
Zhang et al. / J Zhejiang Univ SCI 2005 6A(6):577-582 577

KRBKSS: a keyword relationship based keyword-set
search system for peer-to-peer networks*

ZHANG Liang (张 亮)†, ZOU Fu-tai (邹福泰), MA Fan-yuan (马范援)
(Department of Computer Science & Engineering, Shanghai Jiaotong University, Shanghai 200030, China)

†E-mail: zhangliang@cs.sjtu.edu.cn
Received July 4, 2004; revision accepted Oct. 9, 2004

Abstract: Distributed inverted index technology is used in many peer-to-peer (P2P) systems to help find rapidly document in
which a given word appears. Distributed inverted index by keywords may incur significant bandwidth for executing more com-
plicated search queries such as multiple-attribute queries. In order to reduce query overhead, KSS (keyword-set search) by
Gnawali partitions the index by a set of keywords. However, a KSS index is considerably larger than a standard inverted index,
since there are more word sets than there are individual words. And the insert overhead and storage overhead are obviously un-
acceptable for full-text search on a collection of documents even if KSS uses the distance window technology. In this paper, we
extract the relationship information between query keywords from websites’ queries logs to improve performance of KSS system.
Experiments results clearly demonstrated that the improved keyword-set search system based on keywords relationship (KRBKSS)
is more efficient than KSS index in insert overhead and storage overhead, and a standard inverted index in terms of communication
costs for query.

Key words: Peer-to-peer (P2P), Keyword-set search (KSS), Keyword relationship
doi:10.1631/jzus.2005.A0577 Document code: A CLC number: TP393

INTRODUCTION

Peer-to-peer (P2P) systems are now one of the
most prevalent Internet distributed applications due to
their greater scalability, fault-tolerance, and
self-organizing nature. This trend was triggered in
1999 by Napster (2001), a centralized architecture
with a central directory server that offers an index to
locate data items. P2P system can be divided into two
classes. One class is an unstructured P2P system,
where the overlay topology is formed in accordance
with some loose rules. Popular P2P file-sharing sys-
tems like Gnutella (2001) and Kazaa (2001) use un-
structured network designs. These networks typically
adopt flooding-based search techniques to locate files,
contacting all accessible nodes in TTL hops. Their
basic characteristics are simplicity and the huge

overhead they produce by contacting many nodes.
Flooding-based techniques are effective for locating
highly replicated items, but they are poorly suited for
locating rare items.

The other class of the decentralized architectures
is a structured P2P system commonly referred to as
Distributed Hash Tables (DHTs) (Zhao et al., 2000),
where the overlay topology is tightly controlled. Dis-
tributed inverted index technology is used in many
P2P systems to help find rapidly document in which a
given word appears. The peers that are required to
store or index data items are precisely determined
based on some hashing algorithms. This tightly con-
trolled structure enables forwarding of queries de-
terministically, and achieves very effective content
location. However, distributed inverted index by
keywords may incur significant bandwidth for exe-
cuting more complicated search queries such as mul-
tiple-attribute queries. This is unacceptably large
bandwidth for query in a P2P system because band-
width available to most nodes in the Internet is rather

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

*Project supported by the National Natural Science Foundation of
China (No. 60221120145) and Science & Technology Committee of
Shanghai Municipality Key Project (No. 02DJ14045), China

Zhang et al. / J Zhejiang Univ SCI 2005 6A(6):577-582 578

small. In order to reduce query overhead, KSS
(Gnawali, 2002) partitions the index by a set of
keywords. A KSS index is considerably larger than a
standard inverted index, since there are more word
sets than there are individual words. And insert
overhead for KSS grows exponentially with the size
of the keyword-set while query overhead is reduced to
the result of a query as no intermediate lists are
transferred across the network for the join operation.
The insert overhead and storage overhead are obvi-
ously unacceptable for full-text search on a collection
of documents even if KSS makes use of the distance
window technology (Gnawali, 2002).

Our work is motivated by user query keywords
model to improve the insert and storage efficiency of
KSS. In this work, we exploit the observation that in
typical KSS many keywords pairs mapped to the
nodes in the network are not or seldom used in users’
actual queries because in KSS the relationship be-
tween query keywords is not taken into consideration.
We aim to extract the relationship information be-
tween query keywords from users’ queries logs to
improve the performance of KSS system.

