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Abstract:    Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in 
this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system 
model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear 
input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled 
system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at 
each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the 
obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive 
control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two 
different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. 
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INTRODUCTION 
 

Model predictive control (MPC), based on pre-
dictive model and receding horizon optimization, has 
become an attractive feedback control strategy, be-
cause it has found successful applications, especially 
in the process industry. For this kind of control 
strategy, the predictive model is a crucial component 
because the essence of MPC is to optimize the fore-
cast of process behavior (Rawlings, 2000), and the 
forecast is accomplished with the predictive model. If 
the controlled plant is linear or weakly nonlinear, it 
can be fitted by linear predictive model effectively. 

But, if the plant has strongly nonlinear characteristics 
and operates over large region in variable space, the 
nonlinear predictive model must be used to approxi-
mate the system dynamics. 

The learning algorithms for traditional modeling 
approaches, including classical neural networks, 
fuzzy modeling, etc. (Babuška and Verbruggen, 
2003), are almost all based on the expectation risk 
minimization principle. These kinds of algorithms 
often lead to the problem of overfitting (Zhang, 2000). 
Simply speaking, for a given learning task with a 
given finite amount of training data, lesser training 
error may result in poorer generalization performance. 
Vapnik (1998) presented based on the statistical 
learning and structural risk minimization principle the 
Support Vector Machines (SVM), which can give 
attention to both the expectation risk and the gener-
alization performance and can be used to approximate 
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nonlinear functions. Suykens and Vandewalle (1999) 
presented LS-SVM method, in which the objective 
function includes an additional sum squared error 
term. Using the equality constraint, LS-SVM does not 
solve quadratic programming existing in the standard 
SVM. In this paper, the LS-SVM methods with linear 
kernel and Radial Basis Function (RBF) kernel are 
employed to build the model of controlled systems 
with different degree of nonlinearity.   
 
 
LS-SVM  
 

SVM is one of the methods by which the statis-
tical learning theory can be introduced to practical 
application. It has its own advantages in solving the 
pattern recognition problem with small samples, 
nonlinearity, and higher dimension. SVM can be 
easily introduced into learning problem such as func-
tion estimation. 

Suykens and Vandewalle (1999) presented the 
LS-SVM approach, in which the following function is 
used to approximate the unknown function, 

 
T( ) ( )y b= +x w xϕ                                           (1) 

 

where, x∈Rn, y∈R, ( ) : R R hnn⋅ →ϕ is a nonlinear 
function which maps the input space into a higher 
dimension feature space. 

Given training data, LS-SVM defines an opti-
mization problem as follows, 
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subject to the equality constraints 
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To solve this optimization problem, one defines 
the following Lagrange function, 
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where, 1{ }N
k kα ==α is the Lagrange multiplier set. 

Calculating the partial derivatives of ( , , ; )L bw e α  
with respect to w, b, e, α, one gets the optimal condi-
tion for Eq.(2) as  
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Expressing ek and w with αk and b, one can 

transform the above equality into 
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where y=[y1, …, yN]T, 1=[1, …, 1]T, α=[α1, …, αN]T, 
and Ω is a square matrix in which the element located 
on kth column and lth row is     
 

T( ) ( ) ( , )    , 1,..., .kl k l k lK k l N= = =x x x xΩ ϕ ϕ  

 
Choosing γ >0, ensures that the matrix  
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is invertible. Then we have the analytical solution of 
α and b 
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Substituting the obtained b and α into Eq.(4),  we 

get 
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where K(x, xk) is the Kernel function, which can be 
any symmetric function satisfying Mercer’s condition 
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(Smola, 1996).  
 
 
LS-SVM MODELING AND GPC CONTROL 

                                                    
Generally, the following input-output model 
 

y=f(x)                                                       (8) 
 

can be employed to denote the controlled system 
characteristics. Where, x=[x(1), x(2), …, x(nu+ny)] 
denotes the regression vector including the past in-
put-output data of the system. f(⋅), a linear or nonlin-
ear function, is used to fit the system characteristics. 
nu and ny denote input and output order of the system 
respectively. Input-output data of the system are col-
lected and constitute the training dataset 1{ , }N

k k ky =x . 
Here, xk is the regression vector at different sampling 
instant and yk is the system output corresponding to 
xk.  
 
