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Abstract:    There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from 
constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this 
problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them 
into the Dwarf structure. If a partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our 
performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more com-
pressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of “ALL” cells from 
the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which 
was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for 
the construction of Condensed Dwarf. 
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INTRODUCTION 
 

The CUBE BY operator (Gray et al., 1996) is an 
essential facility for data warehousing and OLAP. It 
is a multidimensional extension of the standard 
GROUP BY operator, computing all possible com-
binations of the grouping attributes in the CUBE BY 
clause. A CUBE BY with N grouping attributes will 
compute 2N group-bys. In the real world, a fact table 
is often very large and sparse. In such cases, the size 
of a group-by is possibly close to the size of the fact 
table. So the size of a data cube increases exponen-
tially after computation, and so the inherent difficulty 
with the CUBE BY operator is its size, both for 
computing and storing it. 

Dwarf (Sismanis et al., 2002) is a highly com-
pressed tree-like structure for computing, storing and 
querying data cubes. Dwarf solves the storage space 
problem by identifying prefix and suffix redundancies 
among cube tuples and factoring them out of the store. 

Any prefix of a cube tuple will appear in 2(n−d) 

group-bys (n is the number of cube dimensions and d 
is the prefix length), and possibly many times in each 
group-by. Suffix redundancy occurs whenever two or 
more partitions share common participating dimen-
sions and cover the same subset of fact table tuples. 
For example, for the fact table shown in Table 1, 
prefix (1, 0) appears in cube tuples: (1, 0, *), (1, 0, 0,) 
and (1, 0, 1), partitions (1, 0) and (*, 0) always have 
the same measure for any value of dimension C. 
Every unique prefix is stored exactly once in the 
Dwarf structure and all cube tuples with the prefix 
share its storage. Suffix redundancies will construct 
identical sub-Dwarfs. They are recognized and only 
one copy is stored in the Dwarf structure. For the fact 
table shown in Table 1, the corresponding Dwarf is 
presented in Fig.1. The number illustrates the order in 
which nodes close, and the dashed line indicates 
where the suffix coalescing occurs. 

The Dwarf construction algorithm proposed in 
(Sismanis et al., 2002) consists of two interleaved 
processes: the prefix expansion and the suffix coa-
lescing. The prefix expansion would create a tree if it 
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were not for suffix coalescing. The suffix coalescing 
tries to identify identical sub-Dwarfs and coalesce 
their store. Though simple it is, a serious problem is 
hidden deeply in the algorithm, which prevents it 
from constructing true Dwarfs (i.e., without prefix 
and suffix redundancies). As an example, for the fact 
table shown in Table 2, the “Dwarf” constructed ac-
cording to the algorithm is presented in Fig.2, one can 
see it clearly that there exists one suffix redundancy in 
the “Dwarf”. Anther problem of the algorithm is that 
when a node is being closed, it persists to insert the 
“ALL” cell and create the sub-Dwarf for it, even if the 
node contains exactly two cells: one is the “ALL” cell 
and the other is a normal cell. Actually, we can safely 
remove the “ALL” cell from such Dwarf nodes, while 
any cube tuple can still be directly answered from this 
condensed version of Dwarf. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ORIGINAL ALGORITHM 
 

Two processes: the prefix expansion and the 
suffix coalescing, govern the Dwarf construction, 
according to the original algorithm. Prior to the con-
struction, the fact table is sorted using a fixed di-
mension order. The prefix expansion sequentially 
scans over the sorted fact table. Every time a tuple is 
read, necessary nodes and cells are created, by com-
paring the current tuple with the previous one. When a 
leaf node is closed, the “ALL” cell is introduced by 
aggregating the contents of the other cells in the node. 
When an inner node is closed, the “ALL” cell is cre-
ated and call the suffix coalescing to create the 
sub-Dwarf dominated by this cell. The suffix coa-
lescing algorithm is presented in Fig.3. It requires as 
input a set of Dwarfs and merges them to construct 
the resulting Dwarf. For the root node of the resulting 
Dwarf, the sub-Dwarf of the cell with value k is con-
structed by merging those sub-Dwarfs of the cells in 
the top nodes of the input Dwarfs with value k, and 
the sub-Dwarf of the “ALL” cell is constructed by 
merging its brother Dwarfs (i.e., the sub-Dwarfs of 
other cells within the same node). If there is just one 
Dwarf to be merged, then coalescing happens 
immediately, since the result of merging one Dwarf 
will obviously be the Dwarf itself. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm: SuffixCoalesce 

