
Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 405

Instance-oriented delegation: A solution for providing security to
Grid-based mobile agent middleware*

MA Tian-chi (马天驰), LI Shan-ping (李善平)
(School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)

E-mail: tcma@csis.hku.hk; shan@cs.zju.edu.cn
Received Feb. 2, 2004; revision accepted May 8, 2004

Abstract: New challenges are introduced when people try to build a general-purpose mobile agent middleware in Grid envi-
ronment. In this paper, an instance-oriented security mechanism is proposed to deal with possible security threats in such mobile
agent systems. The current security support in Grid Security Infrastructure (GSI) requires the users to delegate their privileges to
certain hosts. This host-oriented solution is insecure and inflexible towards mobile agent applications because it cannot prevent
delegation abuse and control well the diffusion of damage. Our proposed solution introduces security instance, which is an en-
capsulation of one set of authorizations and their validity specifications with respect to the agent’s specific code segments, or even
the states and requests. Applications can establish and configure their security framework flexibly on the same platform, through
defining instances and operations according to their own logic. Mechanisms are provided to allow users delegating their identity to
these instances instead of certain hosts. By adopting this instance-oriented security mechanism, a Grid-based general-purpose MA
middleware, Everest, is developed to enhance Globus Toolkit’s security support for mobile agent applications.

Key words: Mobile agent, Grid, Trust model, Delegation
doi:10.1631/jzus.2005.A0405 Document code: A CLC number: TP393

INTRODUCTION

Grid computing, since its emergence, has been

widely regarded as a new revolution of information
technologies (Foster et al., 2001). Due to the high
heterogeneity and complexity in Grid environments,
mobile agent (MA) has been considered as one of the
promising solutions for realizing flexible and scalable
Grid Computing. With the MA support, one can
execute parts of its program on any networked hosts
offering needed services.

In the Grid world, applications usually need to
get services scattered among multiple
WAN-connected sites. In order to adapt well to this
heterogeneous computing environment, there is a
need to build a general-purpose platform across hosts,
to support agents that come from multiple applica-

tions. In this scenario, agents will access resources by
general Grid services.

The goal of this work is to build a Grid-adaptive
framework to tackle the security problems within
general-purpose MA systems. Since security is an
essential issue of MA systems, much research has
been done to tackle security threats from agents to
hosts, or from hosts to agents (Borselius, 2002). For
example, to tackle various security issues brought
from multiple organizations, the Grid Security Infra-
structure (GSI) (Foster et al., 1998) has established as
a trust framework on which general authentication
and authorization can be carried out. To ensure trust
protection, when an agent is trying to move, the host
currently hosting the agent will be asked to sign a
further delegation to the target host that the agent
wants to move onto. This is called a host-oriented
delegation mechanism because the authorizations are
bound onto hosts. In GSI, however, a continuous
delegation or chain-delegation for an agent is not

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

* Project (No. 602032) supported by the Natural Science Foundation
of Zhejiang Province, China

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 406

recommended. This is mainly because the
host-oriented mechanism requires each host to hold
the privilege of further signing delegations in the
name of the original user, while, in a common cir-
cumstance, an individual host will not be trusted by
the user during an agent’s full trip. Once a privileged
host has been cracked, it will probably maliciously
delegate to its other cooperators to spread the damage
across the whole network. This makes the agent be-
have like viruses.

To improve that, an instance-oriented security
framework is then proposed in this paper. Different
from the original host-oriented policy, we define se-
curity instances as an encapsulation of one set of
authorizations and their respective validity specifica-
tions. User and applications can define several kinds
of security instances and their possible operations,
according to the application’s own logic. The in-
stances are signed by its creator and recorded into the
mobile agent’s delegation document. A
strictly-protected trace list is adopted for validity
computing and intrusion detection. These constitute
the delegation document together. Besides, we adopt
several firmly trusted servers in our framework, called
exchange servers, to be the security checkpoints. All
the user’s security policies are only required to be
delivered on these servers, instead of all the con-
cerned hosts.