RELATED STUDIES

P2P networks have been studied intensively in
the last few years. A number of systems and algo-
rithms have recently been developed that support P2P
search. The search index in Napster (2001) is cen-
tralized; the storage and serving of files is distributed.
From the file sharing and downloading perspective,
Napster is a P2P system. However, from the indexing
perspective, Napster is a centralized system. The
original Gnutella (2001) algorithm uses flooding for
object discovery and contacts all accessible nodes
within the TTL value. Although it is simple and
manages to discover the maximum number of objects
in that region, the approach does not scale, producing
huge overhead to large numbers of peers. In Gnutella2
(Stokes, 2002), when a super-peer (or hub) receives a
query from a leaf, it forwards it to its relevant leaves
and also to its neighboring hubs. These hubs process
the query locally and forward it to their relevant
leaves. No other nodes are visited with this algorithm.
Neighboring hubs regularly exchange local repository
tables to filter out unnecessary traffic between them.

Modified-BFS and Intelligent-BFS (Kalogeraki et al.,
2002) and APS (Tsoumakos and Roussopoulos, 2003)
are variations of the flooding scheme, with peers
randomly or intelligently choosing only a certain
proportion of their neighbors to forward the query to.
These algorithms certainly reduce the average mes-
sage production compared to previous methods, but
the accuracy and efficiency are still a question. In
Local Indices (Yang and Garcia-Molina, 2002), each
node indexes the files stored at all nodes within a
certain radius r and can answer queries on behalf of
all of them (Kalogeraki et al., 2002). A search is
performed in a BFS-like manner, but only nodes ac-
cessible from the requester at certain depths process
the query. The method’s accuracy and hits are very
high, since each contacted node indexes many peers.
On the other hand, message production is comparable
to the flooding scheme, although the processing time
is much smaller because not every node processes the
query.

These strategies above are for searching in un-
structured P2P networks. Next, we will discuss
searching schemes in structured P2P networks. Re-
cent research efforts in structured P2P seek to provide
the illusion of having a global hash table shared by all
members of the community. Frameworks like Tapes-
try (Zhao et al., 2000), Pastry (Rowstron and
Druschel, 2001), Chord (Stoica et al., 2001) and CAN
use different techniques to spread (key, value) pairs
across the community and to route queries from any
member to where the data is stored. Although this
distributed hash structure could be used to create an
inverted index, it would not be so efficient. In all these
systems, there is a time cost needed to contact the
right node in order to publish a single key. If we want
to share a document’s content then we need to publish
every unique word contained in it. Besides this, the
communication cost of performing a multi-keyword
query is very high.

The keyword-set search system (KSS) proposed
by Gnawali et al.(2002) is a P2P keyword search
system that uses a distributed inverted index parti-
tioned across the nodes in the network by a set of
keywords. In KSS, the index is partitioned by sets of
keywords. KSS builds a distributed inverted index
that maps each set of keywords to a list of all the
documents that contain the words in the keyword-set.
When a user issues a query, the keywords in the query

Zhang et al. / J Zhejiang Univ SCI 2005 6A(6):577-582 579

are divided into sets of keywords. The document list
for each set of keywords is then fetched from the
network. Thus search using KSS results in a smaller
query time overhead. The main benefit of KSS is the
low communication cost of performing a
multi-keyword query. In a typical KSS setting,
two-word queries involve no significant communica-
tion, since they are processed wholly within the node
responsible for that keyword set. Queries with more
than two words require that document lists be com-
municated and joined; but these lists are smaller than
in a standard inverted index, because the number of
documents that contain a set of words is smaller than
the number of documents that contain each word
alone. Single-word queries are processed using a
standard single-word inverted index, and require no
significant communication. Thus KSS outperforms
the standard distributed inverted scheme at the ex-
pense of storage overhead. Although the query over-
head for the target application is reduced, insert
overhead for KSS grows exponentially as the size of
the keyword-set used to generate the keys for index
entries. That is, KSS causes much more insert over-
head than the traditional single word publication.

KRBKSS OVERVIEW

An overview of the constructing KRBKSS
process is given in Fig.1, and described in detail in the
following sections. According to Fig.1, constructing
the KRBKSS system is composed of two steps: (1)
Use of KWRDA to discover relationship between qu-

ery keywords from query logs, which can be obtained
from WWW or FTP search websites; (2) In KRBKSS,
just map these edges output by KWRDA in Step (1)
instead of all keywords pairs in keywords-set search
system (KSS).

