
Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1221

Towards a self healing information system for digital libraries

AMBATI Vamshi, REDDY Raj

(Institute for Software Research International, Carnegie Mellon University, Pittsburgh, PA 15213, USA)
E-mail: vamshi@cmu.edu; rr@cmu.edu

Received Aug. 5, 2005; revision accepted Sept. 10, 2005

Abstract: An important area of focus in complex systems development is the capability to adapt to variable runtime environ-
mental resources and to accommodate runtime system failures. The research in this area is broadly termed as “Self Healing” and
has recently aroused increasing attention to complex systems. Digital libraries have gained popularity because of the richer fea-
tures they provide compared to traditional libraries. As more users begin to use digital libraries, addressing downtimes of these
valuable resources has become a high priority. Operating and providing access to digital content to anyone, anytime from any-
where in the world, results in a continued rise of administrative overhead for system monitoring and needs continuous human
intervention. Given the volume of information and the huge infrastructure of modern libraries, continuous manual system ad-
ministration is quite costly and not feasible. In this paper we propose a self healing digital library system as the solution to this
problem and present the approach of adding self healing capabilities to an existing digital library project, the Digital Library of
India (DLI). We also propose a self healing framework that enables successful reuse of our approach to other architecturally
similar digital library systems.

Key words: Digital library, Self healing systems, Failover, Configuration management
doi:10.1631/jzus.2005.A1221 Document code: A CLC number: TP391

INTRODUCTION

Digital libraries that have received wide atten-
tion in recent years allow access to digital information
from anywhere across the world, and have become
widely accepted and even preferred information
sources in education, science, and other areas
(Marchionini and Maurer, 1995). The rapid growth of
Internet and the increasing interest in development of
digital library related technologies and collections
(Bainbridge et al., 2003; McCray and Gallagher, 2001)
helped accelerate the digitization of printed docu-
ments in recent years.

To keep pace with the flood of new information,
digital libraries will require the means to collect li-
brary information and make it available digitally. We
have sustainable storage technologies to address the
capture of this digital information, and Web tech-
nologies to collect and store the data for the use of all.
However, as more data come in, handling them be-
comes unmanageable. Also in the long run due to

changing environments, faults in software or contin-
ued use of the hardware, a system yields to failure
conditions. Especially when digital libraries grow in
volume, the infrastructure and hardware resources of
deployment grow in proportion, leading to troubles in
manual maintenance. Recovery of systems from daily,
and common failure conditions like network outages,
or simple wear away of hardware would involve
much human attention and effort. Though the data are
present in the storage media and ready for use, the
service is unavailable for users after long period of
time, which is unacceptable, as the primary goal of
being accessible and useful for end-users is now lost.
Hence, though assembling the data and making it
available for easy access are identified as the most
important phases (Fromholz et al., 2004), high
availability nevertheless becomes a compelling qual-
ity attribute for digital library systems. Maximizing
the availability and reliability of the system and ser-
vices once deployed by automatically diagnosing,
isolating, and restoring the faults is the need of the day.

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1222

An important area of focus in the complex sys-
tems development is the capability to adapt to vari-
able runtime environmental resources and to ac-
commodate runtime system errors. This area is
broadly termed as self healing systems which has
aroused increasing attention in recent years during the
course of dealing with autonomic computing systems
(IBM Autonomic Computing Initiative, http://www.
ibm.com/autonomic). The term “Self Healing” in-
troduces a new interesting and promising research
field. It simplifies the task of composing, configuring,
and deploying high-availability solutions and con-
tinuously monitoring their availability. However this
area is not well explored in depth, not yet delineated
and final targets are not well identified. Researchers
have different and contradictory opinions and ideas
about autonomic computing on the whole and self
healing in particular.

In this paper we discuss self healing and its
relevance to digital libraries. We do not intend to
change the existing terminology or goals of the field
as such. We attempt to provide a simplistic approach
for providing a digital library system with self healing
capabilities for addressing the issue of maximum
availability of the system for maximum benefit of the
users. We discuss this in the context of the Digital
Library of India (DLI) project, a large scale book
digitization project aimed at digitizing and hosting
online a collection of one million books by 2008. The
project focuses on providing access to digital content
to anyone, anytime from anywhere in the world in an
efficient and user-friendly manner. Based on the ex-
perience from development and deployment of large
scale digital libraries, we propose “Self Healing” as a
technique to ensure quality of service in the phase of
faults. We also discuss in detail the proposed strategy
and framework for self healing of systems in general
and digital libraries in particular.

