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Abstract:    The realization of double negative electromagnetic wave media, sometimes called left-handed materials (LHMs) or 
metamaterials, have drawn considerable attention in the past few years. We will examine the possibility of extending the concept to 
acoustic waves. We will see that acoustic metamaterials require both the effective density and bulk modulus to be simultaneously 
negative in the sense of an effective medium. If we can find a double negative (negative density and bulk modulus) acoustic 
medium, it will be an acoustic analogue of Veselago’s medium in electromagnetism, and share many novel consequences such as 
negative refractive index and backward wave characteristics. We will give one example of such a medium. 
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INTRODUCTION 
 

At this moment, novel concepts of “negative” 
media, having negative refraction and/or “double 
negativity” and their physical consequences and 
plausible applications are drawing considerable at-
tention from the science and engineering community. 
In the past few years, considerable progress has been 
made in electromagnetic (EM) waves. It is our wish to 
generalize such concepts to acoustic waves. Since the 
concept of negative refraction, negative constitutive 
relationships and “double negativity” are more fa-
miliar in the area of electromagnetics, we will use EM 
waves to qualify these concepts before discussing 
acoustic waves. 

Using EM waves as the example, we know that 
electric permittivity (ε) and magnetic permeability (µ) 
describe the response of a medium to external EM 
fields and collectively govern the propagation of EM 
waves. In particular, the refractive index (n) is given 
by = .n εµ  If either ε or µ is negative, then n becomes 

imaginary and the wave cannot propagate. If however, 
both ε and µ are simultaneously negative (double 
negativity) (Veselago, 1968), then waves can propa-
gate through the media, but with a negative effective 
refractive index and hence the phenomenon of nega-
tive refraction. Many amazing effects, such as Dop-
pler shifts with reversed signs, backward Cherenkov 
radiation and superlensing effects (Pendry, 2000) are 
consequences of double negativity. These “dou-
ble-negative” media are characterized by the phe-
nomenon that the Poynting vector and the wavevector 
are in opposite directions (S⋅k<0). For EM waves, 
negative ε can be found in naturally occurring mate-
rials, but negative µ has to be made artificially. The 
realization of negative effective µ using “split ring” 
type resonators (Pendry et al., 1999) leads to realiza-
tion of “double negativity” in EM wave experimen-
tally (Shelby et al., 2001), with those materials being 
frequently called “metamaterials”. This is currently a 
very active field of research. For the particular case of 
EM waves, these “Veselago” media are sometimes 
called left-handed media, but the term “double nega-
tive” medium is more informative. 

If we want to extend the concept to acoustic 
waves, we need to examine the corresponding wave 
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equations. In acoustic waves, the continuity condition 
and Newton’s 2nd law (with harmonic field depend-
ence e−iωt) can be expressed respectively as 
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where p is the pressure field and v is the velocity field. 
The density, ρ, and the modulus, κ, are position de-
pendent in general. By considering a plane wave 
solution with wave vector k inside a homogeneous 
medium, the refractive index n should be defined by 
 

k=|n|ω/c,                     (2) 
 

where n2=ρ/κ. Therefore, in order to have propagat-
ing plane waves inside the medium, we should have 
either both positive ρ and κ or both negative ρ and κ. 
Moreover, the Poynting vector for a propagating 
plane wave is given by 
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Comparing with the case of EM wave in which n2=εµ 
and S=|E|2k/(2ωµ), a “negative” medium in acoustic 
waves will require the density and modulus to be 
negative at the same time. We note in particular that 
negative effective ρ means that S and k should point 
in opposite directions. And simultaneous negativity in 
bulk modulus and density ensures the existence of 
propagating waves. Although the analogy between 
acoustic and EM waves can be made, the case of 
“negative” acoustic wave is in fact more challenging 
than EM waves. For EM waves, at least negative ε can 
be found in nature. It is negative µ that has to be made 
artificially. For acoustic waves, neither negative ρ nor 
κ can be found in naturally occurring materials. They 
have to be derived from artificial resonances. Physi-
cally, this means that the medium displays anomalous 
response at some frequencies such that it expands 
upon compression (negative modulus) and moves to 
the left when being pushed to the right (negative 
density). It sounds very difficult, but we will see that 
it is possible with the illustration of a very simple 
model. 

RESULTS 
 
A simple model  

Let us consider a 1D spring-mass model that is 
used frequently in solid state textbooks. This system 
is illustrated schematically in Fig.1.  

