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Abstract:    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were 
converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dy-
namic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with 
S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of 
SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the 
discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing 
stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent 
neural networks. 
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INTRODUCTION 
 

Bidirectional associative memory (BAM) mod-
els are a class of commonly used neural network 
models for information memory and association. The 
distributed information processing mode can restore 
an incomplete pattern or a pattern contaminated by 
noise by using BAMs. The bidirectional associative 
memory model proposed by Kosko (1987) general-
izes Cohen-Grossberg’s model by extending sin-
gle-layer networks to two-layer ones. Since then, 
BAM networks have been widely investigated and 
many interesting results have been reported (Jin, 1999; 
Xu et al., 1999; Wang and Don, 1995). Stability is of 
utmost importance in applying BAM networks. Many 
stability analysis methods have been suggested (Jin, 
1999; Xu et al., 1999; Wang and Don, 1995; Cao and 

Wang, 2002; Zhang et al., 1993; Xu et al., 1992). 
Unfortunately, proof of stability is often highly com-
plicated and the results are very conservative, which 
prevents them being applied to wider engineering 
fields. 

Jin (1999) treated the discrete-time Hopfield 
BAM neural network as a special Hopfield network 
model. Constraints on the connection matrix have 
been found under which the neural network has a 
unique and asymptotically stable equilibrium point. 
Sufficient conditions for the global asymptotic sta-
bility of equilibrium points were derived using the 
existence of the positive diagonal solutions of the 
Lyapunov equations. However, these solutions are 
usually found by trial-and-error. Thus, difficulties 
will be encountered when the theoretical results on 
stability suggested by Jin (1999) are applied to engi-
neering problems. On the other hand, Jin (1999)’s 
proposed conditions for global exponential stability 
of BAM networks are wrong. We will see that in the 
fifth section. 
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In this paper, we suggest a new discrete-time 
BAM network model inspired by the work of Jin 
(1999). Conditions for guaranteeing the existence of 
equilibrium points are given. Next, we propose a 
novel network model termed standard neural network 
model (SNNM). Based on the Lyapunov method, 
sufficient conditions for global asymptotic stability 
and global exponential stability of the SNNM are 
given, assuming that the equilibrium point locates at 
the origin. The stability conditions are formulated in 
linear matrix inequalities (LMIs), which are easy for 
verification and less conservative. Then, we convert 
the discrete-time BAM network into the SNNM. In 
this way, the global asymptotic stability and global 
exponential stability of the equilibrium point of the 
discrete-time BAM network can be analyzed by 
solving the LMIs. Compared to the existing stability 
analysis methods, the proposed approach is more 
straightforward for analysis and the results are less 
conservative. 
 
 
NOTATIONS AND PROBLEM FORMULATION 
 

Throughout the paper, the following notations 
are used. ℜn denotes n dimensional Euclidean space, 
ℜn×m is the set of all n×m real matrices, E denotes 
identity matrix of appropriate order, ∗ denotes the 
symmetric parts, λM(A) and λm(A) denote the maxi-
mal and minimal eigenvalue of a square matrix A, 
respectively. ||x|| denotes the Euclidean norm of the 
vector x, and ||A|| denotes the induced norm of the 

matrix A, that is T( )Mλ=A A A . The notation X>Y 

and X≥Y, respectively, where X and Y are matrices of 
the same dimensions, means that the matrix X−Y is 
positive definite and semi-positive definite, respec-
tively. If X∈ℜp and Y∈ℜq, C(X; Y) denotes the space 
of all continuous functions mapping ℜp→ℜq. 

Consider the following discrete-time BAM 
neural network (Jin, 1999) 

 
( 1) ( ) ( ( ))
( 1) ( ) ( ( ))

x k Ax k Wf y k I
y k By k Vg x k J

+ = + +
 + = + +

                       (1) 

 
where x(k)=(x1(k), x2(k), …, xn(k))T∈ℜn, y(k)=(y1(k), 
y2(k),  …,  ym(k))T∈ℜm   are   state   vectors,  f(y(k))= 
(f1(y1(k)),   f2(y2(k)),   …,   fm(ym(k)))T   and   g(x(k))= 

(g1(x1(k)), g2(x2(k)), …, gn(xn(k)))T are function vec-
tors, gi∈C(ℜ;ℜ) (i=1,…,n) and fj∈C(ℜ;ℜ) (j=1,…,m) 
are continuously differentiable and monotonically 
increasing sigmoid functions satisfying fi(0)=gj(0)=0, 
I=(I1,I2,…,In)T and J=(J1,J2,…,Jm)T are external input 
vectors, Ii (i=1,…,n) and Jj (j=1,…,m) are constant, W 
and V are real n×m and m×n matrices, respectively, 
A=diag(a1,a2,…,an), B=diag(b1,b2,…,bn). 