The rest of the paper is organized as follows. In
Section 2 we discuss the Digital Library of India
project and its architecture that we base our self
healing approach on. Section 3 describes the proposed
approach for adding self healing capabilities to a
system. Section 4 discusses a strategy for self healing
in digital library systems and proposes a framework
for other digital library systems to reuse the tech-
nology. Section 5 concludes with proposals of some
future work in this direction.

DIGITAL LIBRARY OF INDIA

This section briefly introduces the Digital Li-

brary of India (DLI) project and describes the status
quo of the architecture of the project which we extend
with self healing capabilities in the next sections.

Overview

The Digital Library of India (DLI) project initi-
ated in 2002, was motivations from the Universal
Digital Library project (http://www.ulib.org). With a
vision of digitizing a million books by 2008, the
Digital Library of India (http://www.ulib.org) project
aims to digitally preserve all the significant literary,
artistic and scientific works of people and make it
freely available to anyone, anytime, from any corner
of the world, for education, research and appreciation
by our future generations. The project currently digi-
tizes and preserves books, with one of the future
avenues being to preserve existing different for digital
media like video, audio, etc. The scanning operations
and preservation of digital data takes place at different
centers across India called Regional Mega Scanning
Centers (RMSC) functioning as individual organiza-
tions with scanning units established at several loca-
tions in the region. Responsibilities of a RMSC in-
clude regulating the processes of procuring or col-
lecting the books, distributing across scanning loca-
tions maintained by them, accumulating digitized
content from the contractors operating at those loca-
tions and hosting the same. Hence the DLI project is a
congregation of RMSCs, operating parallel to but
independent of distributed regions across India.

Architecture

Each Mega centre hosts the books that are
scanned in the locations maintained by it. Currently
there are three operational mega centers. The archi-
tecture adapted by each RMSC is similar to the one
shown in Fig.1. The digital objects are preserved on
Terabyte servers which are clustered as a data farm.
Each server in the data cluster hosts all the digital
objects preserved on it, through an Apache Web
server. The cluster is powered by Linux and enhanced
by LTSP, an add-on package for Linux that supports
diskless network booting. This option of diskless
network booting helps us boot a server without having
to devote any space for storing the system specific

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1223

and operating system files. This setup is economical
and easy to manage, in that we can add or replace data
nodes in the cluster instantaneously without the need
for operating system installations and configurations.
We have customized the kernel in LTSP to support
hard disk recognition and USB hot plug, and to run a
light weight Apache Web server.

As shown in Fig.1, the “Linux Loader” machine

runs a copy of this distribution of the Linux with
LTSP. Each data server in the data cluster downloads
the kernel over the private intranet and boots from it.
Data can be copied onto a server in the cluster over
the network or through USB interface. The servers
implement a hardware based RAID to contain disk
failures which adds to the reliability of the system.
The “Metadata server” is a repository of the complete
metadata of the books in XML chosen for its impor-
tant role in interoperability. Wrappers present on the
metadata server automatically populate the database
from the XML metadata. Along with the metadata of
the book, the database also contains pointers to the
location of the book in the data cluster.

The portal has a front end which a user can use
login and query metadata to retrieve books he wishes
to read online. A caching mechanism deployed on the
metadata server helps us cache similar queries posed
to the database and return the results promptly. When
a user requests to view the complete book content, the
location of the book in the data cluster is gathered
from the database and content is retrieved on http

requests, from the particular server in the cluster and
is broadcast to the user. The “proxy servers layer”
between the Data cluster and the portal also has a
caching mechanism enabled that handles repeated
requests for the book pages and ensures quick re-
sponse times.

APPROACH TO BUILDING SELF HEALING
SYSTEMS

The self-healing objective is to minimize all
outages and to keep the applications available at all
times. This strategy includes maximizing the reli-
ability and availability in each hardware and software
product to maintain continuous availability of appli-
cations and systems. For a system to heal itself, it
must be able to recover from a failing component by
first detecting the failed part, taking it off-line, fixing
or isolating the failed component, and reintroducing
the fixed or replacement component into service
without any application disruption. A few systems
also deal with on-line repair of the failed component
without having to disturb the running system.