Four exciting goals can be achieved using the
proposed security framework:

1. The problem of the abuse of delegation
document can be avoided.

2. The system’s flexibility is enhanced by the
instance-oriented model. All restrictions and verifi-
cations are bound onto the instances-oriented delega-
tions which can be transferred everywhere under the
direct authorization of the original user. This makes
the delegation a standard document-centered flexible
model. And the dynamic resource reservation can also
enhance the flexibility of the agent.

3. Enables easy delivery and updating of user’s
security policies. Once a policy needs to be updated,
only a few of the exchange servers need to be flushed
to achieve consistence.

4. Compatible for heterogeneous applications.
The implementation details of components (agent
functionalities, accessing protocols) are encapsulated
into the instance.

THE EVEREST ARCHITECTURE

The core modules implemented in Everest are

shown in Fig.1. We follow the “gatekeeper-backend
servers” architecture. The system depends on Globus
Toolkit 2.2. We define each gatekeeper as a simulated
Grid site (host), and select some of them to act as the
exchange servers.

In the Everest system, the code maintenance and
migration are all processed on the gatekeeper of each
host, while the job manager and the backend server
need only deal with the mobile agent like normal jobs.
During migration of the agent, the preliminary pro-
cedures are handled by the migration daemon on the
gatekeeper. An execution daemon on each backend
server will then start to save the code’s current exe-
cution states and transfer them to the target backend
server directly without passing the two gatekeepers.

The migration daemon is in charge of the code
migration (i.e., handover operation). It will also send
delegation-updating requests to the exchange server,
when a delegation document is found falling into
invalidation.

The exchange server is composed of a code
daemon and several code maintainers. The code
daemon is in charge of obtaining request from hosts.
Then it forwards those requests to the corresponding
code maintainer. Each agent has a code maintainer in
the exchange server, to maintain and monitor its cur-
rent states. When a code asks for a delegation docu-
ment renewal, it is the maintainer who will attend to
these requests. For other requests like resource res-
ervation, the maintainer will ask the code daemon to
contact the corresponding resource provider, and
transfer the requests to it. Besides, the code main-
tainer should have enough knowledge to carry out a
client side validation check on the request delegation
documents.

There are two modules covering the resource
provider’s standard service interface. The reservation
service module has the privilege of signing a resource
instance delegation document. Actually, the real res-
ervation operation will be done under the standard
service interface, while the reservation service takes
care only of those businesses concerned with delega-
tion document. Another module is the security guard,
which is used to deal with the resource requests. The
security guard will first make a server side validation

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 407

check on the coming delegation document, and then
establish a connection between the remote agents and
the standard service interface.

INSTANCE-ORIENTED DELEGATION MODEL

Why instance-oriented?

A delegation (also called impersonation) is a
statement, which includes one or a set of authoriza-
tions from the user or policy publisher. The original
delegation document is very simple. It records and
proves the following statement:

A authorizes B to behave in the name of A.

i.e. by showing this delegation document, B will have
the privilege to do whatever A is allowed to do. This
delegation designates a kind of universal deputy.
However, it does not allow a user to specify detailed
privileges to his deputy. To deal with this, an ex-
tended delegation is proposed on which the detailed
privileges are recorded there. It makes the following
statement:

A authorizes B to perform S in name of A.

However, the above statement is not enough ei-

ther because in many circumstances, the given privi-
leges should be restricted under one or some condi-
tions. A very familiar example is the TTL of the
delegation. Beyond the TTL, a delegation should be
regarded as invalid. This information must be re-
corded in the delegation document, or else the host
may mistrust an invalid delegation that is out-of-time.

To deal with this, the delegation document is
further extended, by adding conditions like the fol-
lowing:

A authorizes B to perform S in name of A, under

the condition U.