Input: inputDwarfs = set of Dwarfs 
1:  if only one Dwarf in inputDwarfs then 
2:    return Dwarf in inputDwarfs; 
3:  end if 
4:  while unprocessed cells exist in the top nodes of  

inputDwarfs do 
5:     find unprocessed key Keymin with minimum value in 

the top nodes of inputDwarfs; 
6:     toMerge ← set of Cells of top nodes of inputDwarfs 

having keys with values equal to Keymin; 
7:     if already in the last level of structure then 
8:       curAggr ← calculateAggrgate(toMerge.aggregate- 

Values); 
9:       write cell [Keymin, curAggr]; 
10:   else 
11:     write cell [Keymin, SuffixCoalesce(ToMerge.Sub- 

Dwarfs)]; 
12:   end if 
13: end while 
14: create the ALL cell for this node either by aggregation 

or by calling SuffixCoalesce, with the sub-Dwarfs of 
the node’s normal cells as input; 

15: return position in disk where resulting Dwarf starts; 
 

Fig.3  Algorithm SuffixCoalescing 

Table 2  Example table 2 
 

A B C D M 
0 0 0 0 8 
0 1 0 1 5 
1 0 1 1 10 

 

Fig.2  The false Dwarf of Table 2 

Table 1  Example table 1 
 

A B C M 
0 1 1 7 
0 2 0 4 
1 0 0 9 
1 0 1 5 

Fig.1  The true Dwarf of Table 1 

C 
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When constructing the sub-Dwarf SD of the 
“ALL” cell in node N, the suffix coalescing does not 
take into account the contents of the sub-Dwarfs 
ASDs of the “ALL” cells in the brother nodes of N.  

Therefore the probability exists that the same 
merging work that has been done in the construction 
of ASDs will be executed once again during con-
structing SD. As an example, consider again the false 
Dwarf shown in Fig.2. According to the original al-
gorithm, Dwarf 15 (i.e., node 15 and all the nodes that 
can be visited via it. Such kind of reference is used 
throughout this paper) is constructed based on Dwarfs 
4 and 12. Then, Dwarf 13 is constructed by merging 
Dwarfs 1 and 3. But this merging work has already 
been done in the construction of Dwarf 5. The suffix 
coalescing fails to be aware of the existence of Dwarf 
5, just because it does not take Dwarf 6 as input when 
constructing Dwarf 15. 

Let us first define some terms to help in the un-
derstanding of the problem hidden in the suffix coa-
lescing. A prefix path covers a unique subset of fact 
table tuples, which take the same values with the 
prefix path for those dimensions of the prefix path 
with a normal value. Assuming PP is a prefix path in 
a Dwarf, and dimension k of PP takes the value of 
“ALL”. If a single value vk of dimension k appears in 
all the fact table tuples covered by PP, then dimension 
k is called a missing single value (MSV) dimension; 
otherwise it is called a normal missing (NM) dimen-
sion. As an example, consider again the Dwarf of Fig. 
1. The prefix path of (*, 1) covers one fact table tuples: 
(0, 1, 1: 7), the first dimension of this prefix path is an 
MSV dimension. While for the prefix path of (*, *), 
the first dimension is an NM dimension. 

