an approximate global minimal solu-
tion of problem (PI). 
 
 
ALGORITHM AND NUMERICAL RESULTS 
 

Based on the theoretical results in the previous 
section and similar to (Zhu, 2003), a global optimi-
zation quasi-filled function algorithm over XI is pro-
posed as follows. 
Algorithm 2 (The quasi-filled function method) 

Step 1: Given a constant NL>0 as the tolerance 
parameter for terminating the minimization process 
of problem (PI) and a small constant ε>0 as a desired 
optimality tolerance; choose any integer x0∈XI. 

Step 2: Obtain a local minimizer *
1x  of f(x) by 

implementing Algorithm 1 (Zhu, 2000) starting from 
x0. 

Step 3: Construct the quasi-filled function 
*
1 0, ,

( )
A x x

P x  as follows: 

 
( )*

1 0
0, ,

( )
A x x

P x x xη= −  
* 2
1( (exp([min{ ( ) ( ),0}] ) 1))A f x f xϕ− ⋅ − −

 
where A>0 and satisfying condition Eq.(5) or 

1

2

( )
exp( ) 1

BA ϕ
ε

−

>
−

. Let N=0. 

Step 4: If N>NL, then go to Step 7. 
Step 5: Set N=N+1. Draw an initial point on the 

boundary of the XI, and start from it to minimize 
*
1 0, ,

( )
A x x

P x  on XI using any local minimization method. 

Suppose that x′ is an obtained local minimizer of 



Shang et al. / J Zhejiang Univ SCI   2005 6A(4):305-310 309

*
1 0, ,

( )
A x x

P x . If x′=x0, then go to Step 4, otherwise go to 

Step 6. 
Step 6: Minimize f(x) on the XI from the initial 

point x′, and obtain a local minimizer *
2x  of f(x). Let 

*
1x = *

2x  and go to Step 3. 

Step 7: Stop the algorithm, output *
1x  and f( *

1x ) 
as an approximate global minimal solution and global 
minimal value of problem (PI) respectively. 

Although the focus of this paper is more theo-
retical than computational, we still test our algorithm 
on several global minimization problems to have an 
initial feeling of the practical value of the quasi-filled 
function algorithm. 

 
Example 

1
2 2 2 2

1 1
1

min ( ) ( 1) ( 1) ( )( )
n

n i i
i

f x x x n n i x x
−

+
=

= − + − + − −∑
       s.t. 5ix ≤ , xi integer, i=1, 2, …, n. 
 

This problem is a box constrained nonlinear in-
teger programming problem. It has 11n feasible points 
and many local minimizers (4, 6, 7, 10 and 12 local 
minimizers for n=2, 3, 4, 5 and 6, respectively), but 
only one global minimum solution: *

globalx =(1,1,…,1) 

with f( *
globalx )=0 for all n. We considered three cases 

of the problem: n=2, 3 and 5. There were about 
1.21×102, 1.331×103, 1.611×105 feasible points, for 
n=2, 3, 5, respectively. 

In the following, the proposed solution algo-
rithm is programmed in MATLAB 6.5.1 Release for 
working on the Windows XP system  with  900  MHz 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CPU. The MATLAB 6.5.1 subroutine is used as the 
local neighborhood search scheme to obtain local 
minimizers of f(x) in Step 2 and the local minimizers 
of *

1 0, ,
( )

A x x
P x  in Step 5. We choose η(t)=t, ϕ(t)=t, so 

the function *
1 0, ,

( )
A x x

P x  is as follows: 

 
 

*
1 0

0, ,
( )

A x x
P x x x= −  

* 2
1(exp([min{ ( ) ( ),0}] ) 1)A f x f x− ⋅ − −

 

where let ε=0.05, and 2 1,
exp( ) 1

BA
ε

= +
−

 

