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Abstract:    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize 
field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local 
environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air 
temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer 
back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere 
without using detailed physiological information or specific parameters of the plant. 
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INTRODUCTION 
 

Dynamics of carbon and water vapor fluxes 
exchange between the atmosphere and the ecosystem 
biosphere, depend on complex and non-liner interplay 
among physiological, ecological, biochemical and 
edaphic factors and meteorological conditions (Jarvis, 
1995; Leuning et al., 1995). There are many studies 
quantifying the fluxes across different time and space 
scales as well as assessing the environment con-
straints on them by some kinds of biophysical or 
empirical models whose results were tested against 
measurements (Schelde et al., 1997; Baldocchi and 
Wilson, 2001; Goldstein et al., 2000; Pilegaard et al., 
2001; Humphreys et al., 2003; Anthoni et al., 2002; 
Wilson et al., 2000; Hunt et al., 2002). Most of them 
were conducted in forest and grassland, and re-

searches in cropland still remain largely undeveloped.  
In the context of developmental models for sur-

face-atmosphere fluxes exchange, this paper is aimed 
at conducting a robust, flexible and rapid study for 
modeling climatic control and environmental factors 
regulating water and carbon fluxes in cropland. Arti-
ficial neural networks (ANNs) are attractive and 
promising strategies for this work because of their 
capacity in prediction, control and optimization of 
input-output responses without a predefined mathe-
matical model (Kosko, 1992; Demuth and Beale, 
1994; Schulz and Härtling, 2003) in many research 
fields. A few applications of this method had been 
reported in modeling of ecological data since the 
beginning of the 90’s (Thai and Shewfelt, 1991; Chao 
and Anderson, 1994; Murase et al., 1994; Cook and 
Wolfe, 1991; Elizondo et al., 1994; Batchelor et al., 
1997; Lek et al., 1996; Lek and Guegan, 1999; 
Hecht-Nielsen, 1987; Huntingford and Cox, 1997; 
Francl and Panigrahi, 1997; Werner and Obach, 2001; 
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Moisen and Frescino, 2002). Most of these works 
showed that ANNs performed better than classical 
modeling methods. In these researchers, studies on 
using ANNs in modeling carbon and water fluxes are 
limited except for Van Wijk and Bouten (1999)’s 
investigation on selecting a minimal set of input 
variables to model water vapor and carbon exchange 
of coniferous forest ecosystems with this approach. 
Prospects of modeling fluxes in crop field have not 
been examined yet. 

In this work, three-layer back-propagation neu-
ral networks were developed and applied to datasets 
collected in a crop field in the North China Plain to 
explore their capability in modeling water vapor and 
carbon dioxide fluxes exchange between the surface 
of a summer maize field and atmosphere. Responses 
of the fluxes exchange to biotic and abiotic factors 
were investigated at the same time.  

 
 

MATERIALS AND METHODS 
 
Experimental site 

The experiment was conducted at Yucheng 
Comprehensive Experiment Station (36°57′ N, 
116°36′ E, 20 m a.s.l) in the North China Plain char-
acterized by semi-humid and monsoon climate. Mean 
annual precipitation, temperature and global solar 
radiation at the station over the past 30 years are 528 
mm, 13.1 °C, and 5225 MJ/m2 respectively. Winter 
wheat and maize is the main crop rotation system in 
this region. Growing season of winter wheat is from 
early December to mid-June, and for maize from 
early-June to later September. 

The measurement plot was made at the center of 
a 300 m×300 m field of the maize Surrounding the 
field was unbroken farmland of maize at similar 
growth stages, which extended at least 5 km in all 
direction (Lee et al., 2004).  

 
Measurements 

Continuous fluxes and meteorological meas-
urements for this study were made in the summer 
maize growth period, which began from the day of 
sowing [day of year (DOY165)] to harvest (DOY275) 
in 2003.  

Wind velocity and virtual temperature fluctua-
tions above the canopy were measured with a 

three-dimensional sonic anemometer (model CSAT3, 
Campbell Sci., Logan, UT). Water and CO2 concen-
trations were measured at 10 Hz with an open path, 
infrared absorption gas analyzer (CS-7500, Campbell 
Scientific Inc.). Fluxes were calculated and stored 
using a data logger (model CR10X, Campbell Sci., 
Logan, UT) for 10 min periods and then averaged for 
30 min periods.  