Let z(k)=(x1(k), x2(k), …, xn(k), y1(k), y2(k), …, 
ym(k))T∈ℜn+m, φ(z(k))=(g1(x1(k)), g2(x2(k)), …, 
gn(xn(k)), f1(y1(k)), f2(y2(k)), …, fm(ym(k)))T, then, the 
BAM network Eq.(1) can be rewritten as  

 
z(k+1)=Rz(k)+Sφ(z(k))+H                             (2) 

where  
 

R=diag(A, B) (i=1, …, n+m),  
 

=  
 

0
0

W
S

V
,   H=(I, J)T.  

If gi (i=1, …, n) and fj (j=1, …, m) are hyperbolic 
tangent functions, φi(zi(k)) (i=1, …, n+m) satisfies 
φi(zi(k))∈[−1,1], φi(zi(k))/zi(k)∈[0,1] and [φi(zi(k+1))− 
φi(zi(k))]/[zi(k+1)−zi(k)]∈[0,1]. In this paper, we as-
sume that the training of BAM network was com-
pleted when we did the stability analysis. Thus, the 
weights remain constant in the process of stability 
analysis. Note that the equilibrium points of the dis-
crete-time BAM network are dependent on the input 
pattern H. The questions now are under which con-
ditions the dynamic system described by Eq.(2) has 
equilibrium points and if the weights R and S can 
guarantee that all trajectories of the system converge 
to the equilibrium points. 
Theorem 1    If the activation function φ(z(k)) is 
bounded and E−R≠0, then the neural network system 
Eq.(2) has at least one equilibrium point. 
Proof    The equilibrium point of the system Eq.(2) 
satisfies z(k+1)=z(k). Thus, z(k)=Rz(k)+Sφ(z(k))+H 
and then 
 

z(k)=(E−R)−1Sφ(z(k))+(E−R)−1H 
 

where E is a (n+m)×(n+m) identity matrix. Let 
(E−R)−1H=H′, and we have z(k)=(E−R)−1Sφ(z(k))+H′. 
We denote this function mapping with G(z). Note that 
the equilibrium point of system Eq.(2) is the fixed 
point of G(z), and vice versa. For any H′∈ℜn+m, let 
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( ):|| || || || ,
1
n m α + ′= − ≤ 
−  

D z z H S
R

 

 
where α=max{|φi(zi(k))|} (i=1, …, n+m). 

Since ||G(z)−H′||=||(E−R)−1Sφ(z(k))||≤||(E−R)−1||   
( )( ( ))
1
n mz k α+

⋅ ⋅ ≤
−

S S
R

φ  holds for any z∈D, 

mapping G(z) is continuous from D to itself. Since D 
is a convex, closed and bounded set, G(z) has at least 
one fixed point in D for arbitrary weight matrices 
according to the Brouwer’s fixed point theorem 
(Smart, 1980). Therefore, the system Eq.(2) [i.e. dis-
crete-time BAM neural network Eq.(1)] has at least 
one equilibrium point, say zeq. Theorem 1 is thus 
proven. 
 
 
A STANDARD NEURAL NETWORK MODEL 
 

The architecture of the discrete-time SNNM is 
shown in Fig.1. The model is composed of a linear 
dynamic system and nonlinear bounded activation 
functions. Here, we discuss only the discrete-time 
SNNM. Similar conclusions can be drawn for con-
tinuous-time SNNMs (Zhang and Liu, 2005). In the 
SNNM, Φ is a block diagonal operator consisting of 
nonlinear activation functions φi(ξi(k)), which gener-
ally are continuously differential, monotonically in-
creasing, and bounded. Besides that, the derivative of 
φi(ξi(k)) is also assumed to be bounded. Vectors ξ(k) 
and φ(ξ(k)) are the input and output of Φ, and matrix 
N represents a linear mapping. 
 