This delegation document is detailed enough, yet

at the same time it also introduces much inflexibility.
In fact, the condition U just mentioned should not be
bound to the destination host B, but it should be bound
to the target which is being performed. We will find
that the target host B can be regarded as a part of the
condition, if it must be specified.

Resource
reservation request

Process
execution

Resource Resource
Resource provider

Standard service interface
Security guard Reservation service

Resource
consuming

Server side
validation check

Resource
delegation initializing

Client side
validation check

Code delegation
initializing

Renew

Resource reservationNetwork

Exchange server

Code maintainerCode maintainer

Code daemon

Trusted
hosts update

User client

User client Code register Gatekeeper

Resource
consuming

request

Reservation
Renew resource Network

 Job submit
 Delegation

Migration daemon
Execution
 daemon

Gatekeeper
Destination host

States transfer

Migration daemon
Execution
 daemon

Source host
Gatekeeper

Fig.1 Core modules of the Everest mobile agent platform

Code migration

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 408

To further improve the flexibility, a new type of
delegation document is proposed, in which the item
describing the destination host has been abolished.
Instead, another item is introduced describing the
content(s) to be performed on. This makes the fol-
lowing statement:

A authorizes instance (S, U) to be performed in

the name of A, where S will be valid only under con-
dition U.

It can be learned from the statement that instance

(S, U) records the detailed privilege(s) and their va-
lidity specifications. The condition U is bound on S.
This delegation can be used on whatever host. Of
course, user can specify a target host B by adding B to
the condition set.

The delegation making the statement just men-
tioned above is called an instance-oriented delegation.
The goal of the instance-oriented delegation is mainly
for the purpose of introducing a convenience for the
security designers (there are three kinds of security
designer: framework security designer, component
security designer and policy security designer), and
providing a more flexible and stable protocol to im-
plement those kinds of security polices.

Advantages

The proposed model can be regarded as a muta-
tion of the object-oriented model. Following such
software architecture will reap at least two benefits:
implementation independency and reuse-ability. The
implementation independency enables the framework
security designer to build his framework only by
considering the public operations and properties pro-
vided by those security instances. He need not care
about the detailed implementation of a certain in-
stance. From the policy security designer’s point of
view, he need not care about the complex trust rela-
tionship among hosts. What he needs to pay attention
to is only how to give security solutions for specific
operations in specific instances. The reuse-ability is
based on the component security designer’s point
view. He can derive them from the existing
classes/instances and produce new instances with a
few codes added only. Also, he needs only to care
about the pre-defined interface when designing a
security instance, to make their productions achieve

reuse-ability for other security frameworks.
The most remarkable characteristic of the dele-

gation is its mobility. For conventional host-oriented
delegation, everything will be reestablished on its
moving. For example, host A delegates host B to
perform instance S, host B wants to further transfer
this delegation to host C. For safety considerations,
host B must ask host A that whether it is feasible to
authorize host C to have the privileges. Without this
query, host C will not be regarded as a safe deputy.
This makes the verification more complex. Besides,
suppose A has approved the further delegation, then B
will rewrite a new delegation of B→C, and append
A’s approval behind the delegation context. We can
imagine that if the delegation is asked to be moved
further and further, the procedures will become very
complex. An instance-oriented delegation will greatly
simplify the procedure, as it does not need to bind on a
target host. The instance is free to be moved every-
where except that its moving territory is restricted to
the conditions of the delegation document. During the
moving, the structure of the instance’s description
needs not to be changed. The only thing a host may be
asked to do is to append a trace node behind the
delegation context, to record what it has done with the
corresponding security instance.

Contractual history

Besides the instance-oriented model, a new
content is proposed to be inserted into the delegation
document, and is called contractual history. Con-
tractual history is adopted to be the proof of past op-
erations.