 
 
 
 
 

 
 
The solution of the eigenfrequency of the simple 

ball-and-spring model is given by ω2=4KM−1sin2(ka/2). 
This can be regarded as a dispersion relation, analo-
gous to the EM wave case given by k2=(εµ)(ε0µ0)ω2. 
In order to have “double negativity”, M and K need to 
be negative. Of course for a normal system, we expect 
both M and K to be positive. How can we make them 
negative? We can use resonance structures. For ex-
ample, let us go to a more complex structure, as il-
lustrated in Fig.2, which contains locally resonant 
building blocks. A core with mass m is connected 
internally, through two springs with spring constant G, 
to a shell with mass M. We call this shell-core pair a 
resonant unit. The resonant units are connected to-
gether by spring with spring constant K. The disper-
sion relation for such a chain of resonant units has the 
analytical form 2 1 2

eff=4 sin ( / 2),KM kaω − which is for-
mally equal to the simple chain except that the mass 
M is now replaced by the effective mass  

2 2 2
eff 0 0= + /( ),M M mω ω ω− where 0 = 2 / .G mω Near 

the resonance frequency ω0, the effective mass be-
comes negative, meaning that the response is out of 
phase with the input force. So, we see that resonance 
structure can give rise to negative constitutive pa-
rameters. 

 
 
 
 
 
 
 
 
 

Fig.1  Schematic structure of the 1D spring-mass model
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Fig.2  Schematic structure of the 1D spring-mass model
with internal structure resonating at 0 = 2 /G mω  
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If we go back to the more complex case of 
“negative” acoustic materials, we need to show that 
negative effective density and negative effective 
modulus are “allowable”, at least mathematically, and 
we also need to give explicit configurations and per-
form calculations to show that they indeed have the 
“negative” backward wave properties. This is not an 
easy task. Natural materials have neither a negative 
density nor a negative bulk modulus. Even for com-
posite materials, the effective bulk modulus and den-
sity are normally bounded by the Hashin and 
Shtrikman bounds (Hashin and Shtrikman, 1962). 
Therefore, we still expect positive bulk modulus and 
density. For instance, let us examine the prototypical 
case of spherical particles dispersed in a fluid. The 
filling ratio is given by f. In the long wavelength limit, 
the effective bulk modulus, κeff, and effective density, 
ρeff, in the limit of small filling ratio (Berryman, 1980) 
are governed by 
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where the subscripts “s” and “0” denote respectively 
the properties for the sphere and the background fluid. 
It can be shown from the formulae that κeff and ρeff are 
positive definitely for natural materials. However, the 
above effective medium formulae and the traditional 
bounds on the effective parameters do not apply if 
there are low frequency resonances. As our example 
in the ball-and-spring model suggests, we need to 
employ resonances to achieve negative effective pa-
rameters. Standard homogenizations assume that the 
wavelengths in each local region are all much larger 
than the average distance between particles. At or 
near the resonance frequency, the wavelength within 
the sphere is now comparable to the size of it although 
the wavelength in the background material remains 
much larger than the average distance between parti-
cles in order to have valid effective medium descrip-
tion. Under such a condition, the standard effective 
medium theories must be extended. After some 

mathematics, we find that 
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where Dl (l=0, 1) is the scattering coefficient of an-
gular momentum, l, k0 is the wave number in the 
background fluid, and r is the radius of the particle. 
When there are resonances, D0 and D1 can have large 
magnitudes and negative signs. In that case, κeff and 
ρeff can be negative. We thus see that it is possible, at 
least in the mathematical sense, to achieve negative 
effective bulk modulus and negative effective density 
through resonance behavior in D0 and D1, which are 
functions of frequency. 

So, within the context of effective medium 
theories, negative κeff and ρeff are mathematically 
“allowed” at finite but low frequencies. The question 
then is to find physical systems (with explicit con-
figurations) to realize them. One possibility is to cre-
ate strong Mie-type resonances. That can in principle 
be achieved by finding two components that have 
very different sound speeds. 
 
Acoustic waves 

From now on, we will give one example of an 
acoustic double negativity material, realized as a 
composite of soft rubber spheres suspending in water. 
We choose to use soft rubber where sound waves 
travel much slower in it than in water. Then, the Mie 
resonances (monopolar and dipolar) can be brought to 
very low frequency due to the high contrast of sound 
speed between rubber and water. Let us consider with 
a system of rubber spherical particles suspended in 
water of a volume filling ratio of 0.1 where Eq.(5) is 
reasonably accurate. We have ignored the shear wave 
within the rubber spheres due to the high velocity 
contrast (Kafeski and Economou, 1999) between the 
rubber and water for simplicity, and we emphasize the 
main features stay the same if we also include the 
shear wave within the particles1. The spheres are 
assumed to be made of a kind of silicone rubber (Liu 
et al., 2000). The effective medium result using the 
generalized effective medium formulae is shown in 
Fig.3. From Fig.3, the effective bulk modulus and 