Φ

Iz 1−( )kx ( 1)k +x

( )kξ( ( ))kξφ

N
 

 
Fig.1  The discrete-time standard neural network model  

 

If N in Fig.1 is partitioned as  
=  
 

A B
N

C D
, then 

the SNNM can be depicted as a linear differential 
inclusion (LDI) 

 
( 1) ( ) ( ( ))
( ) ( ) ( ( ))
( ( )) ( ( ))

k k k
k k k

k k

+ = +
 = +
 =

x Ax B
Cx D

φ ξ
ξ φ ξ
φ ξ Φ ξ

                     (3) 

 
where x(k)∈ℜn is the state vector, A∈ℜn×n, B∈ℜn×L, 
C∈ℜL×n, and D∈ℜL×L, are the corresponding 
state-space matrices, ξ∈ℜL is the input vector of 
nonlinear operator Φ, φ∈C(ℜL; ℜL) is the output 
vector of nonlinear operator Φ satisfying φ(0)=0, and 
L∈ℜ is the number of the nonlinear activation func-
tions in the network model (in other words, the total 
number of the neurons in the hidden and output layer 
of the neural network). Since x=0 satisfies Eq.(3), 
there exists at least one equilibrium point of SNNM 
Eq.(3) locating at the origin, i.e. xeq=0. 

Before proceeding further, we first need the 
following definition. 
Definition 1 (Jin, 1999)    If there exist scalars γ>0, 
c>0 and any initial states x(0) such that 
 

eq( ) (0) e kk c γ−− ≤x x x , 0k∀ > , 

 
the SNNM Eq.(3) is said to be exponentially stable at 
the equilibrium point xeq, where γ is called the degree 
of exponential stability. 

If the activation functions in SNNM Eq.(3) sat-
isfy the sector condition φi(ξi(k))/ξi(k)∈[qi, ui], i.e., 
[φi(ξi(k))−qiξi(k)]⋅[φi(ξi(k))−uiξi(k)]≤0, 0≤qi<ui (i=1, 
…, L), the following theorems can be given.  
Theorem 2    The origin of the discrete-time SNNM 
Eq.(3) is globally asymptotically stable, if there exist 
a symmetric positive definite matrix P, and diagonal 
semi-positive definite matrices Λ and Τ, such that the 
following LMI holds 
 

1 2

3

 
=  
 

G G
G

* G
                                (4) 

 
where  

T T
1 2= − −G A PA P C TQUC , 

T T T T
2 2 ( )= + − + +G A PB C C TQUD C Q U TΛ , 

T T T
3 2 2= + + − −G B PB D D D TQUD TΛ Λ  

Φ

z−1I

 
N 
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T ( ) ( )+ + + +D Q U T T Q U D  

1 2diag( , , , )Lq q q=Q ,  

1 2diag( , , , )Lu u u=U . 
 

Proof    For simplicity, we denote x(k) as xk, ξi(k) as 
ξk,i, φi[ξi(k)] as φk,i, φ[ξ(k)] as φk. Consider the fol-
lowing positive definite Lyapunov function 
 

1
T

1 0
( ) 2 [ ( )] ( )

L k

k k k i i i i
i j

V j jλ φ ξ ξ
−

= =

= + ∑ ∑x x Px , 

 
where P>0, λi≥0. Thus, ∀xk≠0, V(xk)>0 and V(xk)=0 
iff xk=0. The difference along the solution of the 
SNNM Eq.(3) is 
 

1( ) ( ) ( )k k kV V V+∆ = −x x x  

T T
1 1 , ,

1

2
L

k k k k i k i k i
i

λφ ξ+ +
=

= − + ∑x Px x Px  

( ) ( )T
k k k k= + +Ax B P Ax Bφ φ  

( )T
,

0

2
L

k k i k i i k i k
i

λφ
=

− + +∑x Px C x Dφ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
where di,j is the element of matrix D at ith row and jth 
column. By the S-procedure (Boyd  et  al.,  1994),  if 
 
 
 
 
 

T T T T T( ) ( )k k k k= − + +x A PA P x x A PB C Λ φ  
T T T T T( ) ( )k k k k+ + + + +B PA C x B PB D Dφ Λ φ Λ Λ φ  

0

T T T T

T T T
k k

k k

T

    − +
=     + + +    

x xA PA P A PB C
B PA C B PB D D

Λ
φ φΛ Λ Λ

 
where Ci is the ith row of matrix C, Di is the ith row of 
matrix D, Λ=diag(λ1, λ2, …, λL) and Λ≥0. 