In the real world, people use contracts to record
and prove some agreements that had been established,
and then to ensure they are executed correctly. In the
proposed security framework, a contract is adopted to
record and prove some experienced procedures or
operations, and protect them from being denied.
Usually, a real-life contract should include signatures
of the people concerned. Similarly, all the hosts with
direct relation to the to-be-proved procedure or op-
eration must put a digital sign on the contract, to make
a trustable assurance. Contractual history is a record
of past operations as described by a list of contracts.

The contractual introduces several functions and
benefits:

1. A third party can check and testify to the ex-

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 409

istence of past businesses by verifying the contracts.
No one can deny the content of the contract, because
all the concerned hosts have signed on it.

2. It is strictly required that all the concern hosts
who had signed on the contract should reserve a copy
of the signed contract. Besides, it is not necessarily
required but highly recommended that a third party
reserves a copy also. This is to ensure that when one
or some signatories (not all) try to deny the past, an-
other contract holder can stand out to impeach them
for that.

3. Contracts are chain-linked in the contractual
history, and therefore they can be checked together.
For example, contract 1 records that an instance has
been moved from A to B (A→B); contract 2 records
B→C and contract 3 records C→D. The three con-
tracts can be collected together to prove that every-
thing is ok. If only contract 1 and contract 3 are pro-
vided, the system can rapidly find out that one or
some contracts have been disguised, by comparing
and matching them.

The contract is designed to prove a certain op-
eration. It will not be changed along with the variety
of hosts. This makes it naturally simple to be bound
onto an instance-oriented delegation.

Exchange server

A Step-To-Live (STL) restriction can be intro-
duced into an agent instance. The STL restriction is
recorded into the agent’s validity specification, in
order to avoid unlimited damage diffusion which is
caused by a compromised agent migrating itself again
and again. If the times an agent has migrated exceed
the value of STL, it will fall into invalidation. To
continue the trip, the agent must look for an exchange
server to apply for a Renew. The exchange servers are
some hosts selected from the network that are firmly
trusted by the user. They will act as privileged proxies
to help user to carry out the verifications and further
authorizations. The exchange server mechanism is a
trade-off; it can hold the user’s privileges within a
small region while providing a better performance
comparing with a purely centralized architecture.
Besides, the user needs only to publish his security
policies to these exchange servers, instead of to all the
concerned hosts.

Using exchange server can also avoid overfull
authorization. An agent may have to access many

remote resources during its whole trip. However, the
user cannot give all the needed privileges to an agent,
at its launch time. This is mainly because an overfull
authorization will cause the agent’s potential damage
to grow larger. Furthermore, one can hardly predict
all the behaviors of his agent during the trip. The
exchange server allows the user to apply for resource
reservation dynamically. It will contact the target
resource and process with all the authorizations on
behalf of the agent. Therefore, a normal host does not
need to care about the security verification and au-
thorization, as well as the application’s specific logic.
This gives the platform large compatibility.

DELEGATION PROFILE

Terms

According to the above introduction, an instance
will be moved, renewed and consumed during its trip.
We call these operations. To get a feasible security
policy, how an instance is operated should be first
taken into consideration. Usually, in each operation,
there will be an Initiator and an Acceptor. In common
MA systems, the Initiator is always defined as the
resource requestor, or the provider of the agent. An
Initiator is composed of the agent (code section plus
current execution states) and site currently hosting it.
An Initiator may have motivations of sending fake or
malicious resource requests, to filch some data or
even crash the resource provider’s system. An Ac-
ceptor refers to a resource provider or the host an
agent is trying to move onto. Generally, Acceptors are
supposed to have a firm trust relationship with the
code’s original provider or launcher. Initiators will be
under suspicion of whether or not they have modified
the agent to make it unable to completely enforce the
mission specified by the user, and whether they have
any malicious intentions. There may be some attack-
ers who would like to masquerade as an Acceptor. It
should also be considered that both the Initiators and
the Acceptors could have the motivation of denying
one or some historical operations.