In general, for a prefix path PP with the form of 
α.*i.β.vj, where α and β are two sequences of dimen-
sion values, *i means that the value of “ALL” appears 
on dimension i, and vj means that dimension j (j>i) 
takes the value of vj (including “ALL”). If dimension i 
is an MSV dimension (assuming the single value for 
dimension i is vi), and if there exists no MSV dimen-
sion and at least one NM dimension in β, then the 
suffix coalescing will lose its magic to coalesce the 
sub-Dwarf of PP with the sub-Dwarf of the prefix 
path of α.vi.β.vj, though they are identical (because 
they share common participating dimensions and 
cover the same subset of fact table tuples). Assuming 
that dimension k (j>k>i) is an NM dimension of β (i.e., 

at least two different values of dimension k appears in 
the cube tuples covered by PP), and no MSV dimen-
sion exists in β. Therefore the sub-Dwarf of α.vi.β.vj 

must be constructed by merging other sub-Dwarfs. 
Since the suffix coalescing does not take as input the 
sub-Dwarf of α.vi.β.vj, the merging work constructing 
the sub-Dwarf of α.vi.β.vj is done once again to con-
struct the sub-Dwarf of PP. Consequently, the 
sub-Dwarf of PP fails to be coalesced with the 
sub-Dwarf of α.vi.β.vj, resulting in a redundant 
sub-Dwarf in the Dwarf structure. As an example, the 
prefix path of (*, *, 0) in the false Dwarf of Fig.2 
introduces the redundant sub-Dwarf, because dimen-
sion A is an MSV dimension and dimension B is an 
NM dimension. 

Then, can we construct the sub-Dwarf of an 
“ALL” cell as normal cells? (Remove line 14 from the 
suffix coalescing shown in Fig.3, take into account 
the value of “ALL” at line 4, and let it to be the big-
gest value in the domain of any dimension.) Such 
modification will certainly avoid the problem stated 
above. However, it will introduce another type of 
suffix redundancy, which occurs more commonly! 
Since when constructing the sub-Dwarf of an “ALL” 
cell, it does not take as input its brother sub-Dwarfs, it 
loses the chance to share the merging works in the 
brother sub-Dwarfs. As an example, consider the fact 
table shown in Table 3. With the modified version of 
the suffix coalescing, the resulting “Dwarf” is pre-
sented in Fig.4. Dwarf 12 fails to be coalesced with 
Dwarf 11 because when constructing Dwarf 12, its 
input Dwarfs are Dwarfs 1 and 4, so the merging work, 
though  already  being  done  in  the  construction  of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Example table 3 
 

A B C D M 
0 0 0 0 5 
1 0 0 1 3 
1 1 1 1 4 

 
Fig.4  The false Dwarf of Table 3 

D 
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Dwarf 11, is executed once again. The redundancy of 
Dwarf 12 may be removed due to the fact that there 
exists only one normal cell in node 13; however the 
redundancy of Dwarf 14 cannot be easily eliminated. 

 
 

PID ALGORITHM 
 
Based on the above reasoning and examples, we 

can conclude that the original algorithm has an in-
herent limitation arising from the sub-Dwarf con-
struction of an “ALL” cell, which prevent it from 
constructing true Dwarfs. In this section, we propose 
a completely new algorithm called PID (Partitioning 
and Inserting Dwarfing) to solve this problem. Before 
we present the algorithm, we first study some pre-
liminary terms. Assume a fact table has d dimensions, 
a partition has the form of (t1,…,ti,…,tk) (k≤d), where 
value ti of dimension i can take the special value of 
“ALL” or any value from its domain. A partition 
defines a unique subset of fact table tuples, which take 
the same values with the partition for those dimen-
sions of the partition with a normal value. From this 
definition, one can conclude that fact table partitions 
and prefix paths are of one-to-one relationship, i.e., 
partition pt=(t1,…,ti,…,tk) matches prefix path 
pp=(t1,…,ti,…,tk). If a partition contains at least one 
MSV dimension, it is called an MSV partition. 
Among all partitions that share common participating 
dimensions and cover the same subset of fact table 
tuples, the partition with no MSV dimension is called 
the base partition. As an example, consider again the 
fact table of Table 1 and the corresponding Dwarf of 
Fig.1. Partition (1, *) covers the subset of fact table 
tuples: {(1, 0, 0: 9), (1, 0, 1: 5)}, and it matches the 
prefix path of (1, *). It is an MSV partition, since 
dimension B is an MSV dimension. Partition (1, 0) is 
the base partition for the set of three partitions: {(1, 0), 
(1, *), (*, 0)}. 