Above-canopy net radiation was measured with 
net radiometers (model Q-7, REBS, Seattle, WA). 
Photosynthetically active radiation was measured 
with radiation sensors (LI-190SZ, LI-COR Inc., 
Lincoln, NE). Air temperature and relative humidity 
were measured with a thermistor and capacitive RH 
sensor probe (model HMP45C, Vaisala, Helsinki, 
Finland). Rainfall was measured with tipping-bucket 
rain gauges (model TE525MM, CSI, Logan, UT), 
above the canopy. Wind speed was monitored with a 
wind sentry set (model 03001, RM Young, Traverse 
City, MI). Two soil heat flux plates (model HFT-3, 
Seattle, WA) were positioned between-rows and 
between-plants at depth of 0.05 m to determine fluxes. 
Soil temperature was measured with cop-
per-constantan thermocouples. Soil water content 
(SWC) was measured at 0.05 and 0.2 m with two soil 
water content sensors (model CS615, CSI, Logan, 
UT). 

Irrigation and fertilizer were applied with the 
same frequency and amount as those of the local 
farmland. Leaf area index was measured with an 
electronic leaf-area meter (LAI-2000, LI-COR, Lin-
coln, NE) every 5 d throughout the crop growth sea-
son. 

 
Data processing 

Owing to instrument maintenance, calibration, 
malfunction of the sensors and supporting equipment, 
the missing data in the observed fluxes occupied 
5.67% during the period for analysis. Unreasonable 
data of carbon dioxide flux (Fc), latent heat flux (LE) 
and sensible heat flux (Hs) rejected accounted for 
0.06%, 0.48% and 0.73% respectively after all 30 min 
raw data were assessed for anomalous turbulent sta-
tistics and sensor malfunction (Baldocchi et al., 1988; 
Hollinger et al., 1995). Rejected soil heat fluxes (G) 
measured between-rows or between-plants comprised 
3.06% and 3.41% during the growth period. Major 
missing fluxes data gap occurred in DOY262−267 
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because precipitation obscured the gas analyzer optics 
and sonic transducers. Measurements within 24 h 
after a rain event were eliminated from the dataset. 

For nighttime fluxes records, a wind friction 
velocity (u*) threshold (u*>0.1 m/s) was determined 
(Falge et al., 2001; Anthoni et al., 2004) and fluxes 
measurements when u* was smaller than the threshold 
were removed from the dataset to minimize problems 
related to insufficient turbulent mixing (Fig.1).  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Energy closure, expressed as: Rn−G=Hs+LE, 

where Rn (W/m2), net radiation and G (W/m2), soil 
heat flux, Hs is the sensible heat flux density (W/m2) 
on a 30 min basis. Liner regression indicated that 
agreement between the sum of the turbulent fluxes 
(LE+Hs) and the available energy (Ra) was generally 
good (Fig.2). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model development 
Back-propagation neural network (BP) is the 

most common multi-layer network used in 80%−90% 
of all ANNs applications due to its simplicity and 
proven learning and generalization ability (Adeli and 
Park, 1998; Cattan and Mohammadi, 1997; Deo and 
Chaudhari, 1998; Owusu-Ababia, 1998; Thiru-
malaiah and Deo, 1998). In this study, a feed-forward 
back propagation neural network with an input layer, 
output layer and hidden layer and output layer was 
employed for responses modeling. The number of 
input and output nodes corresponded to the number of 
input and output variables, while the number of the 
hidden nodes depended on the complexity of the re-
lations between input and output variables. 

The BP neural network was trained by repeat-
edly presenting a series of input-output pattern sets to 
the network. The network gradually “learns” the in-
put-output relationship of interest by adjusting the 
weights to minimize the error between the actual and 
predicted output patterns of the training set. The 
trained network is usually examined through a sepa-
rate set of data (called test set) to monitor its per-
formance and validity (Sadeghi, 2000).  

The dataset for this study was divided into three 
parts with the proportion of 2:1:1 for training, vali-
dation and testing respectively. To minimize the 
training time by eliminating the possibility of reach-
ing the saturation regions of the sigmoid transfer 
function during training, both the input and output 
values were linearly scaled to ensure they lie within 
the range 0−1 using:  
 

xscaled=(x−xmin)/(xmax−xmin) 
 

xmax and xmin were equal to the maximum and mini-
mum recorded value for each input variable. 