The structure of the delegation document

An instance-oriented delegation can have one or
multiple instances. Each instance-oriented delegation
document is composed of two parts (as shown in

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 410

Fig.2).
The first part is instance details. For each in-

stance, there must be an instance detail recorded. An
instance detail records the instance’s properties, op-
erating rules, and specifications about its validity. The
instance detail can only be filled and modified on the
initialization of the instance’s delegation or in renew
operations. Otherwise, it is read-only. Details about
the renew operations will be discussed in Section 4.3.

Both the consumer and the holder of the delega-
tion document should declare their approval of the
contents recorded in the instance detail. At the bottom
of the instance detail, the signature of the delegation’s
original creator or last modifier (maybe an exchange

server) on the instance detail should be attached, in
order to prove the detail’s validity. And the original
creator’s certificate list should also be attached on it,
to prove the validity of its signature (this is not always
necessary, because the certificate list can be retrieved
from another place).

The second part is a trace list, which is an array
including records of the contractual history of the
corresponding instances. Each item of the array is
called a trace node, in which a single operation is
recorded. An instance-oriented delegation document
can only have one trace list, in which trace nodes for
all its instances are linked together.

A single trace node is divided into two sections:

 Fig.2 Instance-oriented delegation profile

Instance detail

Sig creater

Instance detail

Instance detail

Instance ID
Instance proper-

tiesOperating specification
Validity specification
Other plug-in policies

Instance ID
Instance digest

Operation log
Other plug-in policies

Type
Start time
End time
Op detail

Sig initiator

Sig acceptor

Contract Trace node Trace
node

Trace
node

Trace list

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 411

contract content and a signature pair. In the contract
content, first the instance detail’s content’s digest or a
global instance ID will be recorded to prove that the
contract is related to exactly the corresponding in-
stance. Here multiple instances’ ID or digest can be
put together for a batch operation. After the digest or
global instance ID, there should be an operation log,
in which the detailed information on the correspond-
ing operation should be recorded. The operation log
can include the start and end time of the operation, its
returning result, and exceptions. The signature pair is
the second section of the trace node. It is comprised of
both the Initiator and the Acceptor’s signatures on the
contract, to show their approval of the contract’s
contents. Both the Initiator and the Acceptor will hold
a copy of the signed trace node. It can be shown as
evidence when the opposing party tries in the future to
deny one or more historical operations.

General operations

All instances have a common opera-
tion−handover. In general, this operation can be per-
formed by all instances, by transferring the instance
delegation from one host to another. In a handover
operation, an instance’s states will not be changed.
Only its current location is changed. Once a delega-
tion migration is carried out between hosts, there must
be one or more handover operations performed.

To prevent unlimited diffusion of potential
damage, the max times of performing the handover
operation should be specified. It should be considered
as an issue when an instance’s validity is being
measured. Once an instance reaches the max hand-
over times, it will be regarded as no longer valid and
thus no operations can be performed on it. In this
circumstance, to make a further delegation, the in-
stance should request for a renew operation. The ex-
change server will act as a privileged modifier of the
delegation documents. It is always authorized by a
user, and can update and recreate the instances issued
by that user. However, it has no privilege to update
other instances in the same delegation document.
Usually, a renew operation will remove some obsolete
trace nodes and make the delegation shorter. On the
other hand, the recorded times of the handover op-
erations is reduced and become lower than the speci-
fied max times. Thus the delegation can resume as
valid again.

EXPERIMENTS AND ANALYSIS

The Everest platform was installed onto the su-

per cluster Gideon 300. There are totally 300 PCs
connected through Giga-byte LAN. Each was
equipped with one PIV 2.0 GHz Intel processor with
512 MB memory, 40 GB hard disk space. RedHat 8.0
was installed on those PCs. The Globus Toolkit 2.2
installed in each PC acted as both gatekeeper and
backend server. We adopted linux-fork as the simple
job manager because it was required to specify a job
manager in GT2 GRAM. (It can be fork, PBS or other
supported job managers. Here the fork was chosen
because it was the simplest one.)