The main idea of PID is to bottom-up partition a 
fact table, i.e., it first partitions the fact table using the 
first dimension, and then partitions each 
sub-partitions using the second dimension, and so on. 
Every time a partition is computed, it is inserted into 
the Dwarf structure. To achieve coalescing, PID tests 
each inserted partition. If it is an MSV partition, coa-
lesce its suffix and stop further partitioning. Just as 
the original algorithm, PID recognizes a suffix

redundancy before actually creating it. 
The details of PID are presented in Fig.5. First, 

we test partition ptn. If at least one dimension of ptn is 
an MSV dimension, i.e., ptn is an MSV partition, first 
compute partition ptn′ from partition ptn: for each 
MSV dimension of partition ptn, replace the “ALL” 
value with its single value. Then let the prefix path of 
ptn point to the sub-Dwarf of prefix path ptn′ (i.e., 
coalesce the sub-Dwarf of prefix path ptn). Lastly exit 
from this iteration. Next, we test whether partition ptn 
contains a single fact table tuple or not. If it does, 
directly construct the whole sub-Dwarf of prefix path 
ptn without further partitioning on partition ptn: for 
each dimension in [current dimension, last dimen-
sion], create a node with two cells: one is a normal 
cell and the other is the “ALL” cell, and let the two 
cells point to the node belonging to the next dimen-
sion. Next, we create a new node to hold all distinct 
values of the current dimension in partition ptn. Next, 
we partition ptn on the current dimension. Then, we 
process sub-partitions one by one: insert into the new 
node a cell, which take the value of the current di-
mension in sub-partition sub-ptn, and recursively call 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm: PID(ptn, dim)

Input:  
ptn: the current partition for this iteration; 
dim: the current dimension for this iteration. 
Method: 
1. if ptn is an MSV partition then 
2.   compute its base partition ptn'; 
3. let prefix path ptn point to the sub-Dwarf of prefix   

path ptn'; 
4.   return; 
5. end if 
6. if ptn contains a single fact table tuple then 
7.   direct-write-Dwarf(ptn, dim+1); 
8.   return; 
9. end if 
10. create a new node; 
11. Partition(ptn, dim); 
12. for each sub-partition sub-ptn 
13.   insert a new cell into the new node; 
14.   if dim < total-dimensions then 
15.     PID(sub-ptn, dim+1); 
16.   end if 
17. end for 
18. insert the “ALL” cell into the new node; 
19. if dim < total-dimensions then 
20.   PID(ptn, dim+1); 
21. end if 
22. link the new node with its parent cell; 

 
Fig.5  Algorithm PID 
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PID with sub-partition sub-ptn and dimension (dim+1) 
as input. Next, we create the “ALL” cell for the new 
node and construct the corresponding sub-Dwarf. The 
last step is to link the newly created node with its 
parent cell. 

As an example, assuming that (a1, b1), (a2, b2) 
and (*, b3) are three partitions of a fact table with four  
dimensions: A, B, C and D. (a1, b1) is a normal parti-
tion, (a2, b2) is a single tuple partition, in which the 
dimension values for C and D are c2 and d2 respec-
tively, and (*, b3) is an MSV partition, where dimen-
sion A takes a single value of a3. Fig.6 illustrates how 
to construct the sub-Dwarfs for the three typical par-
titions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Rationale 
The correctness of the algorithm is based on the 