KWRDA ALGORITHM

In order to discover the relationship between
keywords queried by users, which can be useful in
distributed inverted indexing of document, we pro-
posed the KWRDA algorithm. The Keywords Rela-
tionship Discovery Algorithm (KWRDA) takes a
server access log as input and maps it into a graph
which expresses the relationship between keywords.
The algorithm has three basic steps:

(1) Construct a directed graph G(A,E) according
to the query logs

The set of vertices A in graph G(A,E) corre-
sponds to the search terms used in the user queries.
The set of edges E corresponds to search terms
co-occurrence as observed in the user queries.
E={e|weight(e)>0}. Since the graph G(A,E) is a di-
rected graph, EA1→A2 and EA2→A1 should be distin-
guished form each other. The weight of a directed
edge is defined as follows:

1 2
(1 2)()

(1)A A
freq A Aweight E

freq A→

∩
=

2 1
(1 2)()

(2)A A
freq A Aweight E

freq A→

∩
=

where A1 and A2 are vertices in set A. The freq(X)
represents the frequency that search term X occurs in
users’ query. For instance, if a query procedure con-
tains the search terms “P2P” and “search” the fre-
quency of the relevant vertices is added one respec-
tively. The weights on the directed edge (P2P
→search) are computed as the normalized frequencies
by dividing them with the occurrence frequencies of
the “P2P” vertices. The effect of the normalization is
to remove the bias for characteristics that appear very
often in all users.

(2) Pruning the graph to G(A,E)|θ according to a
given connectivity threshold θ

As the connectivity of the resulting graph G is Fig.1 The process of constructing KRBKSS

 …

Server

Query logs
KWRDA

Keywords relation graph Eθ

KRBKSS

Zhang et al. / J Zhejiang Univ SCI 2005 6A(6):577-582 580

usually high, we use a connectivity threshold, aiming
at reduction of the number of edges in the graph. The
connectivity threshold represents the minimum
weight allowed for the edge’s existence. When this
threshold is high the graph will be sparse and when
the threshold is lower the graph will be dense.

In graph G(A,E|θ), the set of vertices A in graph
G(A,E|θ) is same to the set of vertices A in graph
G(A,E), which corresponds to the search terms used in
the user queries. However, the set of edges E|θ cor-
responds to search terms co-occurrence as observed in
the user queries.

E|θ={e|e∈E and weight(e)≥θ}

It is obvious that different connectivity threshold θ
may output different E|θ. The larger connectivity
threshold θ is, the sparser the graph is.

(3) Output E|θ
This step outputs the vertex pairs corresponding

to E|θ, which expresses the co-occurrence relationship
of query keywords.

SYSTEM ARCHITECTURE

KRBKSS can be implemented in any P2P plat-
form that supports Distributed Hash (DHash) Table
interface such as Chord, CAN and Tapestry. In this
section, like KSS, we will describe an example sys-
tem using the Chord system (Fig.2).

The Chord layer in the system architecture pro-
vides for support for one operation: given a key, it
maps the key onto a node. Each node in the system
that uses consistent hashing maintains a data structure
called finger table, by which the query is routed closer
and closer to the target nodes or its successor.

The DHash layer implements a distributed hash
table for the Chord system. Dhash provides a simple
get-put API that allows a P2P application to put a data
item in the nodes in the P2P network and get data
given their ID from the network.

KRBKSS provides two operations to client ap-
plication. One is to insert document operation, which
extracts the keywords from the document by means of
the relationship between keywords, and generates
index entries, and stores them in the network. The
other is to find the document list for disjoint set of
keywords in the query, and return the intersected list
of documents.

KRBKSS PUBLICATION AND QUERY

KRBKSS works as follows: When a user shares
a file, KRBKSS uses the keywords relationship to
generate the index entries for the file, hashes the
keyword-set to form the key for the index entry, maps
the keys to the nodes in the network using consistent
hashing and Chord.