The sector conditions, (φk,i−qiξk,i)(φk,i−uiξk,i)≤0, 
can be rewritten as follows 

 
, ,( )( ) 0k i i i k i i k k i i i k i i kq q u uφ φ− − − − ≤C x D C x Dφ φ , 

 
which is equivalent to 
 

2
, , ,2 2 ( ) 2 ( )k i k i i i i k k i i i i kq u q uφ φ φ− + − +C x Dφ  

T T T T2 2k i i i i k k i i i i kq u q u+ +x C C x D Dφ φ  
T T T T2 2 0k i i i i k k i i i i kq u q u+ + ≤x C D D C xφ φ               (5) 

 
Rewrite Eq.(5) in the matrix form as Eq.(6), 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

there exists τi≥0 (i=1, …, L), such that the following 
inequality holds 
 
 
 
 
 

T T

,1 ,1

, 1 , 1

, ,1 , 1 , , 1 ,

, 1

,

0 0 0 ( ) 0 0
0 0 0 ( ) 0 0

0 0 0 ( ) 0 0
( ) ( ) ( ) 2 2( ) ( ) ( )

0

k i i i

k i i i

k i i i i i

k i i i i i i i i i i i i i i i i i i i i i i L

k i

k L

q u
d q u

d q u
q u q u d q u d q u d q u d q u d

φ

φ
φ
φ

φ

− −

− +

+

− + 
  − + 
 
  − + 
  − + − + − + − + − + − +
 
 
 
 
  

x C

C

1

,1

, 1

,

, 1, 1

,,

0 0 ( ) 0 0

0 0 0 ( ) 0 0

i

k

k

k i

k i

k ii i i i

k Li L i i

T

d q u

d q u

φ

φ
φ
φ

φ

−

++

   
   
   
   
   
   
   
   

− +   
   
   

− +     

x

2

T T T

T T

2 2
0

2 2

i

k ki i i i i i i i

k ki i i i i i i i

T

q u q u
q u q u

    
+ ≤    
    

x xC C C D
D C D Dφ φ

,                                                                                                      (6) 

T T T

T T T
1 2 T

0 T T T
1 T

2 2 ( )
( ) 02 2

*
( ) ( )

L

i i i
i

τ
=

 − +
  − +

− + = − = < +  + + +      − + − +  

∑
C TQUC C TQUD C Q U T

A PA P A PB C
T T T GD TQUD T

B PA C B PB D D
D Q U T T Q U D

Λ
Λ Λ Λ
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where T=diag(τ1, τ2, …, τL) and T≥0, then T0<0, that 
is, ∀xk≠0, ∆V(xk)<0 and ∆V(xk)=0 iff xk=0. We can 
conclude that the origin of the discrete-time SNNM 
Eq.(3) is globally asymptotically stable. 
Theorem 3    If there exist symmetric positive defi-
nite matrices R and K, and diagonal semi-positive 
definite matrices Λ and Τ, and a positive scalar 0<β<1 
that satisfy the following generalized eigenvalue 
problem (GEVP) 
 

minimize     β,                                                    (7) 

subject to  2

3

ˆ
ˆ

ˆ
 

=  
  

G
G

* G
’                         (8) 

K<βR,                                  (9) 
where 

T T
1

ˆ 2= − −G A RA K C ΤQUC , 
T T T T

2
ˆ 2 ( )= + − + +G A RB C C TQUD C Q U TΛ , 

T T T
3

ˆ 2= + + −G B RB D D D TQUDΛ Λ  
T2 ( ) ( )− + + + +Τ D Q U Τ Τ Q U D , 

1 2diag( , , , )Lq q q=Q ,  

1 2diag( , , , )Lu u u=U ,  
 

then the origin of the discrete-time SNNM Eq.(3) is 
globally exponentially stable. Moreover,  
 

( )
( ) (0) e

( )
kM

m

k γλ
λ

−≤
P

x x
P

,                    (10) 

 
where P=e−2γR, β=e−2γ. 
Proof    Construct the following positive definite 
Lyapunov function 
 