partition inserting and the MSV partition detecting. 
According to the definition of Dwarf, two or more 
sub-Dwarfs are identical if their prefix paths cover the 
same subset of fact table tuples. Consider those par-
titions that correspond to the prefix paths pointing to 
an identical sub-Dwarf, they must cover the same 
subset of fact table tuples, and the participating di-
mensions of these partitions are identical. The only 
difference for these partitions is that for any single 
value dimension of the subset of fact table tuples, 
some partitions take the single value and the others 
take the value of “ALL”. For each newly computed 
partition, if it is an MSV partition, PID recognizes its 
base partition and shares the storage of the sub-Dwarf 
constructed from the base partition. Otherwise, PID 
creates a new node to hold the values of the current 
dimension in the partition. So PID achieves sharing of 
prefixes and coalescing of suffixes, and so it con-

structs true Dwarfs. 
2. Efficiency 
PID eliminates all prefix and suffix redundancies 

prior to the computation of the redundant values. As a 
result, not only is the storage space requirement re-
duced, but its computation is also accelerated. PID 
builds the Dwarf by computing and inserting parti-
tions, so the sub-Dwarf of an “ALL” cell is con-
structed just as normal sub-Dwarfs, and the previ-
ously constructed sub-Dwarfs are not required to be 
loaded into the main memory from disk, resulting in a 
remarkable decrease of I/Os when compared with the 
original algorithm. A key optimization of PID is the 
single tuple partition optimization, i.e., for a single 
tuple partition, the time-consuming partitioning on 
current dimension is avoided, and if it is not an MSV 
partition, the whole sub-Dwarf of the partition is 
directly constructed without further partitioning. For-
tunately, data cubes of the real world are often sparse, 
where large numbers of partitions contain a single fact 
table tuple. Therefore this optimization can contribute 
significantly to the overall performance of PID. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.6  Sub-Dwarfs for three typical partitions 
CONDENSED DWARF 
 

Note that if a Dwarf node contains exactly two
cells: one is the “ALL” cells and the other is a normal
cell, it is unnecessary to explicitly store the “ALL”
cell, because they point to the same sub-Dwarf. This
inspires us to propose a more condensed data struc-
ture called Condensed Dwarf. It is a condensed ver-
sion of Dwarf, which deletes the “ALL” cell from a
Dwarf node containing two cells. In fact, only if a
partition contains a single fact table tuple, or it takes a
single value on the current dimension in the covered
fact table tuple, PID will create nodes with two cells.
By avoiding unnecessary storing of “ALL” cells,
Condensed Dwarf effectively reduces the Dwarf size,
especially for Dwarfs of the real world. The reason is
as follows: the data is often very sparse and high
correlated in such cases. With a high sparseness,
many partitions are single tuple partitions. With a
high correlation, many partitions take a single value
on the current dimension in the covered fact table
tuples. Even without the paths following such “ALL”
cells, any point query can be directly answered with-
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out further aggregation, i.e., Condensed Dwarf is still 
a complete data cube store. As an example, consider 
again the fact table of Table 3. The corresponding 
condensed Dwarf is presented in Fig.7. 

 
 
 
 
 
 
 
 
 
 
 

 

Since the “ALL” cell in any two-cell node is 
removed in Condensed Dwarf, the query processing 
over Condensed Dwarf differs from that over Dwarf, 
but just a minor modification to the Dwarf query 
processing is required to fit for Condensed Dwarf. Let 
c=(t1,…,tn) be a point query to a condensed Dwarf, 
where ti (i=1,…,n) takes any value, including “ALL”, 
and n is the number of dimensions. Answering c re-
quires just a simple traversal on the condensed Dwarf 
from the root to a leaf. At level i, we search for the cell 
with value ti and descend to the next level. If ti is 
“ALL” and the “ALL” cell does not appear on the 
searched node (i.e., it was removed), we follow the 
pointer of the single normal cell. A range query of  
Condensed Dwarf is handled similarly with Dwarf, 
i.e., compile the range query into a set of point queries 
and answer them one by one. Based on above de-
scription, one can see that Condensed Dwarf has 
equivalent performance as Dwarf in query answering. 
Regarding query answering, one path of Condensed 
Dwarf can answer more than one point query, while in 
Dwarf one path matches a unique cube tuple. There-
fore Condensed Dwarf combines the strength of 
Dwarf and Condensed Cube (Wang et al., 2002), i.e., 
two or more cube tuples are condensed into one 
Dwarf path, and such one path can answer more than 
one point query without computation.  