0max (|| ||) 1 10 1,
Ix X

B x x nη
∈

= − + = + the tolerance 

parameter NL=10n. n is the variable number of f(x). 
The partial main of the computational process 

for the numerical example are summarized in Tables 
1, 2, and 3 for n=2, 3, 5, respectively. The symbols 
used are as follows:  

n: the number of variables; TS: the number of 
initial points to be chosen; k:  the times for the local 
minimization process of the problem (PI); ini :

kx  the 
initial point for the kth local minimization process of 
problem (PI); 

0
:k

f lx −
 the minimizer for the kth local 

minimization process of problem (PI); 
0

( ):k
f lf x −

 the 

minimum of the 
0
;k

f lx −   
0
:k

p lx −
 the minimizer for the 

kth local minimization process of problem (API);  

0
( ):k

p lf x −
 the minimum of the 

0
;k

p lx −  QIN: the itera-

tion number for the kth local minimization process of 
problem (API). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Results of numerical example, n=2, ε=0.05, A=6.0503e+003, B= 10 2 +1, NL=102+1 
 

TS k ini
kx  

0

k
f lx −

 
0

( )k
f lf x −

 
0

k
p lx −

 
0

( )k
p lf x −

 QIN 

1 (4,3) (2,3) 7 (1,2) 3 2 1 
2 (1,2) (1,1) 0   ≥102+1 

1 (−5,−3) (0,0) 2 (1,1) 0 0 2 
2 (1,1) (1,1) 0   ≥102+1 

1 (−4,3) (−2,3) 15 (1,1) 0 1 3 
2 (1,1) (1,1) 0   ≥102+1 

1 (0,−2) (0,0) 2 (1,1) 0 1 4 

2 (1,1) (1,1) 0   ≥102+1 
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CONCLUSION 

 
This paper gives a definition of the quasi-filled 

function for nonlinear integer programming problem, 
and presents a quasi-filled function which has only 
one parameter. A quasi-filled function algorithm 
based on the given quasi-filled function was designed. 
Numerical results indicated the efficiency and reli-
ability of the proposed quasi-filled function algo-
rithm. 
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Table 2  Results of numerical example, n=3, ε=0.05, A=7.3200e+003, B= 10 3 +1, NL=103+1 
 

TS k ini
kx  

0

k
f lx −

 
0

( )k
f lf x −

 
0

k
p lx −

 
0

( )k
p lf x −

 QIN 

1 (3,3,3) (1,2,3) 13 (1,1,1) 0 0 1 
2 (1,1,1) (1,1,1) 0   ≥103+1 

1 (−4,0,4) (−1,2,3) 17 (−1,1,1) 4 4 
2 (−1,1,1) (0,0,0) 2 (1,1,1) 0 2 

2 

3 (1,1,1) (1,1,1) 0   ≥103+1 

1 (0,4,4) (1,2,3) 13 (1,1,1) 0 1 3 
2 (1,1,1) (1,1,1) 0   ≥103+1 

1 (−1,4,2) (−1,1,1) 4 (1,1,1) 0 0 4 
2 (1,1,1) (1,1,1) 0   ≥103+1 

Table 3   Results of numerical example, n=5, ε=0.05, A=9.3336e+003, B= 10 5 +1, NL=105+1 
 

TS k ini
kx  

0

k
f lx −

 
0

( )k
f lf x −

 
0

k
p lx −

 
0

( )k
p lf x −

 QIN 

1 (0,0,2,0,2) (0,0,0,0,0) 2 (1,1,1,1,1) 0 1 1 
2 (1,1,1,1,1) (1,1,1,1,1) 0   ≥105+1 

1 (−2,2,0,1,1) (−1,1,1,1,1) 4 (0,0,0,0,0) 2 8 
2 (0,0,0,0,0) (0,0,0,0,0) 2 (1,1,1,1,1) 0 4 

2 

3 (1,1,1,1,1) (1,1,1,1,1) 0   ≥105+1 

1 (0,3,0,3,3) (1,1,1,2,3) 19 (1,1,1,1,1) 0 0 3 
2 (1,1,1,1,1) (1,1,1,1,1) 0   ≥105+1 

 