The algorithm that KRBKSS creates the index is
as follows:

For example, let A, B, C, and D be the words in a
document identified by docID. KSS creates index
entries for each of the six combinations (AB, AC, AD,
BC, BD, CD). For a set of size two, C(n, 2) gives the
number of unique entries in the cross product of sets
of n unique keywords. However, we found that the
keywords pairs AC, AD, BC, BD, CD have never been
or are seldom used as queries pairs by users. Thus in
our method KRBKSS only the keywords pairs AB is
mapped onto the nodes in the P2P network. And the
multi-keywords query algorithm in the KRBKSS
system works as follows:

word[0…n]=meta-data field
for (i=0; i<n; i++)

for (j=i+1; j<n; j++)
 if ((word[i], word[j])∈E|θ)
 set_add(keywords,

concat(sort(word[i], word[j])));
for (i=0; i<keywords.size; i++)

push(index_entries, <hash(keywords[i]),
 documentID>);

Fig.2 KRBKSS system architecture. Each peer has
KRBKSS, DHash and Chord layers

KRBKSS

DHT

Chord

KRBKSS

DHT

Chord

KRBKSS

DHT

Chord

Zhang et al. / J Zhejiang Univ SCI 2005 6A(6):577-582 581

EXPERIMENTS

In this section, we evaluate KRBKSS algorithm
by simulation. In order to analyze KRBKSS costs and
efficiency for full-text search, we develop a web
crawler that takes the web pages www.edu.cn and
www.sohu.com as seeds and downloaded the text and
HTML files recursively. Our crawler downloaded
42238 HTML and text pages that occupied 492 MB of
disk space. In order to compare KDBKSS with ex-
isting KSS algorithms, we implemented KSS and
standard inverted index. For the simulation we de-
ployed 1800 nodes running on 12 personal computers
in a 100 M LAN, each of which has a 1.7 GHz proc-
essor with 512 MB RAM running Linux AS 3.0.

In order to find the relationship between query
keywords, we used the query logs of the FTP search
website bingle.pku.edu.cn from Dec 1, 2002 to Dec
31, 2002.

We developed a scalable system iExtra, which is
implemented purely in Java. In the preprocess phase,
iExtra parses the HTML pages and removes the in-
valid characters. After parsing, Chinese paragraphs
are extracted and segmented through Maxi-
mized-Matched Chinese word segmentation algo-
rithm, and the resulted Chinese words were encoded
with a unique ASCII string. We also selected a list of
stopwords for filtering the English as well as Chinese
stopwords.

We simulated inserting and querying of a
document using KRBKSS. Next we ran the KRBKSS
algorithm on each text file to create index entries and
published them to corresponding virtual peers. We
evaluated these algorithms by insert overhead and
query overhead at different connectivity threshold θ.

Insert overhead
Insert overhead is the number of bytes trans-

mitted when a document is inserted in the system.
When a user asks the KRBKSS system to share a file,
the system generates index entries which are inserted
in the distributed index. Unlike KSS, in which if we
generate index entries for a document with n key-
words for typical keyword-pair scheme the overhead
required is bounded by C(n; 2), KRBKSS only gen-
erates small index entries which results in a small
insert overhead.

Fig.3 gives the curves of number of index enti-
ties generated vs number of words in a document
using the standard inverted indexing scheme,
KRBKSS with θ=0, KRBKSS with θ=0.05 and KSS
with window size of ten. Fig.4 presents a distribution
of the number of index entries generated when each
document (page) is inserted in the system using KSS
with window size of five, KRBKSS with θ=0 and
using the standard inverted indexing scheme. Fig.3
and Fig.4 show that the insert overhead for KRBKSS
is much lower than that for KSS and is a little higher
than that of the standard inverted index scheme.

Query overhead
Query overhead is a measure of bytes transmit-

ted when a user searches for a file in the system. As
we know, the overhead to send the intermediate result
list in the system from one host to another is the main
part of the query overhead.