1
2 T 2

1 0

ˆ( ) e 2 e [ ( )] ( )
L k

k j
k k k i i i i

i j
V j jγ γλ φ ξ ξ

−

= =

= + ∑ ∑x x Px , 

 
where P>0, λi≥0. Thus, ∀xk≠0, ˆ( ) 0x >kV  and 
ˆ( ) 0x =kV  iff xk=0. The difference along the solution 

of the SNNM Eq.(3) is 
 

2 ( 1) T 2 T
1 1

ˆ ( ) e ek k
k k k k kV γ γ+

+ +∆ = −x x Px x Px  

2
, ,

1

2e
L

k
i k i k i

i

γ λ φ ξ
=

+ ∑  

( ) ( )T2 2e ek
k k k k

γ γ
= + +


Ax B P Ax Bφ φ  

( )T
,

0
2

L

k k i k i i k i k
i
λφ

=


− + + 


∑x Px C x Dφ      (11) 

 
Let R=e2γP, Eq.(11) can be written as 
 

T T 2ˆ ( ) ( e )k k kV γ−∆ = −x x A RA R x  
T T T T T( ) ( )k k k k+ + + +x A RB C B RA C xΛ φ φ Λ  
T T T( )k k+ + +B RB D Dφ Λ Λ φ .                         (12) 

 
In light of Eq.(9), we can get  
 

T T T T Tˆ( ) ( ) ( )k k k k kV∆ < − + +x x A RA K x x A RB C Λ φ  
T T T T T T( ) ( )k k k k+ + + + +B RA C x B RB D Dφ Λ φ Λ Λ φ  

0

T T T T

T T T

ˆ

k k

k k

T

    − +
=     + + +    

x xA RA K A RB C
B RA C B RB D D

Λ
φ φΛ Λ Λ

. 

                          (13) 
 

By the S-procedure (Boyd et al., 1994) and Eq.(6), if 
there exists τi≥0 (i=1, …, L), such that the following 
inequality holds 
 

1 2
0

1

ˆ ( )
L

i i i
i

τ
=

− +∑T T T  

T T T

T T T

 − +
=  + + + 

A RA K A RB C
B RA C B RB D D

Λ
Λ Λ Λ

 

T T T

T

2 2 ( )

2 2
( ) ( )T

 − +
 

−  + 
   − + − +  

C TQUC C TQUD C Q U T

D TQUD T
D Q U T T Q U D

*
 

ˆ 0= <G  
 

where T=diag(τ1, τ2, …, τL) and T≥0, then 0̂T <0, that 

is, ∀xk≠0, ˆ ( ) 0x∆ <kV  and ˆ( ) 0x∆ =kV  iff xk=0. So 
from Eq.(13), we have 
 

ˆ ˆ( ( )) ( (0))x x≤V k V  
 

However, 2ˆ( (0)) (0) (0) ( ) (0)x x Px P xλΤ= ≤ MV and   

1Ĝ
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V̂ (x(k))≥e2γkx(k)TPx(k)≥e2γkλm(P)║x(k)║2,  therefore 
we can get the convergence rates of the SNNM’s 
states, i.e. Eq.(10). From Definition 1, we conclude 
that the origin of the SNNM Eq.(3) is global expo-
nentially stable. We hope that the degree of expo-
nential stability γ is maximal (or β is minimal) such 
that the SNNM Eq.(3) converges to the equilibrium 
point as fast as possible. It requires solving the gen-
eralized eigenvalue minimization problem 
Eqs.(7)~(9), which is a quasi-convex optimization 
problem and can be solved by using the MATLAB 
LMI Toolbox (Gahinet et al., 1995). Theorem 3 pro-
vides a simple method to determine the exponential 
stability of the SNNM Eq.(3) and get the optimal 
exponential convergence rate, and can be widely 
applied to stability analysis. 
 
 
STABILITY ANALYSIS OF DISCRETE-TIME 
BAM NEURAL NETWORKS 
 

To apply Theorem 2 and Theorem 3 to stability 
analysis of the discrete-time BAM network, we need 
to transform the BAM neural network Eq.(2) into the 
SNNM Eq.(3) and move the equilibrium point to the 
origin. System Eq.(2) can be reformulated by 

 
z(k+1)=Rz(k)+Sφ(ξ(k))+H, ξ(k)=z(k)          (14) 
 

If zeq is the equilibrium point of system Eq.(14), 
then it satisfies  

 
zeq=Rzeq+Sφ(zeq)+H. 