Requirements analysis

Understanding the functional and non-functional
requirements is the preliminary phase before applying
self healing capabilities to a system. We first need to
understand the system behaviour, so that we can un-
derstand whether the system is working according to
the specification or behaving not according to speci-
fication.

(1) Functional requirements. An important
technique that has proved to be useful in under-
standing and prioritizing functional requirements is
by prioritizing the stakeholders and then picking the
most important and most required functionality for
self healing. For example in DLI, the end user is the
most prioritized stakeholder of the system, and so the
functional requirement of “reading books online”
naturally becomes the top priority on the self healing
agenda. There are other functions like “data syn-
chronization” and “administration” which are asso-
ciated with other stakeholders of the system, and
since they were of low priority and need not require
the extra overhead of making the process self healing
too. Also the failures of such functions do not affect

Fig.1 Digital library architecture

Linux Loader

Server 1

Proxy servers

Server 2
Data servers (TB servers)

Metadata
server

Cache

DLI-RMSC

Internet
Local area network

Client

Client

Client

Firewall

Server n

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1224

our prioritized stakeholder, the end user. Most faults
do not show, those that show, do not have affect on
the stake holders we have in mind.

Also we may have to use a new set of require-
ments to sketch the strategies for self healing. Also
not all the functionality can be made self healing, so
we need to analyse the requirements that can be dealt
with in the system.

(2) Non-functional requirements. Reviewing the
non-functional requirements of the system is impor-
tant too. For example we may have to work in the
limitations of the system as the turn around time for
failover cannot be less than the timeout of TCP re-
quests, as the monitoring that helps us identify the
faults might depend on TCP request and timeouts.
Also, the strategy of self healing may introduce cer-
tain overhead on the system, which could possibly
affect other quality attributes of the system like per-
formance etc. So looking into these tradeoffs between
the highly available quality attribute and the per-
formance attribute is necessary. In DLI, the concern
was less on performance, but more on availability of
the resources to be accessible around the clock. Fi-
nally, the term highly available is vague; we need to
be clear as to how much availability is expected and
the tolerable down time of the system is. This helps us
plan the healing strategies accordingly.

Probably last but not the least, we need to elicit
the kind of self healing strategy that best suits the
system. If the stakeholder requires that the system
focus on performance, then the self healing strategy
should concentrate on constantly monitoring the en-
vironment and system for performance properties and
heal accordingly based on load balancing or the like.
However, systems that focus on security have to deal
with different strategies altogether. Hence under-
standing of such requirements is very essential before
deciding on the approach.

Fault model

Building a fault model for the system is the next
task towards self healing. The fault model can be
broadly seen as a compilation of the faults that are
targeted for and realizing a system boundary of ac-
ceptable behavior. For such a task knowledge of the
behavior of the system is critical. Experts should
understand the difference between faults and features,
faults that can be resolved and faults which cannot,

faults that are transient (which do not persist over a
long time) and faults that are persistent. Such
knowledge is only obtained by close observation of
the system over a period of time. Only when the ex-
pert can clearly realize the functionality of the system,
can he be capable of judging its faulty behavior and
also categorize faults accordingly.

In the Digital Library Project, the following is a
fault model identified and which motivated us to-
wards a proposal for a self healing architecture.

(1) Content cluster problems. The content cluster
consists of low commodity servers, which boot up
over the network. As shown in Fig.1 the content
cluster contains the “Linux Loader” which servers as
the machine that helps the booting up of the rest of the
servers in the cluster. Most of the problems in the
project are related to the maintenance of this cluster.
The NFS server run on the Loader machine could
malfunction under severe load or congestion prob-
lems. The DHCP server has a similar problem, and
the failure of either of them prevents the cluster ma-
chines from delivering content.

(2) Third party software problems. Most of the
software used in the Project is third party software
like the Apache server, JBOSS, MySQL among oth-
ers. Though the threat of failure of these third party
components is lower it should not be neglected. Also
there is always the possibility of these malfunctioning
due to changes or variations in the environment they
run in or the server they run on.

(3) Hardware problems. Disks containing the
data are perhaps the most sacred elements in the
Digital Library Project. However normal hard disks
degrade over time and are prone to faulty behavior
over the long term. Though maintaining a backup for
each data disk is a strategy, we cannot rely on it for
complete recovery as it is a time consuming process
and at the same time not manageable given the large
number of disks and the frequent rate of accessing
data. Similarly the servers that host the disks are
prone to degradation and fault behavior too. Though
the server failures are quite uncommon with probably
one server failing in a year; with a hundred servers,
the chance of one failure per day is quite high and
should be addressed.