With the PID algorithm presented in Fig.5, we 
can easily write out the algorithm for the construction 
of Condensed Dwarf, which differs from PID in two 
points. One is at line 7, i.e., do not create the “ALL” 
cell for each newly created node when constructing 
the sub-Dwarf for a single tuple partition. The other is 

that the actions of lines 17~20 should be controlled by 
an “if” statement, i.e., only if more than one distinct 
value of the current dimension appear in the fact table 
tuples covered by the current partition, execute lines 
17~20; otherwise skip them. 
 
 
EXPERIMENTAL STUDY 
 

In this section, we conducted comprehensive 
experiments to validate our performance and storage 
expectation. All experiments were conducted on an 
Intel Pentium IV 1.8 GHz PC with 512 MB main 
memory, running Windows 2000 Advanced Server. 
All programs were coded in Microsoft Visual C++ 6.0. 
The times recorded included the initialization time, 
the computation time and the I/O time.  

Both synthetic and real datasets were used in 
these experiments. Synthetic datasets satisfy Zipf 
distribution. When Zipf=0, the data is uniform. As 
Zipf increases, the data is more skewed. The cardi-
nality is the same for each dimension in synthetic 
datasets. The real dataset records weather conditions 
at various weather stations on land for September 
1985 (Hahn et al., 1994). The dataset contains 
1015367 tuples. The dimensions are ordered by car-
dinality: station-id (7037), longitude (352), so-
lar-altitude (179), latitude (152), present-weather 
(101), day (30), weather-change-code (10), hour (8) 
and brightness (2). All datasets contain one measure 
attribute. 

 
Performance analysis 

The first set of experiments reported our per-
formance analysis on constructing Dwarfs. To show 
the performance of PID, we compared it with the 
original algorithm (ORGALG for short), though it 
actually constructs false Dwarfs. Both synthetic and 
real datasets were evaluated. The experimental results 
are shown in Fig.8. 

There are three main points that can be taken 
from these results. First, PID and ORGALG have 
similar performance for most data distributions, 
whereas PID runs much faster than ORGALG for 
weather data because of the high sparseness of the 
weather dataset. Second, for large data cubes, the 
output I/O dominates the cost of construction. Con-
sequently, Condensed Dwarf will not only decrease 
the I/O requirements, but also improve the constructi- 

 
Fig.7  The condensed Dwarf of Table 3 
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on performance, when compared with Dwarf. Third, 
as the sparseness increases, the performance im-
provement gained by the optimization of single tuple 
partitions increases correspondingly. 

 
Compression analysis 

In this subsection, we explored the compression 
benefits of Condensed Dwarf over Dwarf. The data-
sets used here are the same as those in the above 
subsection. To show the compression, we compared 
the storage size of Condensed Dwarf with that of 
Dwarf. We also show in the graphs the storage sizes 
of false Dwarfs constructed by ORGALG. The ex-
perimental results are shown in Fig.9. 

The results showed that Condensed Dwarf ef-
fectively reduces the Dwarf size. One can see that the 
compression ratio is mainly influenced by three fac-
tors, namely sparseness, correlation and cardinality 
distribution. Given two datasets with similar sparse-
ness, the dimension cardinalities are nearly the same 
for each dimension in the first dataset, while they are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

discriminating in the second dataset, just as the case 
with the weather dataset. The compression ratio for 
the second dataset is significantly higher than the first. 
The reason is that large numbers of partitions are 
single tuple partitions in the second dataset. For ex-
ample, the condensed Dwarfs in Fig.9 reduce the 
storage sizes of the Dwarfs: 25% and 11% for the 
weather data and the synthetic data respectively, 
where the dimension number is 9. 
 