 
To conduct a linear transformation on system Eq.(14), 
let z′(k)=z(k)−zeq, then we have 
 

z′(k+1)=Rz′(k)+Sη(σ(k)),  
η(σ(k))=φ(σ(k)+zeq)−φ(zeq),            (15) 
σ(k)=z′(k)                                        
 

System Eq.(15) has formulation similar to that of 
system Eq.(14), but has an equilibrium point at the 
origin. The components of the nonlinear activation 
functions η 
 

ηi[σi(k)]=φi[σi(k)+zeqi]−φi(zeqi)   (i=1, …, n+m) 

are different if zeqi are different. Nevertheless, ηi 
keeps some properties of φi. In system Eq.(14), if the 
hyperbolic tangent is adopted for activation function 
φi, then ηi[σi(k)]=tanh[σi(k)+zeqi]−tanh(zeqi). If zeq=0, 
the sector for each function φi is [0, 1]. When zeq≠0, 
the sector becomes a subset of the former. 

Let ϕi(s)=tanh(s+zeqi)−tanh(zeqi), and according 
to the paper by Barabanov and Prokhorov (2002), the 
upper boundary of the sector can be calculated by  

 
ui=max{ϕi(s)/s:s≠0},  
U=diag{ui}, 

 
and the lower boundary can be set to zero. 

In this way, system Eq.(15) can be transformed 
into the form of the SNNM Eq.(3), where A=R, B=S, 
C=E(n+m)×(n+m), D=0, L=n+m. Furthermore, system 
Eq.(15) satisfies ηi(σi(k))/σi(k)∈[qi, ui], 0≤qi<ui. So 
we can use Theorem 2 and Theorem 3 to analyze the 
global stability of system Eq.(15) or BAM neural 
network Eq.(2). 
 
 
NUMERICAL EXAMPLES 
 

To demonstrate the effectiveness of the proposed 
approach, we analyze the asymptotic stability and 
exponential stability of a discrete-time BAM neural 
network with 4 neurons. The dynamics of the network 
is as follows 

 

1 1 1

2

2 2 1

2

1 1 1

( 1) 0.7000 ( ) 0.1500 tanh( ( ))
                0.0857 tanh( ( )) 0.3000

( 1) 0.7000 ( ) 0.2000 tanh( ( ))
                0.1000 tanh( ( )) 0.3000

( 1) 0.7000 ( ) 0.0750 tanh( ( ))
      

x k x k y k
y k

x k x k y k
y k

y k y k x k

+ = +
− +

+ = −
+ −

+ = −

2

2 2 1

2

          0.1000 tanh( ( )) 0.6000
( 1) 0.7000 ( ) 0.0429 tanh( ( ))

                0.0500 tanh( ( )) 0.6000

x k
y k y k x k

x k









 + +


+ = +
 − −

   (16) 

 
We first convert system Eq.(16) into the form of 
Eq.(2), where 
 

z(k)=(x1(k), x2(k), y1(k), y2(k))T, 
R=diag(0.7000, 0.7000, 0.7000, 0.7000), 
H=(0.3, −0.3, 0.6, −0.6)T, 
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S=

0 0 0.1500 0.0857
0 0 0.2000 0.1000

0.0750 0.1000 0 0
0.0429 0.0500 0 0

− 
 − 
 −
 

− 

. 

 

Since R satisfies E−R≠0, this system has an equilib-
rium point zeq=(1.7150, −1.9088, 1.4467, −1.7066)T 
by Theorem 1. Calculate the boundaries of the sectors, 
U=diag{0.6384, 0.5988, 0.6998, 0.6402}, Q=04×4. 
Then with the help of the MATLAB LMI Toolbox 
(Gahinet et al., 1995) we solve Eq.(4) where A=R, 
B=S, C=E4×4, D=0, L=4, and have the solutions as 
 

284.7176 28.9940 9.7500 8.4545
28.9940 240.4943 7.9115 7.6343
9.7500 7.9115 467.1979 44.1626
8.4545 7.6343 44.1626 401.7075

− 
 − =
 − −
 
− − 

P , 

diag{7.4250,5.5691,7.4701,14.1602}=Λ ,  
diag{59.6202,62.5651,105.4940,95.03203}Τ = . 