We have built an application of agent-based
market. Agent travels among hosts to exchange in-
formation for them. Each host has an information pool,
which follows the Monitoring and Discovery Service
(MDS) and can be regarded as a standard information
service. Host puts what it can provide and what it
required into the pool. Agent retrieves the host’s re-
quests and moves to other hosts to discover the
needed information. After it has got the required in-
formation, the agent will move back to the original
host and deliver the information to the pool.

Totally 20 nodes on the Gideon cluster were se-
lected to participate in this experiment. One of them
was appointed to act as the agent’s launcher, another
one was appointed to act as exchange server. Eighteen
nodes remained to be the general hosts. To standard-
ize the experiment, we predefined the travel path for
the agent. The agent will be launched out, and travels
as a loop from host1 to host18. On each time of the
authorization and renew operation, the security
sub-system will be active and a time counter will start
to run. After each time the security-related operation
is done, the time counter will calculate and print the
time used in this operation. When the agent is about to
leave a host, the platform will report the current size
of its delegation document. By these, we can get the
time and memory overhead used for security opera-
tions.

We compared the overheads between the in-
stance-oriented and host-oriented delegation schemes.
The Step-To-Live parameter was set to 3 (that is, will
renew 5 times while traveling the first loop). Below
are the data result and figures.

Fig.3 compares two scenarios. It can be con-

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 412

cluded that after 11 hosts traveling, the host-oriented
scenario begins to cost more time than the in-
stance-oriented one.

Fig.4 compares the memory cost for each dele-

gation document. Unlike the host-oriented scenario,
the instance-oriented delegation’s size will not keep
increasing, because the delegation will be curtailed on
the renew time. One may argue that when the
Step-To-Live or resource accessing increases, the
delegation document’s size will grow, so the overhead
will be larger because of the time for transferring over
to the network. However, since the delegation’s cur-
rent size is only 8 K, even if a big STL is selected and
the delegation suffers from poor network transfer, it

will not cost too much time. And the application can
adjust the STL to a shorter value if the network
bandwidth is low. Finally, even if the performance is a
little lower than that of the host-oriented scheme, the
instance-oriented scheme is still recommended be-
cause it is worthy to pay a bit of performance to lev-
erage the security assurance.

RELATED WORK

Table 1 gives a brief comparison of the main
existing methods against security threats within the
MA system.

Table 1 Comparison of existing solutions

Criterions
Methodology

Compatibility Implementation Verification Update
Remarks

Trust management
(Wong and Sycara, 1999) Good Simple Rigorous Normal Depends on other’s honesty

Vote
(Schneider, 1997) Normal Simple Normal Normal Depends on other machines, inefficient

Hardware protection
(Wilhelm et al., 1999) Limited Hard Normal Hard Efficient, but expensive & less scalable

Cryptography execution
(Sander and Tschudin, 1998) Limited Hard Rigorous Hard Not scalable

Execution states analyzing
(Chander et al., 2001) Limited Normal Normal Normal Need knowledge about the application’s logic

Cryptography tracing
(Vigna, 1997) Normal Normal Normal Hard Counter denying. Indirect attacks possible

Proof carrying code
(Necula and Lee, 1996) Limited Normal Normal Hard Special for untrusted code. Policies embedded

in the compilers
Appraisal
(Farmer et al., 1996) Limited Normal Rigorous Normal Less compactable, depending on code’s logic

Host defense
(Jansen, 2001) Good Normal Rigorous Hard Local defense, code regardless. But depends

on the policy’s maturity, sometimes inefficient

Fig.3 Total time overhead after each operation

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19
Hosts

To
ta

l t
im

e
(s

)

Instance-oriented
Host-oriented

30
25
20
15
10
5

0

To
ta

l t
im

e
(s

)