 
 
1 If shear is included, we find additional sharp resonances but the main
resonances giving rise to negative ρ and κ are essentially the same 
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density near the static limit are positive as predicted 
by Eq.(4). The monopolar resonance creates a nega-
tive bulk modulus above the normalized frequency at 
about 0.035 while the dipolar resonance creates a 
negative density above the normalized frequency at 
about 0.04. Here, a is the lattice constant if the 
spheres are arranged in an FCC lattice. Hence, there is 
a narrow frequency range where we have both nega-
tive bulk modulus and density. The imaginary part of 
the effective parameters is due to the diffusive scat-
tering loss. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION 
 

The Mie resonances at low frequency in acous-
tics are the analogues of the resonances created by 
split-rings and wires in electromagnetic left-handed 
medium. In EM left-handed medium, the wires and 
split-rings create negative electric dipolar and mag-
netic dipolar response by two different mechanisms 
while in our case a single structure gives rise to two  

 
 
 

 
 
 
 
 
 
 
 

kinds of resonances to achieve double negativity. The 
monopolar resonance creates a negative response 
such that the volume dilation of a single particle is out 
of phase with a hydrostatic pressure field. The dipolar 
resonance creates a negative response such that the 
motion of the centre of mass of the particle is out of 
phase with an incident directional pressure field. If 
these negative responses are large enough to com-
pensate for the background fluid, we can have both 
negative effective bulk modulus and negative effec-
tive density. So, we have one example in which the 
effective density and modulus are negative at the 
same time and thus achieving double negativity. 

Last but not the least, we would like to empha-
size that the double negative acoustic medium is not 
the same as a “phononic crystal”. To distinguish the 
two, it helps first to distinguish between a photonic 
crystal and a double negative EM wave medium 
(“Veselago”-type medium), and the comparison is 
given in Table 1. We are aiming here at a “Vese-
lago”-type medium, which derives the negative re-
fraction from “double negativity” (negative modulus 
and effective density). “Double negativities” are 
typically resonance based and are rather different 
from negative refraction observed in phononic crys-
tals (Yang et al., 2004; Zhang and Liu, 2004), in 
which the mechanism is derived from Bragg scatter-
ing. A “double negativity” in constitutive relation-
ships will lead to negative refraction, with “double 
negativity” referring to negative constitutive pa-
rameters. For an inhomogeneous system, the wave-
length must be long compared with the embedded 
inhomogeneity before we can meaningfully employ 
effective constitutive parameters (after proper ho-
mogenization) to describe the response of the medium 
to incident waves. The “double-negative” medium 
should be viewed within the context of an effective  
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Fig.3  Effective density and bulk modulus (using Eq.(5)) 
for rubber (ρ=1300 kg/m3, κ=6.27×105 Pa) spheres of fill-
ing ratio 0.1 within water (ρ=1000 kg/m3, κ=2.15×109 Pa) 

Table 1  The table compares photonic crystal with a double negative electromagnetic medium. The concept of 
photonic crystal has an analogue in acoustic waves in the form of phononic crystals, which are crystals with periodic 
variation of elastic constants/density. This article is aimed at examining the analogue of Veselago medium in 
acoustic waves, which is expected to be a system containing sub-wavelength resonators that permits a 
long-wavelength description with double negative constitutive relationships 
Photonic crystal Metamaterial 
λ≈a λ>>a 
Negative group velocity originating from band folding, can 
get negative refraction (n<0, although n may not even be 
well defined) 

Double negative constitutive parameters (ε, µ<0) 
Double negativity implies negative refraction, subwave-
length imaging… 

Bragg scattering Resonance 
Band structure description Effective medium description 
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medium. However, if we are interested in the phe-
nomenon of negative refraction only, it can also be 
derived from other mechanisms. One example is that 
we have a highly anisotropic medium and that the 
principal axis is “misaligned” with another medium. 
We can observe negative refraction for some angles 
(but not all angles) in the interface, but many novel 
phenomena (such as the superlens effect) cannot oc-
cur. All-angle negative refraction can also be 
achieved by using band structure effects (arising from 
Bragg scattering) in periodic structures. In photonic 
(Luo et al., 2002) and phononic (Zhang and Liu, 2004) 
band gap systems, these have been demonstrated. 
While an “effective parameter” description is not 
necessarily meaningful in those cases, some novel 
effects, such as point source imaging with near-field 
subwavelength resolution, are also possible. 
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