Modeling of weakly nonlinear system 

For the system with weak nonlinearity, we use 
the LS-SVM with linear kernel and get the model of 
the controlled system as follows, 

 
T

1

( ) ( )
n

k k
k

y bα
=

= +∑x x x                                (9) 

 
Apparently, Eq.(9) is a linear LS-SVM model which 
can be transformed into a linear input-output relation 
of the controlled system. Given the following regres-
sion vector at current instant 
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we can get the system output at next sampling time:  
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From Eq.(11), we have the linear input-output equa-
tion 
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Modeling of strongly nonlinear system 

For the system with strong nonlinearity, we use 
the LS-SVM with RBF kernel and get the off-line 
model of the controlled system as follows, 
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Eq.(13) is a nonlinear LS-SVM model of the 

controlled system. To avoid solving the nonlinear 
programming problem resulting from the nonlinear 
predictive model, Eq.(13) is linearized at each sam-
pling period of system running. Let data regression 
vector x at current instant be the same as Eq.(10), and 
let x0=x for the sake of simple expression. Linearizing 
Eq.(13) at x0, we have 
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1 (1) ... ( )nup b x b x nu= + + +  

1 ( 1) ... ( )nya x nu a x nu ny− + − − +  

1 ( 1) ... ( )nup b u k b u k nu= + − + + −  

1 ( 1) ... ( ).nya y k a y k ny− − − − −               (14) 

 
where, p is constant at current sampling period and 
depends only on the current sampling point. Namely, 
 

1 1( ) ( ) ( ) ( 1)A z y k B z u k p− −= − + .                    (15) 
where  

A(z−1)=1+a1z−1+…+anyz−ny  
B(z−1)=b1+b2z−1 +…+bnuz−nu+1. 

 
GPC of the controlled system  

We have obtained the approximate linear in-
put-output model of weakly nonlinear system in 
Eq.(12) and the linear online model of strongly 
nonlinear system in Eq.(15). Both the equations can 
be unified into the following equation  

 
1 1( ) ( ) ( ) ( 1) ( )A z y t B z u t v t− −= − +                  (16) 

 
where, v(t) is the error and disturbance resulting 
from one fitting current system characteristics with 
Eq.(16). We decompose v(t) as follows  
 

v(t)=vdc+vac(t), 
 

where, vdc is the direct-current component inde-
pendent of time. In the weakly nonlinear case, vdc 
includes the bias term b in Eq.(12), while in the 
strongly nonlinear case, vdc includes p in Eq.(14). The 
amplitude of vdc is equal to the mean of v(t). vac is the 
AC component whose mean is zero. Modeling vac 
with w(t)/∆, we can transform the input-output equa-
tion at current time into   
 

1 1
dc( ) ( ) ( ) ( 1) ( ) /A z y t B z u t v w t− −= − + + ∆    (17) 

 
where, w(t) is the disturbance with zero mean, 
∆=1−z−1 is the difference operator. ∆ is introduced 
into the system model in order to provide integral 
action and therefore eliminate steady-state offsets.  

In order to forecast the future system output 
based on the past input-output data and the future 
system input, we introduce the following Diophantine 

equations,     
 

1 1 11 ( ) ( ) ( )j
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Multiplying both sides of Eq.(13) by 1( ) j

jE z z− ∆ , we 

have  
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vdc is independent of time, so ∆vdc=0. Namely, the 
system performance should not be influenced by the 
direct-current component of model error. Then the 
above equation is simplified as  
 

1 1( ) ( ) ( )jE z A z y t j− − ∆ +  
1 1 1( ) ( ) ( 1) ( ) ( )j jE z B z u t j E z w t j− − −= ∆ + − + + (21) 

 
Accordingly, the well-known method (Clarke, 

1989) is used to obtain the multistep prediction of y(t), 
which can be denoted as the following expression in 
the form of vector 

 
( ) ( 1)+ t + t= −oy Gu Fy H u∆ . 

 
Finally, the control law is constructed as follows  
 

T 1 T( ) [ ( ) ( 1)]t tλ −= + − − −ru G G I G y Fy H u∆ . 
 

All the variables in the above expression have 
the same definition as in Clarke’s paper (Clarke et al., 
1989). 
 
 
SIMULATION 
 

In this section, we introduce two nonlinear in-
dustrial process models−the pulp washing process 
and the pH neutralization process. The former pos-
sesses weak nonlinearity and the latter strong 
nonlinearity. 
Example 1      In the pulp washing process (Yang et 
al., 1997), Dilution Factor (DF) is a crucial index for 
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pulp quality. The physical model of this process is 
detailed as follows:  
 

1 2( ) ( ) ( 1) ( ) ( 2)y k a k y k a k y k= − + −  

0 1( ) ( 1) ( ) ( 2)b k u k b k u k+ − + −  

with  
a1(k)=0.15+0.002sin0.02k,  
a2(k)=0.2+0.003cos0.02k,  
b0(k)=1.2, b1(k)=0.5. 
 
In this model, the input variable is the wash flow 

u, and the output is DF. Apparently, this process can 
be regarded as a typical system with weak nonlinear-
ity. 