0
2000
4000
6000
8000

10000
12000
14000

1 3 5 7 9 11 13 15 17 19

Si
ze

 o
f d

el
eg

at
io

n
(b

yt
es

)

Instance-oriented
Host-oriented

 Hosts

Fig.4 Space overhead after each operation

Ma et al. / J Zhejiang Univ SCI 2005 6A(5):405-413 413

CONCLUSION AND FUTURE WORK

In this paper, a new instance-oriented security

framework is proposed to provide the Grid-based MA
system a more flexible and stable solution for its se-
curity problems. There are several advantages of the
instance-oriented delegation model. As discussed,
this allows applications to configure their own secu-
rity policy by instantiating the proposed delegation
model and embedding their preferred security policies
into it, which makes it compatible for heterogeneous
platforms, thus to be more appropriate for Grid
environment.

The instance-oriented delegation document
solves successfully some problems in the original
host-oriented delegation document. It prevents the
hosts from abusing the delegation document to dam-
age the resource provider, and prevents the system
from suffering unlimited diffusion of damages, which
is caused by some potential crisis that will never be
checked out in conventional trust systems. This makes
the delegation model appropriate for MA systems.
And then, a general solution is given on using the
instance-oriented delegation document to a build
security framework in MA systems.

References
Borselius, N., 2002. Mobile agent security. Electronics &

Communication Engineering Journal, 14(5): 211-218.
Chander, A., Mitchell, J.C., Shin, I., 2001. Mobile Code Se-

curity by Java Bytecode Instrumentation. Proceedings of
the DARPA Information Survivability Conference &
Exposition, DISCEX-II 2001, Anaheim, CA.

Farmer, W.M., Guttman, J.D., Swarup, V., 1996. Security for
Mobile Agents: Authentication and State Appraisal.
Proceedings of the 4th European Symposium on Research
in Computer Security (ESORICS), Springer-Verlag,
p.118-130.

Foster, I., Kesselman, C., Tsudik, G.., Tuecke, S., 1998. A
Security Architecture for Computational Grids. Proc. 5th
ACM Conference on Computer and Communications
Security Conference, ACM Press, NY, p.83-92.

Foster, I., Kesselman, C., Tuecke, S., 2001. The anatomy of the
grid: enabling scalable virtual organizations. Interna-
tional Journal of High Performance Computing Applica-
tions, 15(3):200-222.

Jansen, W., 2001. A Privilege Management Scheme for Mobile
Agents. Workshop on Security of Mobile Multi-Agent
Systems: Proceedings of the 5th International Conference
on Autonomous Agents.

Necula, G.., Lee, P., 1996. Safe Kernel Extensions Without
Run-Time Checking. Proceedings of the 2nd Symposium
on Operating System Design and Implementation
(OSDI’96), Seattle, p.229-243.

Sander, T., Tschudin, C.F., 1998. Protecting Mobile Agents
Against Malicious Hosts. In: Vigna, G.(Ed.), Mobile
Agents and Security. Springer-Verlag, p.44-60.

Schneider, F.B., 1997. Towards Fault-Tolerant and Secure
Agentry. Proceedings of 11th International Workshop on
Distributed Algorithms, Saarbrucken, Germany.

Vigna, G., 1997. Protecting Mobile Agents Through Tracing.
Proceedings of the 3rd ECOOP Workshop on Mobile
Object Systems, Jyvälskylä, Finland.

Wilhelm, U.G.., Staamann, S., Buttyàn, L., 1999. Introducing
Trusted Third Parties to the Mobile Agent Paradigm. In:
Vitek, J., Jensen, C.(Eds.), Secure Internet Programming:
Security Issues for Mobile and Distributed Objects.
Springer-Verlag, p.471-491.

Wong, H.C., Sycara, K., 1999. Adding Security and Trust to
Multi-Agent Systems. Proceedings of Autonomous
Agents’99 (Workshop on Deception, Fraud and Trust in
Agent Societies), Seattle, Washington, p.149-161.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

