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Abstract:    Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate 
the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using 
the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared 
to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs 
with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and 
generalization property shed new light on the study on complex processes in ecosystem. 
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INTRODUCTION 
 

Modelling the variation in surface-atmospheric 
exchange of water vapor and carbon dioxide fluxes 
and how they are influenced by a complex combina-
tion of environment variables and plant physiology is 
crucial for assessing the annual water and carbon 
budget for cropland. Biophysical or process-based 
models such as soil-vegetation-atmosphere transfer 
(SVAT) (Franks et al., 1997; Franks and Beven, 1999; 
Mo and Beven, 2004), Simultaneous Heat and Water 
(SHAW) (Flerchinger et al., 1996; Flerchinger and 
Pierson, 1991) has been developed to quantify these 

fluxes in different time scales and their interrela-
tionship with biotic and abiotic factors based on field 
experiments. In their simulation, detailed processes of 
photosynthesis, respiration from vegetation and soil 
carbon components, evapotranspiration, hydrological 
cycling, etc. are required to be explicitly modelled 
and more realistic parameters such as soil, plant and 
vegetation characteristics, surface resistance are re-
quired to be specified (Unland et al., 1996; Arora, 
2003), which makes fluxes estimation complex and 
carbon or water budget construction relatively in-
convenient. 

Artificial neural network (ANN), a tool used to 
process information in a non-liner manner, enables 
completely unconstrained optimization and estima-
tion of input-output responses without a predefined 
mathematical model (Kosko, 1992; Demuth and 
Beale, 1994; Schulz and Härtling, 2003), has recently 
been applied to model fluxes exchanges at the 
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land-atmosphere interface recently and been proved 
to have a higher accuracy compared to classical 
methods (Huntingford and Cox, 1997; Van Wijk and 
Bouten, 1999), though physical processes and pa-
rameters are introduced into the model structure. 
Despite their advantages, a number of drawbacks still 
remain like non-convex training problem with multi-
ple local minima, dependence on quantity and quality 
of training dataset, choice of the number of hidden 
units, etc. (Suykens, 2001). 

A breakthrough was obtained at this point when a 
new powerful machine learning method−support 
vector machines (SVMs), was developed on the basis 
of statistical learning theory in the last decade. Many 
successful applications in nonlinear classification and 
function estimation have shown that SVMs can han-
dle higher dimensional data better even with rela-
tively fewer training samples and that they exhibit 
very good generalization ability for complex models 
(Vapnik, 1995; 1998). The standard SVM is solved 
using complicated quadratic programming methods, 
which are often time consuming and difficult to im-
plement adaptively, whilst LS-SVM is solved by a set 
of linear equations amenable to solution via on-line 
adaptive methods (Suykens, 2001), so we hereby use 
LS-SVMs to model surface water vapor and carbon 
dioxide fluxes. The goal of this paper is to investigate 
applicability of LS-SVMs in modelling the dynamics 
of water vapor and carbon dioxide fluxes over a 
cropland. 
 
 
THEORY 
 

Given a training set { } 1
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=
with input data 

xk∈Rn and output data yk∈R, the LS-SVM model for 
function estimation has the following representation 
in feature space, 

 
 y(x)=wTφ(x)+b                          (1) 

 
Here the nonlinear function φ(·): Rn→R kn maps 

the input space to a higher dimension feature space. 
The dimension nk of this space is only defined in an 
implicit way; b is a bias term; w∈ R kn  is weight 
vector; ek∈R is error vector; γ is the regularization 
parameter. The optimization problem is defined as:  
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Subject to the equality constraints: 
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The solution is obtained after constructing the La-
grangian, 
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where αi are Lagrangian multipliers. Application of 
the conditions for optimality yields the following 
linear system (5): 
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where y=[y1,…,yN], 1=[1,…,1], α=[α1,…, αN], Mer-
cer’s condition is applied in the Ω matrix 
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The resulting LS-SVM model for function estimation 
becomes, 
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where αi, b comprise the solution to the linear system.  
In Eq.(6), ( , )i lx xψ  is the so-called kernel func-

tion with which the input vector can be mapped im-
plicitly into a high-dimension feature space. The most 
usual kernel functions are polynomial, Gaussian-like 
or some particular sigmoids (Suykens, 2001). 
 
 
SIMULATION AND RESULTS 
 
Collection of the dataset 

The dataset used in this work was obtained after 
continuous measurements of carbon dioxide and wa-
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ter vapor fluxes above a winter wheat and summer 
maize rotation field with eddy covariance technique 
from Nov. 2002 to Oct. 2003 at Yucheng Compre-
hensive Experiment Station (36°57′ N, 116°36′ E, 20 
m a.s.l) in the North China Plain. Only data collected 
during the summer maize growth stage from the day 
of sowing [day of year (DOY165)] to harvest 
(DOY275) was applied for this study. 

Of 105 days for fluxes and meteorological 
measurements on half hourly basis, the missing 
5.67% data in observed fluxes was due to instrument 
maintenance, calibration, malfunction of the sensors 
and supporting equipment. The 0.06%, 0.48% and 
0.73% of unreasonable data for carbon dioxide flux 
(Fc), water vapor flux (LE) and sensible heat flux (Hs) 
respectively were rejected; about 3.06% and 3.41% of 
soil heat flux data recorded at depth of 0.03 m and 
0.05 m were eliminated from the dataset for the same 
reason. Measurements within 24 h after a rain event 
were also removed from the database. 