Using the LS-SVM with linear kernel function, 
we can build the approximate linear model of the pulp 
washing process. A group of white noise signals are 
used as the input of the system to produce training 
dataset 100

1{ , }k ky =kx . We choose the order of the output 
and input variable as nu=1 and ny=1 respectively. In 
addition, for giving attention to both the precision and 
generalization capacity of the model, we choose the 
parameter γ in Eq.(2) as 10. In order to test the ap-
proximation performance of the linear LS-SVM 
model, another group of white noise signals are em-
ployed as input to produce test dataset, in which the 
amplitude of system output is in the interval (0, 70). 
We denote the actual system output as ‘Y’, and the 
model output as ‘Ym’. The error between actual sys-
tem and model output is shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The obtained linear LS-SVM model is trans-
formed into approximate linear input-output relation 
of the controlled system, and then the GPC is used to 
implement the predictive control. Let predictive ho-
rizon be P=5, control horizon be M=3, then the ob-
tained tracking curve is shown in Fig.2. In Fig.2, ‘Yr’ 
is the reference trajectory, and ‘Y’ is the system 
output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above simulation results illustrate the ef-
fectiveness of the predictive control algorithm based 
on LS-SVM with linear kernel function on weakly 
nonlinear system.  
Example 2    We introduce a pH neutralization 
process (Nie et al., 1996) as a typical system with 
strong nonlinearity. In this process, an acetic acid 
(weak acid) is neutralized by a strong base NaOH in 
water. The physical model of this process consists of 
two parts: the linear dynamic model and the nonlinear 
static model. The dynamic model is given by: 
 

a
1 a 1 2 a

d
( )

d
w

V F C F F w
t
= − +  

b
2 b 1 2 b

d
( ) .

d
w

V F C F F w
t
= − +  

 
In this model, F1 and F2 are flow rate of acid and the 
strong base, of which wa and wb are the concentrations 
respectively. The static model is given by 
 

Fig.1  The error between actual system and model output 
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Fig.2  Tracking curve of the pulp washing process 
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Consider the SISO system: the input of the pH 

neutralization process is NaOH flow rate F2 in the 
inlet, and the output is pH in the outlet of the con-
tainer. The acid flow rate F1 in the inlet is a constant. 
The other parameter values used in the model are 
coefficients related to the specified system (Nie et al., 
1996). The nonlinearity exhibited in the weak acid 
and strong base system is severe, especially near 
pH=9. 

Using the LS-SVM with RBF kernel, we can 
build the off-line model of the pH neutralization 
process. The same as in Example 1, a group of white 
noise signals is used as the input signal of the system 
to produce training dataset 497

1{ , }k ky =kx . We choose the 
order of the output and input variable as nu=3 and 
ny=3 respectively. The parameter γ is chosen as γ=5.          

In order to test the approximation performance 
of the off-line model, a signal composed of four kinds 
of sine wave with different frequency is employed as 
test input to produce test dataset. For the different 
values of σ (generally, 1<σ≤10), we can build dif-
ferent models using training data. By means of model 
validation based on the test data, the parameter σ is 
chosen as 1.6. The comparison between the actual 
system and model output is given in Fig.3. In Fig.3, 
‘Y’ is the actual system output and ‘Ym’ is the model 
output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The off-line model is linearized on-line and the 
GPC strategy is used to compute the control action at 
each sampling point. Let predictive horizon be P=10, 
control horizon be M=5, and the sampling time be 
Ts=0.5 min. We get the tracking curve of the 
closed-loop system in Fig.4, in which ‘Yr’ is the ref-
erence trajectory and ‘Y’ is the output of the practical 
system. From Fig.4, we can see that the presented 
predictive algorithm based on LS-SVM with RBF 
kernel can control the given strongly nonlinear sys-
tem rapidly and stably.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Fig.3, we can see that the off-line model 

does not fit the actual system characteristic very ac-
curately, which can be explained by the fewer training 
data. Even so, from Fig.4, we know that the GPC 
strategy can effectively control the plant on the basis 
of given predictive model, which is attributable to the 
robustness and the capability of eliminating 
steady-state error for GPC. In fact, the better ap-
proximation effect can be obtained by using more 
training data, but the fewer training data and the cor-
responding model can be used here to prove the ro-
bustness of the predictive algorithm. 

 
 
CONCLUSION 
 

Two predictive control algorithms based on 
LS-SVM are put forward in this paper. LS-SVM is a 
modeling approach based on structural risk minimi-

Fig.3  The comparison between the actual system and
model output 
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Fig.4  Tracking curve of the pH neutralization process
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zation principle. It can give attention to both the ex-
pectation risk and the generalization performance. Its 
modeling process has analytical solution formula and 
less indeterminate parameters. For the system with 
weak nonlinearity, the LS-SVM with linear kernel 
function is used to build the approximate linear 
LS-SVM model for the controlled system, and then 
the linear LS-SVM model is transformed into a linear 
input-output model. For the system with strong 
nonlinearity, the LS-SVM with RBF kernel function 
is used to build the off-line nonlinear model for the 
controlled system. To avoid the need for the nonlinear 
programming problem to be resolved at each sam-
pling period, we linearize the off-line model online at 
each sampling point. For both classes of nonlinear 
system with different degree of nonlinearity, we find 
a uniform linear input-output expression, and then 
employ GPC to implement the predictive control 
strategy. The results of the experiment showed that 
the presented algorithms are effective.  
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