 
RELATED WORK 
 

Efficiently computing and storing data cubes are 
big challenges for building real OLAP applications, 
due to their huge sizes. A lot of works have been done 
on the data cube computation and store in the past 
recent years. 

Since Gray et al. first proposed the data cube 
operator in 1996, many approaches have been sug-
gested for data cube computation.  Array-Cube  (Zhao 

Fig.8  Evaluating the performance of PID 
(a) Synthetic data (Cardinality=100, Tuple=1000 thousand, Zipf=1.5); (b) Synthetic data (Dimension=7, Cardinality=100,
Tuple=1000 thousand); (c) Synthetic data (Dimension=7, Tuple=1000 thousand, Zipf=1.5); (d) Weather data 
 

0

500

1000

1500

2000

5 6 7 8 9
Dimension number

Ti
m

e 
(s

)

PID

ORGALG

0

200

400

600

800

0 0.5 1 1.5 2 2.5 3
Zipf

Ti
m

e 
(s

)

PID

ORGALG

0

40

80

120

160

200

10 25 50 75 100
Cardinality

Ti
m

e 
(s

)

PID

ORGALG

0

500

1000

1500

2000

2500

5 6 7 8 9
Dimension number

Ti
m

e 
(s

)

PID

ORGALG

(a)                                                                                                      (b) 

(c)                                                                                                      (d) 



Xiang et al. / J Zhejiang Univ SCI   2005 6A(6):519-527 526

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
et al., 1997) is an array-based top-down cubing al-
gorithm. BUC (Beyer and Ramakrishnan, 1999) em-
ploys a bottom-up computation and prunes unsatis-
fied partitions in an Apriori-like manner. Star-Cube 
(Xin et al., 2003) utilizes a Star-Tree structure and 
extends the simultaneous aggregation method. 

Works on compressing the data cube are of clear 
relevance to us. Iceberg-Cube (Fang et al., 1998) is a 
subset of a data cube containing only those cube tu-
ples whose measure satisfies certain constraints. 
Condensed-Cube uses the two ideas of “base single 
tuple” compression and “projected single tuple” 
compression as a basis for compressing a data cube. 
Quotient-Cube (Lakshmanan et al., 2002) and 
QC-tree (Lakshmanan et al., 2003) creates a summary 
structure by partitioning the set of cells of a data cube 
into classes such that cells in a class have the same 
aggregate measure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CONCLUSION 

 
In this paper, we explain when the original al-

gorithm for the construction of Dwarf introduces 
suffix redundancies, and why it is difficult to be cor-
rected from the original algorithm. To solve this 
problem, we propose a completely new algorithm 
called PID. Different from the original algorithm, PID 
is based on partition computing and inserting. PID is 
efficient, which was illustrated by our experiments on 
performance analysis. 

Another contribution of this paper is to propose 
Condensed Dwarf. It reduces the Dwarf size by de-
leting the “ALL” cell from a Dwarf node with two 
cells. With the increased sparseness and correlation, 
Condensed Dwarf saves more and more storage space 
when compared with Dwarf, making it very fit for 
storing data cubes of the real world. The query proc-

Fig.9  Evaluating the compression of Condensed Dwarf 
(a) Synthetic data (Cardinality=100, Tuple=1000 thousand, Zipf=1.5); (b) Synthetic data (Dimension=7,
Cardinality=100, Tuple=1000 thousand); (c) Synthetic data (Dimension=7, Tuple=1000 thousand, Zipf=1.5);
(d) Weather data 
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essing over Condensed Dwarf is very straightforward, 
and the construction of Condensed Dwarf can be 
implemented by simply modifying the PID algorithm. 

Though interesting progress has been made for 
constructing and condensing Dwarf, incrementally 
updating Condensed Dwarf based on PID algorithm is 
still an open question. Our ongoing research will 
address this issue. 
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