(4) Environmental changes. Along with the
above mentioned problems, software running in an
environment is incumbent upon the environmental

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1225

changes. Network outages inside the cluster and
power outages are frequent among others.

The above discussed fault model of the system
does not subsume the faults caused due to bad soft-
ware building process or programmatic bugs and
errors. These have to be taken due care in the building
of the system of concern. Self healing capabilities
discussed here, are built on top of the system and
concentrate more on the faults of the resources used
by the system and the third party software or the en-
vironment.

Self healing strategy

Most self healing implementations approaches
perform some or all of the following—monitoring,
interpretation, analysis, diagnosis, failover, recovery,
and assurance. The paradigm of healing could be
internal where components are equipped with
mechanisms of healing themselves or an externalized
approach where monitors are present that are respon-
sible for healing of the system. Externalized ap-
proaches are the default best when dealing with leg-
acy systems as they do not entail any modification of
the component. Our strategy is mostly based on ex-
ternalized healing with a few components also
equipped with internalized healing. For example, the
servers implement a RAID setup which can be seen as
a self healing mechanism for the hardware. However
it is not a foolproof solution and our externalized
approach with redundancy takes care of the faults that
occur beyond the hardware RAID. In the following
sections we describe in brief the self healing strategy
that we use in the DLI project and also represent it as
a framework that can be used by other similar sys-
tems.

SELF HEALING FRAMEWORK FOR DLI

We now describe how we use the fault model
and the understanding of the requirements and deploy
a self healing mechanism suitable for the Digital Li-
brary Project. The requirements and the constraints
drive our self healing mechanism. Our framework is
supported by component redundancy. We move on
with effective probing mechanism, fault diagnosis,
fault masking and fail over (Fig.2).

Monitoring

The primary step towards self healing is to detect
the faulty behavior in the system. A system can be
continuously monitored and deviation of the faults
can be detected. However the monitor is not aware of
or is not responsible for detecting or identifying
anomalous behavior. The job of a monitor is to deploy
probes to detect and report interesting parameters and
the runtime behavior of the applications in the system.
Monitoring a system usually is done constantly in a
background process. A probe could be a command or
a transaction like a ping or trace route command, an
email message, or a Web-page request. Probes are
usually sent from an external machine called the
“monitor” to a server, client or any network element
in order to test the availability of service of the ele-
ment. The probe technology is dependent upon two
techniques: bounded retries and periodic announce-
ment broadcasting. These probes can be used to return
a set of results which can then be used to calculate the
parameters of concern, like latency or bandwidth, etc.
It can also not return a significant output other than a
simple “OK” message to find out the availability of
the element.

In systems like the DLI, along with manually
deployed probes, we can also use the requests from
end users to alert and update us on the availability of
the system resources. If an end user requests for a
service, and is unable to get a response, this can be
used as a probe to trigger the diagnosis of the situation.

Diagnosis

Diagnosis was addressed with very simple

Fault masking,
fail over

Diagnosis

Recovery

Assurance

Monitor

Linux Loader

Server 1

Proxy servers

Server 2
Data servers (TB servers)

Metadata
server

Cache

DLI-RMSC

Local area network

db

Fig.2 Self healing framework for DLI

Server n

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1226

strategies, for example based on fixed mappings from
misbehavior to adaptations methods. Slightly more
sophisticated strategies select adaptation procedures
by iteratively applying possible solution tactics until
the problems are solved. Now our diagnosis is cen-
tered on the fault semantics database. Once we have
identified the faults that could occur in the system, we
populate the database with the failures conditions
under which machines operate in a faulty manner, and
the possible tactics of fault masking, alternate com-
ponent addresses and scripts that need to be run when
the fault conditions match the populated conditions.
This machine understandable database is the “fault
semantics database”. Maintain a fault semantics da-
tabase consisting of assurance mechanisms. For each
fault, we have a scenario which tests the correction of
that particular failure. Store the information in the
form of a language or grammar to decide what prob-
lems occur and how.