 
Then we can state that the equilibrium point zeq of the 
BAM network Eq.(16) is globally asymptotically 
stable according to Theorem 2. The state trajectory is 
shown in Fig.2. The result is independent of the initial 
states of the system. Compared with Theorem 2 and 
Theorem 3 in the paper by Jin (1999), our result is 
easier to obtain than theirs, since it is more difficult to 
find the solutions of the Lyapunov equations (pa-
rameter β, the matrices P and Q) in the results of the 
paper by Jin (1999). 
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Fig.2  The state trajectories of the discrete-time BAM 
neural network with 4 neurons described by Eq.(16) 
x1(k), x2(k), y1(k) and y2(k) are initialized arbitrarily at k=0, 
k=50 and k=100, respectively 

Next, we solve the GEVP Eqs.(7)~(9), and ob-
tain the solutions as 

 
β=0.6019, 

5

0.1457 0.0083 0.0012 0.0015
0.0083 0.1305 0.0003 0.0008

10
0.0012 0.0003 0.2765 0.0165
0.0015 0.0008 0.0165 0.2396

R −

− 
 − = ×
 − −
 
− − 

, 

5

0.0847 0.0030 0.0007 0.0009
0.0030 0.0766 0.0002 0.0005

10
0.0007 0.0002 0.1645 0.0117
0.0009 0.0005 0.0117 0.1398

K −

− 
 − = ×
 − −
 
− − 

, 

710 diag{0.1376,0.0972,0.16041,0.3766}Λ −= × ,  
610 diag{0.3420,0.3633,0.6223,0.6275}Τ −= × . 

 
So the equilibrium point zeq of the BAM network 
Eq.(16) is also globally exponentially stable accord-
ing to our Theorem 3. We can see it from the output 
waveforms of system Eq.(16) in Fig.2. However, 
Theorem 4 in the paper by Jin (1999) states that if the 
parameters A, B, W, and V in BAM neural network 
Eq.(1) satisfy the following condition  
 

( ) { }ln diag( , ) max , 0LF = + <A B W V , 

 
then the equilibrium point of Eq.(1) is globally ex-
ponentially stable. For example, we consider the fol-
lowing BAM network with 4 neurons 
 

1 1 1

2

2 2 1

2

1 1 1

( 1) 0.7000 ( ) 0.1500 tanh( ( ))
                 0.0857 tanh( ( )) 0.3000

( 1) 0.7000 ( ) 0.2000 tanh( ( ))
                 0.1000 tanh( ( )) 0.3000

( 1) 0.7000 ( ) 0.0750 tanh( ( ))
  

x k x k y k
y k

x k x k y k
y k

y k y k x k

+ = − +
− +

+ = − −
+ −

+ = − −

2

2 2 1

2

               0.1000 tanh( ( )) 0.6000
( 1) 0.7000 ( ) 0.0429 tanh( ( ))

                  0.0500 tanh( ( )) 0.6000

x k
y k y k x k

x k









 + +


+ = − +
 − −

   (17) 

 
Computing LF=−0.0742<0 of system Eq.(17), we can 
conclude that the system Eq.(17) is globally expo-
nentially stable by Theorem 4 in the paper by Jin 
(1999). But we can see it is not exponentially stable 
from the output waveforms of system Eq.(17) in Fig.3. 
So Theorem 4 in the paper by Jin (1999) is wrong.  
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Fig.3  The state trajectories of the discrete-time BAM 
neural network with 4 neurons described by Eq.(17) 
x1(k), x2(k), y1(k) and y2(k) are initialized arbitrarily at k=0, 
k=50 and k=100, respectively 
 
 
CONCLUSION 
 

The standard neural network model (SNNM) 
proposed in this paper provides an easier approach to 
stability analysis of the BAM neural network. We 
transform the discrete-time BAM neural network into 
the form of an SNNM. By using the MATLAB LMI 
Toolbox, we can confirm the global asymptotic sta-
bility and global exponential stability of the SNNM 
and then of the discrete-time BAM neural network. 
The method is easy to apply and less conservative, 
which makes it feasible for engineering applications. 
In principle, this approach is extendable to other types 
of recurrent neural networks, such as recurrent mul-
tiplayer perceptrons (Liu and Zhang, 2003). Fur-
thermore, we give some exponential stability condi-
tions represented as GEVP, and estimate the expo-
nential convergence rates for these RNNs. It should 
be pointed out that our Theorem 2 and Theorem 3 
provide only sufficient conditions for global stability. 
This means that if we cannot get a feasible solution to 
the LMIs, the stability of the system is unknown. In 
this case, we can reduce the intensity of the het-
ero-association or the size of  the  sector  area  to  get 
 
 
 
 
 
 

feasible solutions of LMIs. Unfortunately, this also 
degrades the performance of the discrete-time BAM 
neural networks. Therefore, our research will be di-
rected to enhancing both stability and performance of 
the BAM neural networks. 
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