Nighttime fluxes have been reported to be un-
derestimated by the eddy covariance approach during 
stable condition because of CO2 storage in the layer 
below the eddy flux system. A u* threshold (u*>0.12 
ms−1) was determined and data with values below this 
threshold were removed from the dataset (Falge et al., 
2001; Anthoni et al., 2004). 

Consequently, there were 1951 half hourly com-
plete data records available for modelling. 

 
Determination of input variables 

Land-atmosphere exchange of water vapor and 
carbon dioxide fluxes associated with complex eco-
physiological processes including assimilation and 
transpiration, which are driven by external factors 
such as solar radiation, atmospheric conditions, soil 
water status and internal factors such as plant 
physiological and biometrical conditions (Bosveld 
and Bouten, 2001). Many previous studies on as-
sessing the environmental constraints on carbon and 
water vapour exchange in forest, grassland or crop 
field (Huntingford and Cox, 1997; Kelliher et al., 
1997; Valentini et al., 1996; Granier et al., 2000a; 
2000b; Van Wijk and Bouten, 1999; Baldocchi and 
Wilson, 2001; Bosveld and Bouten, 2001) proved this 
very well. Based on the results of study with artificial 
neural networks using the same dataset, photosyn-
thetically active radiation (PAR), vapor pressure 

deficit (VPD), air temperature (T), and leaf area index 
(LAI) were taken as the inputs in modelling both 
carbon dioxide and water vapor fluxes exchange. 
Besides these variables, wind velocity (U) and soil 
volumetric water content (W) were selected for 
computing Fc and LE respectively. 

 
Preparation of training dataset 

One thousand and nine hundred fifty-one data 
records were randomly divided into two subsets, one 
used exclusively for training and the other exclusively 
for testing, were applied to the development of SVMs. 
All the variables were rescaled to be included within 
the interval [−1, 1] by using the following equation: 
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where x and xscale were the old and new value of the 
variable for a sampling point respectively, xmin and 
xmax were the minimum and maximum values of that 
variable in the original dataset. 
 
SVM training 

In this study, we take radial basis function (RBF) 
kernals with LS-SVMs, 
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where σ>0 is a constant defining the kernel width. 

It should be noted that predetermined parameters 
in LS-SVMs algorithms with RBF kernel are γ and σ2, 
which are less than those in standard SVMs (Jemwa 
and Aldrich, 2003). Moreover, ε-insensitive formula-
tion in Vapnik’s standard SVMs are modified by 
introducing a squared error term and equality con-
straints so that one solves a linear system instead of a 
quadratic programming problem, thus greatly reduce 
the computing complexity. More detailed information 
on SVMs can be found (Vapnik, 1995; 1998; 1999). 

A 5-fold cross-validation procedure (Duan et al., 
2001; Witten and Frank, 2000) was used to train and 
test the LS-SVMs under various model and paramet-
ric settings. Neural network models were imple-
mented with software package LS-SVMlab1.5. 
(Pelckmans et al., 2002). Parameters in LS-SVMs for 
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Fc and LE are given in Table 1. Since the results of 
modelling water vapor and carbon dioxide fluxes 
were similar, we only showed the former in this paper 
(Fig.1, Table 2). As shown in Table 2, LS-SVM with 
RBF kernel for modelling water flux had greater 
learning mean squared errors (LMSE) and less gen-
eralization means squared errors (GMSE) compared 
with those in RBF neural network no matter what the 
proportion of dataset for analysis was. The GMSEs of 
the two algorithms increased with the training dataset 
size at different rate with the RBF neural network 
having the larger. LS-SVM was less dependent on the 
size of the training dataset and having better gener-
alization ability than that of the RBF neural network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION AND CONCLUSION 
 

Support vector machines (SVMs) have been 
proposed as a powerful machine learning approach. 
An improved SVMs model, least squares support 
vector machines (LS-SVMs), which enables solution 
of highly nonlinear and noisy black-box modelling 
problems was presented and applied to modelling the 
dataset obtained from the field measurements in this 
study. The results indicated that LS-SVMs could be 
used to model surface fluxes exchange without re-
strictive assumptions and parameters specification 
required by other models. Compared with RBF neural 
network, it has stronger learning ability, better gen-
eralization ability and is less dependent on the size of 
the training dataset. 

Besides, SVM’s ability to handle high-dimension 
and incomplete data allows successful extraction of 
information even when part of the data records was 
missing or unreasonable owing to the problems of 
instrument malfunction or maintenance, calibration 
and climate influences, so SVMs method is suitable to 
simulate land-atmosphere interaction in an efficient 
and stable way. 

Although the proposed LS-SVM-based model 
may be superior to other modelling methods in some 
aspects, it has some potential drawbacks such as the 
underlying Gaussian assumptions related to a least 
squares cost function. Some researchers have made 
some efforts to overcome these by applying an 
adapted form called weighted LS-SVM (Thissen et al., 
2003). 

We intend to continue the studies on the applica-
tion of LS-SVMs in modelling energy and mass ex-
changes at the cropland-atmosphere interface using 
larger dataset obtained from different sites. Possibili-
ties to model these fluxes independently of crop spe-
cies or sites specification will be investigated. Fur-
thermore, LS-SVMs application in prediction or 
gap-filling the missing data as well as its algorithm 
optimization will be the focus in our future work. 
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