The activation function to be used in the neural 
network was a sigmoidal function: 

 
f(x)=logsig(x)=1/(1+e−x) 

 
The optimization method applied in the calibra-

tion phase was the Levenberg-Marquardt method, 
(Marquardt, 1963; Demuth and Beale, 1994), which 
could minimize the total sum of squared errors (SSE) 
between measured and modeled values by tuning the 
artificial neural network parameters (e.g. scaling 

Fig.1  Measured night CO2 flux (Fc) vs nighttime turbu-
lence (u*) 
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Fig.2  Half-hourly sums of LE+Hs against available en-
ergy (Rn−G) during the summer maize growth period 
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factors and inter-neuron connection weights). All 
these computations were performed in Neural Net-
work Toolbox 2.0 in Matlab (Ver.6.5). 

 
Input variables determination 

Climate and environmental forcing variables 
such as photosynthetically active radiation (PAR), 
vapor pressure deficit (VPD) were taken as input 
variables. Air temperature (T), wind friction velocity 
(u*), leaf area index (LAI), soil volumetric water 
content (W) were selected for their influences on the 
surface flux transfer or crop transpiration and respi-
ration, carbon dioxide flux (Fc) and water vapor flux 
(LE) were outputs. All these variables have notable 
year round variations or different patterns in daily or 
seasonal periods, so two variables “Day of the year 
(DOY)” and “Time of the day (TOD, expressed in 
digital form)” should be inputted into the network to 
improve its results so that the best simulation model 
could be achieved with the driving input variables 
mentioned above, as Van Wijk and Bouten (1999) 
suggested.  

 
Model selection 

After the input layer was determined, experi-
ments were conducted to find the combination of 
inputs with greatest accuracy in predicting of the 
validation dataset. The results of different inputs 
combinations were evaluated by the independent 
dataset. Fitness of the models were compared using 
the explained variance (R2) and the root mean square 
error (RMSE). Main results for Fc and LE were 
shown in Tables 1 and 2 respectively. 

In Tables 1 and 2, PAR, T and VPD contributed 
to the performance of the BP network significantly 
irrespective of the composition of the variables. For 
Fc, model 6 has the greatest R-square and the least 
RMSE. The BP network optimum topology was 
PAR-T-VPD-LAI-u* in combination with TOD, only 
variable W was removed among the eight inputs 
(Table 1, Model 8). This result agreed with that ob-
tained by Van Wijk and Bouten (1999)’s conclusion 
on surface CO2 flux in forest, in which 
“Rg-T-VPD-LAI-TOD” was thought to be the best 
inputs combination except that wind speed was in-
cluded in this study. Increasing the number of the 
hidden neurons did not improve the model perform-
ance greatly (Table 1, Models 7−8). Model 7 with 10 

hidden neurons was the best-fit combination. 
For LE (Table 2), Model 4 was a minimally 

improved after being combined with W (Model 6) 
while a slight decrease in model fit resulted when u* 
was involved (Model 5). Model 6 could be seen as the 
best structure for simulation of LE. Model 7 led to 
little improvement in model fit of latent heat flux after 
DOY was inputted into Model 6. RMSE dropped and 
R-square increased in Model 7 when the number of 
hidden neurons of the network increased to 9 (Table 2, 
Model 8). Though this improvement was not sig-
nificant, Model 8 could be chosen as the best fit. 

Half-hourly modeled fluxes (Model 7 for Fc and 
Model 8 for LE) against measured values in summer 
maize field were shown respectively in Fig.3 by linear 
regression. The results showed that agreement be-
tween measured and BP modeled fluxes was fair to 
good. 

 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESPONSES ANALYSIS 
 

Response analysis can be used to evaluate the 
effects of input variables interaction (Huntingford and 
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Fig.3  Simulated and measured half-hourly Fc (a), LE (b)
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Cox, 1997). In this study, this evaluation was made 
with figures interpretation in which two variables 
were varied together while the others were set to their 
mean values (Figs.4, 5). 