Diagnosis probably requires more attention in
future and which can lead to substantial improve-
ments in self-healing systems. The ability of precisely
locating the source of misbehavior can greatly im-
prove the identification of suitable adaptation strate-
gies. The results of the automated diagnosis are used
to initiate self-healing activities such as administrator
messaging, isolation or deactivation of faulty com-
ponents, and guided repair.

Fault masking and failover

Once a fault occurs, masking the fault is neces-
sary for any system and content delivery systems in
particular. Fault masking is essential for a transparent
recovery mechanism and helps a system keep the user
unaware of the fault that has occurred, while the
system repairs it. One of the masking strategies is to
have component redundancy as much as possible and
fail over to a different component for the service.
Component redundancy is a concept introduced for
addressing the self healing requirements of a system.
Any resource, if needed to provide undeterred and
continuous service needs a redundant copy of the
resource somewhere in the system. It means the
presence, at runtime, of multiple components or pos-
sibly variants providing identical or equivalent ser-
vices. Only one of the redundant components pro-
viding a service is assigned, for that service. The
selected variant is referred to as the active component

variant. Redundant components should have provi-
sions to be added, updated or removed at runtime. So
as long as at least one worker does not continuously
fail, all jobs will be completed.

The important components in the DLI project
that need redundancy are the database that runs at the
backend and holds the metadata information of the
books and the cluster that serves the actual content of
the books. As mentioned earlier we run MySQL da-
tabase for holding the metadata and so we could eas-
ily have a replicated database using the replication
feature provided by MySQL. The content cluster has
other components like the DHCP server and the Linux
Loader which need redundant components in the
system. Also the DLI project is hosted at three other
locations in order to address issues of network out-
ages and irrecoverable problems.

One issue to be resolved while implementing a
fault masking and failover technique is the presence
of “state” of any form in the client request or the
server system. In the DLI project, the servers are
completely stateless. They do not require any kind of
intermediate state or parameter values, to process the
request of a client. However the client request con-
tains some amount of state, which is the preferences
of the end-user or the identity of the book viewed. If a
fault occurs on a server trying to cater to the request of
the client, then the “failover server” (which is usually
one of the three locations that hosts DLI content) has
to take care of serving the client with those same
parameters. This is achievable if we maintain some
state on the server and transfer it to the “failover
server”, which is complex. A simple solution is
passing a pointer to the failover server and indicating
the client to retry the request. So we need to under-
stand that complete transparent failover is a desired
feature, but the feasibility of such a failover is largely
dependant upon the type of failure that occurs.

Recovery

After a system has detected the faulty behavior,
diagnosed and identified the fault and potentially
masked it by degradation or failover, we must now
restore the failed component to its full operation. We
can infer from that the number of simultaneous faults
that a system can handle depends upon the level of
redundancy we use and the time of recovery from a
failure. Recovery strategy also varies widely in com-

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1227

plexity depending upon the “state” of the compo-
nent/resource. For a component with state, recovering
from a failure involves issues such as integrating
newly committed components into ongoing processes,
“transferring” resources by transferring system state
into them, or taking action to bring the system to a
clean known state before proceeding with operations.

Most of the failures in a Web based system can
be resolved by a reboot. Also, results of several
studies (Rothenberg, 1999; Gray, 1986) and field
experience suggested that many failures can be suc-
cessfully resolved by rebooting, even when the fail-
ure’s root cause is unknown. Not surprisingly, today’s
state-of-the-art in achieving high availability for
Internet clusters involves circumventing a failed node
through failover, rebooting the failed node, and sub-
sequently reintegrating the recovered node into the
cluster. Hence for a set of the failure conditions, the
recovery strategy is a remote-reboot, and re-initi-
alization of the server.

The methods of recovery of the failed compo-
nents in the DLI project involve one or more of the
following—restarting service, rebooting server, or
requesting manual help. The current area of focus in
the project is “detection” of the failure occurrence so
that action can be taken promptly. If the component is
a data disk or a server and it is a hardware failure, a
notice is sent to the administrator who then promptly
replaces the failed component and does the needed
repair. Each of the server hosting data is configured in
RAID5 and we also maintain a redundant copy of the
complete data on external storage media, for data
restoration in the event of irrecoverable crashes. If the
failure is due to a third party software service com-
ponent like the NFS or the DHCP or the Apache, then
it requires a service restart or a system restart in order
to recover. In our setup the one component that has
state attached to it is the “Linux Loader” server which
runs the NFS and the DHCP servers. Since, a redun-
dant component of the same runs in the system at any
given point, before a recovery of this instant care must
be taken that the internal configuration or state is
synchronous with the current active running compo-
nent.