Fig.5 gives mean data transferred in KB when
searching using the standard inverted index with
Bloom Filter, the standard inverted index without

Input: Q={k1, k2, …, kn}
Output: a list of documents that contain

all the keywords in the query
Q′=Q
While Q′≠∅ or |Q′|≠1

find the most related two query
keywords km and kp from Q′ by Eθ

finding the nodes storing the index entries for the
two keywords and fetches the list

 Q′=Q′−{km, kp}
intersect the results and output

Fig.3 Number of index entities generated vs number of
words in a document using the standard inverted in-
dexing scheme, KRBKSS with θ=0, KRBKSS with
θ=0.05 and KSS with window size of ten

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

 Standard inverted index
 KSS with window size of ten
 KRBKSS with
 KRBKSS with

N
um

be
r o

f i
nd

ex
 e

nt
rie

s

Number of words in a document

θ=0
θ=0.05

Zhang et al. / J Zhejiang Univ SCI 2005 6A(6):577-582 582

Bloom Filter, KSS with window size of 5, KRBKSS
with θ=0, KRBKSS with θ=0.05, for a range of query
words. Fig.5 shows that the query overhead for
KRBKSS is much lower than that of the standard
inverted index scheme, with or without Bloom Filter,
and is a little higher than that for KRBKSS.

CONCLUSION

In this work, we exploit the relationship between
query keywords, which can be extracted from users’
queries logs, to improve the performance of KSS
system. We present the design and implementation of
KRBKSS, a keyword relationship based keyword-set
search system that was implemented using Java. The
main idea of this paper is as follows: At first, we may

make use of KWRDA to find the relationship between
query keywords from query logs obtained from
WWW or FTP search websites such as
bingle.pku.edu.cn, sheenk.com, and so on. Next, in
Step (1) in KRBKSS, we just map these edges output
by KWRDA instead of all keywords pair in keywords
set search system, which may decrease insert over-
head and storage overhead dramatically compared to
KSS. Experiments results clearly demonstrated that
KRBKSS index is more efficient than KSS index in
insert overhead and storage overhead, and more effi-
cient than a standard inverted index in terms of
communication costs for query. In a forthcoming
paper, the authors will show how to automatically or
adaptively determine a proper parameter θ that can
result in good tradeoff between insert overhead and
query overhead.

References
Gnawali, O.D., 2002. A Keyword-set Search System for

Peer-to-Peer Networks. Master’s Thesis, MIT’s Thesis
Lib.

Gnutella, 2001. http://gnutella.wego.com.
Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D., 2002. A

Local Search Mechanism for Peer-to-Peer Networks.
Proceedings of the Eleventh International Conference on
Information and Knowledge Management, p.300-307.

Kazaa, 2001. http://www.kazza.com.
Napster, 2001. http://www.napster.com.
Rowstron, A., Druschel, P., 2001. Pastry: Scalable, Distributed

Object Location and Routing for Large-scale Peer-to-Peer
Systems. Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middle-
ware), p.329-350.

Stoica, I., Morris, R., Karger, D., Kaashoek, M., 2001. Chord:
a scalable peer-to-peer lookup service for Internet
applications. Computer Communication Review,
31(4):149-160.

Stokes, M., 2002. Gnutella2 Specifications, Part One.
http://www.gnutella2.com /gnutella2 search.htm.

Tsoumakos, D., Roussopoulos, N., 2003. Adaptive Probabil-
istic Search (APS) for Peer-to-Peer Networks. Technical
Report CS-TR-4451, University of Maryland.

Yang, B., Garcia-Molina, H., 2002. Improving Search in
Peer-to-Peer Networks. Proceedings of the 22nd Interna-
tional Conference on Distributed Computing Systems
(ICDCS’02), p.5-14.

Zhao, B., Kubiatowicz, J., Joseph, A., 2000. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report, UCB/CSD-01-1141, Univer-
sity of California, Berkeley.

Fig.4 Cumulative distribution of the number of documents
for which the given number of index entries in x-axis are
generated using the standard inverted indexing scheme,
KRBKSS and KSS with window size of five

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

 KSS with window size of 5
 KRBKSS with
 Standard inverted index

θ=0

Pe
rc

en
ta

ge
 o

f p
ag

es

Number of index entries generated per page

Fig.5 Mean data transferred in KB when searching using
the standard inverted index with Bloom Filter, the stan-
dard inverted index without Bloom Filter, KSS with win-
dow size of 5, KRBKSS with θ=0, KRBKSS with θ=0.05,
for a range of query words

1 2 3 4 5
0

100

200

300

400

500 Standard inverted index scheme with Bloom Filter
 Standard inverted index scheme without Bloom Filter
 KSS with window size 5
 KRBKSS with
 KRBKSS with

M
ea

n
K

B
 tr

an
sf

er
re

d

Number of words in the query

θ=0
θ=0.05