Fig.4a showed CO2 fluxes response to T and LAI 
at certain vapor pressure deficit and wind speed con-
dition (or soil water volumetric content) during 
nighttime. With the maize at its jointing stage 
(1.2<LAI<3.5) and T greater than 20 °C, measured 
upward flux indicate that CO2 efflux is mostly due to 
respiration of the soil microbes and the roots. The 
value of flux increased thereafter (LAI >3.5) during 
the courses when crop respiration and soil CO2 efflux 
increased. 

At an early stage with an incomplete canopy 
(LAI<4.0) or leaf senescence, limited canopy cover 
led to low Fc. Meanwhile, more solar radiation went 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to soil heat flux than to canopy transpiration caused 
partially high VPD, dry soil surface, so LE was rela-
tively small (Fig.5a). When the canopy was fully 
established with a larger LAI, both Fc and LE became 
higher, LE increased with T if soil water content was 
adequate. 

LAI had direct effect on soil surface cover, 
canopy area for transpiration and the canopy ventila-
tion condition. Evaporation is under a low LAI and 
sufficient soil water content, decreases as the soil 
surface becomes dry. Canopy transpiration of the 
summer maize comprises the major part of 
evapotranspiration, and gradually increases to a stable 
value under the condition that the there is no soil 
water deficiency (Fig.5a). 

In  Fig.4c,  at  a  fixed  PAR,  surface-atmosphere 
carbon flux exchange intensifies with increasing LAI, 

Model Input variables combinations Structure Slope of the 
linear regression

Intercept of the 
linear regression R2 RMSE 

1 PAR-T-VPD 3-5-1 0.6449 −0.0767 0.6547 0.2678 
2   PAR-T-VPD-u* 4-7-1 0.6917 −0.0547 0.6864 0.2673 
3 PAR-T-LAI  3-5-1 0.8738 −0.0271 0.8802 0.1843 
4 PAR-T-LAI-u* 4-7-1 0.8536 −0.0322 0.8607 0.1963 
5 PAR-T-VPD-LAI 4-7-1 0.8914 −0.0242 0.8906 0.1786 
6 PAR-T-VPD-LAI-u* 5-8-1 0.9015 −0.0189 0.9029 0.1697 
7 PAR-T-VPD-LAI-u*-TOD 6-8-1 0.9072 −0.0218 0.9062 0.1669 
8 PAR-T-VPD-LAI-u*-TOD 6-9-1 0.9069 −0.0231 0.9061 0.1670 
9 PAR-T-u* 4-7-1 0.7483 −0.0461 0.7508 0.2465 

10 PAR-T-VPD-W 5-8-1 0.8820 −0.0248 0.8845 0.1822 
11 PAR-T-VPD-W-u* 6-9-1 0.9007 −0.0234 0.8940 0.1773 
12 PAR-T-W-u* 6-8-1 0.8818 −0.0268 0.8937 0.1739 
13 PAR-T-VPD-LAI-W-u* 7-15-1 0.9054 −0.0199 0.8980 0.1737 

Table 1  BP network topology structure and linear regression analysis for Fc 

Model Input variables combinations Structure Slope of the 
linear regression

Intercept of the 
linear regression R2 RMSE 

1 PAR-T-VPD 3-5-1 0.7681 21.1550 0.7746 38.8409
2 PAR-T-VPD-u* 4-7-1 0.8035 18.0332 0.7867 39.2250
3 PAR-T-LAI  3-5-1 0.9000 9.2300 0.9052 27.2992
4 PAR-T-VPD-LAI 4-7-1 0.9178 7.5646 0.9143 26.3406
5 PAR-T-VPD-LAI-u* 5-8-1 0.9039 7.7923 0.9101 26.5981
6 PAR-T-VPD-LAI-W 5-8-1 0.9131 7.4051 0.9153 26.0346
7 PAR-T-VPD-LAI-W-DOY 6-8-1 0.9164 7.3359 0.9225 24.9054
8 PAR-T-VPD-LAI-W-DOY 6-9-1 0.9273 6.0639 0.9264 24.5040
9 PAR-T-VPD-W-u* 6-8-1 0.9145 7.3373 0.9144 26.2316

10 PAR-T-VPD-W 5-8-1 0.8505 12.8883 0.8588 32.3297
11 PAR-T-VPD-LAI-W-u* 5-8-1 0.9171 10.0673 0.9101 27.0157

 