Assurance

Every system requires assurances of some level
of functional and non-functional correctness for

normal operation. Self-healing systems additionally
require a way to ensure that such functionality is
maintained after recovery or fault occurrences.

In the DLI project, the assurance mechanism is
more concentrated on the functional requirements and
the correct operation by the specified system behavior.
So scripts that check for this functionality are run
immediately after the recovery phase. The informa-
tion of the assurance scripts that need to be run is also
embedded in the fault semantics database. A notable
aspect here is the overlap of tasks of the “Monitoring”
phase and the “Assurance” phase. Most often we
would like to assure for anything that broke during the
monitoring phase.

Human interaction

Self healing is intended to shift the responsibility
of dealing with failures from people to technologies.
However, though an autonomous self healing system
is desirable, it may not be feasible as of now, due to
systems being built in a component based mode,
where each component is sometimes obtained from a
third party and the system has less knowledge of the
component. So we try to involve the human wherever
needed and make it not possible for system to make
decisions.

In particular, in our model, human involvement
comes in the form of a data-driven feedback loop
between monitored logs and the fault semantics da-
tabase. This ensures a foolproof fault semantic data-
base, as this is the central element of the fault diag-
nosis and the self healing strategy of the system. Also
if a system fails to pass the assurance test after the
recovery, a human is called for, to correct the situa-
tion and also modify the conditions and recovery
actions in the database.

CONCLUSION

We proposed a simplistic approach to add self
healing capabilities to an existing system and dis-
cussed the application of the process to the Digital
Library of India (DLI) project. We also explained the
failure model and the architecture of the project and
the constraints that support this problem. We also
explained in detail the phases of a self healing system
that efficiently uses the process to implement the self

Ambati et al. / J Zhejiang Univ SCI 2005 6A(11):1221-1228 1228

healing strategy for any digital library system.

FUTURE WORK

The area of self healing has gained popularity in
the research community and several approaches have
been proposed. Frameworks like the IBM Autonomic
Computing Initiative (http://www.ibm.com/autonomic)
have been released. We plan to experiment on how
easily such frameworks can be applied to a digital
library system with few constraint requirements. Also
our approach currently addresses self healing for high
availability, but very soon we would like to look into
issues of healing during security breaches and threats
to data and issues of low performance. The fault se-
mantics database is currently populated by a human
and may not include all the conditions and scenarios
for the faults occurring. We need to provide good
intuitive interfaces that make it as easy as possible to
capture expert knowledge about rules, constraints and
assurance policies. Machine learning techniques will
have to be considered and incorporated to improve
self healing techniques over time. Finally, we would
like to work towards developing a full version of the
framework proposed which can be reused by different
other digital libraries to add self healing capabilities.

ACKNOWLEDGEMENTS

The first author would like to acknowledge, the
discussions he had with Mr. Vasu Balla of Oracle,
India and Mr. Edward Walter, the Systems Manager
of the ULIB project that helped in surfacing the fault
scenarios in the project.

References
Marchionini, G., Maurer, H., 1995. The roles of digital li-

braries in teaching and learning. Communications of the
ACM, 38(4):67-75.

Bainbridge, D., Thompson, J., Witten, I.H., 2003. Assembling
and Enriching Digital Library Collections. Proceedings of
the 3rd ACM/IEEE-CS Joint Conference on Digital Li-
brary.

Fromholz, I., Knežević, P., Mehta, B., Claudia Niederée, Risse,
T., Thiel, U., 2004. Supporting Information Access in
Next Generation Digital Library Architectures. Proceed-
ings of the Sixth Thematic Workshop of the EU Network
of Excellence DELOS.

McCray, A.T., Gallagher, M.E., 2001. Principles for Digital
Library development. Communications of the ACM,
44(5):48-54.

Rothenberg, J., 1999. Avoiding Technological Quicksand:
Finding a Viable Technical Foundation for Digital Pres-
ervation. Rep. to Council on Library and Information
Resources.

Gray, J., 1986. Why Do Computers Stop and What Can be
Done about It? Proc. 5th Symp. on Reliability in Distrib-
uted Software and Database Systems, Los Angeles, CA.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