Table 2  BP network topology structure and linear regression analysis for LE 
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Fig.5  Responses analysis of water vapor flux (LE) 
(a) LE when PAR, VPD and W fixed; (b) LE when LAI, VPD and W fixed; (c) LE when PAR, T and LAI fixed; (d) LE when
PAR, VPD and LAI fixed 
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Fig.4  Responses analysis of carbon dioxide flux (Fc) 

(a) Nighttime Fc when PAR, VPD and u* fixed; (b) Daytime Fc when PAR, VPD and u* fixed; (c) Daytime Fc when T, VPD and
u* fixed; (d) Daytime Fc when LAI, VPD and u* fixed; (e) Daytime Fc when T, VPD and LAI fixed 
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similar trends can be seen when LAI is fixed. Greater 
LAI, lack of significant soil moisture limitation on 
carbon assimilation results in much higher rates of 
carbon uptake. 

Wind speed greatly influences air turbulence and 
carbon dioxide transfer. For calm conditions (u*<0.1 
m/s) in our experiment site, respiration in the crop 
field was very likely under-estimated. This underes-
timation of respired CO2 at low u* was commonly 
observed at other research sites (Goulden et al., 1996; 
Massman and Lee, 2002). Wind friction velocity of 
0.15 to 0.4 m/s represents the most of the actual wind 
conditions, especially for the midday and afternoon 
period (Fig.4e). 

It must be noted the existence of interactions 
among the variables. For instance, air temperature is 
usually 20−35 °C during jointing-milking filling stage 
when LAI is around 3.2; temperature beyond this 
variance requires extrapolation of the neural network 
response. 
 

 
UNCERTAINTIES 
 

It has been reported that stomatal response is the 
main mechanism through which a crop can influence 
carbon and water exchange with the ambient atmos-
phere (Katerji and Perrier, 1983; Jarvis, 1976; Stewart, 
1988; Bosveld and Bouten, 1992). However, it is 
inconvenient to measure the magnitude of stomatal 
conductance directly, the most applicable way for a 
wide knowledge of surface fluxes exchange is to ex-
amine the relationship between the fluxes and the 
environmental variables associated with the variation 
of stomatal conductance. 

Artificial Neural networks enable a mapping 
between a set of inputs and corresponding outputs 
(Adeli and Hung, 1995), especially when the apparent 
relationship between them exists, but they ignored the 
existence of the Penman-Monteith equation of surface 
energy partitioning; this can be an advantage or a 
disadvantage. In this sense, neural networks can only 
be used in the absence of enough weather, soil, and 
crop physiological information or process-based 
knowledge despite their completely unconstrained 
optimization capability without a predefined mathe-
matical model. 

It is important to be careful when introducing 

additional variables for optimization of neural net-
work. Sometimes increase of the ability to fit just 
because there is simply more degrees of freedom, but 
not necessarily mean that the new parameter indicates 
a strong physical dependence. For instance, in Table 1 
Model 6 yields R2=0.9029 (with PAR, T, VPD, LAI, 
u* dependence) while R2=0.9062 (with the addition of 
TOD) in Model 7, performance of the Model 6 was 
improved. However, this slight improvement may not 
suggest that interface carbon dioxide flux exchange 
depends on TOD. Inter-relationship between the input 
variables might lead to unintended side effects in the 
responses that the network finds. In addition, the 
dependence of BP model performance on locations 
with other crop species and meteorological conditions 
was not evaluated in this study. A thorough study on 
ANN model performance in different kinds of crop-
land without detailed physiological or site-specific 
information will be carried out in future. 
 
 
CONCLUSION 
 

Three-layer back propagation trained with 
Levenberg-Marquardt algorithm was developed and 
tested for simulation of instantaneous surface water 
and carbon fluxes responses to local environmental 
variables in a summer maize field. PAR, VPD, T and 
LAI were primary factors regulating both water vapor 
and carbon dioxide fluxes. These four input variables 
together with u* and TOD led to a little accuracy in 
estimating carbon dioxide flux, while the model in-
volving PAR, VPD, T, LAI as well as W and DOY 
could improve the model performance in estimating 
water vapor flux. BP neural networks provided an 
interesting and viable alternative method for model-
ing surface-biosphere fluxes exchange when com-
pared with existing methods for doing the same task. 
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