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Abstract:    Jacquard image segmentation is one of the primary steps in image analysis for jacquard pattern identification. The 
main aim is to recognize homogeneous regions within a jacquard image as distinct, which belongs to different patterns. Active 
contour models have become popular for finding the contours of a pattern with a complex shape. However, the performance of 
active contour models is often inadequate under noisy environment. In this paper, a robust algorithm based on the Mumford-Shah 
model is proposed for the segmentation of noisy jacquard images. First, the Mumford-Shah model is discretized on piecewise 
linear finite element spaces to yield greater stability. Then, an iterative relaxation algorithm for numerically solving the discrete 
version of the model is presented. In this algorithm, an adaptive triangular mesh is refined to generate Delaunay type triangular 
mesh defined on structured triangulations, and then a quasi-Newton numerical method is applied to find the absolute minimum of 
the discrete model. Experimental results on noisy jacquard images demonstrated the efficacy of the proposed algorithm. 
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INTRODUCTION 
 

Image segmentation plays an essential role in 
jacquard image analysis. A jacquard image consists of 
many complex patterns which contain detailed, in-
tricate topological curves. An accurate extraction of 
pattern features from jacquard images promises reli-
ability for jacquard fabric CAD. Although, many 
algorithms have been proposed for the segmentation 
problem, they have difficulty in capturing the com-
plex structure of the visual features, such as complex 
contours of a jacquard pattern. In practice, the strong 
variability of jacquard patterns, and the low and 
varying contrast of topological curves in jacquard 
patterns make it quite difficult to obtain reliable per-
formance with common segmentation methods. 

Many active contour models (Kass et al., 1988; 
Malladi et al., 1995; Chesnaud et al., 1999; Xiao et al., 

2003; Martin et al., 2004) were proposed for ex-
tracting the contour of an object with a complex shape. 
However, in a jacquard image, consistently strong 
edge information is not always presented along the 
entire boundary of the contours to be segmented. 
Moreover, if the available jacquard image is heavily 
corrupted by noise, the performance of the active 
contour models is often inadequate. 

Recently, these active contour models have been 
further improved by incorporating statistical model 
and prior knowledge to provide more accurate seg-
mentation results. Chesnaud et al.(1999) proposed a 
probabilistic framework for image segmentation 
where different probability density functions from the 
exponential family are allowed. The parameters of the 
probability function are determined to deform the 
snake to detect the image regions. Zhuang et al.(1996) 
proposed a robust statistical approach for the problem 
of Gaussian mixture density modeling and decompo-
sition. The approach can be incorporated into the 
statistical snake framework to achieve higher ro-
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bustness for the shape detection from the noise data. 
Martin et al.(2004) analyzed level set implementation 
of region snakes based on maximum likelihood es-
timation techniques for different noise models be-
longing to the exponential family. 

Mumford-Shah model (Mumford and Shah, 
1989; Tsai et al., 2001; Chen and Guan, 2004) is 
another popular method for complex pattern seg-
mentation, which is more immune to noise than the 
active contour models and allows construction of 
more efficient strategies for detecting discontinuities 
in the presence of noise. In contrast to the active 
contour models, this method utilizes not only image 
information near the evolving contour but also image 
statistics inside and outside the contour, so it is more 
suitable for the segmentation of noisy jacquard im-
ages. In this paper, we focus on the segmentation of 
noisy jacquard images using the Mumford-Shah 
model. 

However, the minimization of the Mum-
ford-Shah model poses a difficult numerical problem, 
since it requires the computation of geometrical 
properties of the unknown set of discontinuity 
boundaries. There are many methods for the mini-
mization of the model (Ambrosio and Tortorelli, 1990; 
Gobbino, 1998; Chambolle, 1995), but these methods 
are almost exclusively based on the steepest descent 
approach, which is not always the best approach for 
energy minimization. 

In this paper, we propose an iterative relaxation 
algorithm to minimize the Mumford-Shah model on 
piecewise linear finite element spaces. Our algorithm 
involves two coordinate steps at each iteration: (1) 
refining and reorganizing an adaptive triangular mesh 
to characterize the essential contour structure of a 
pattern, and (2) minimizing the discrete version of the 
Mumford-Shah model by using the quasi-Newton 
algorithm. 

 
 

THE MUMFORD-SHAH MODEL 
 

Let Ω⊂ú2 be a bounded open set and g∈L∞(Ω) 
represent the image intensity. The function g has 
discontinuities that represent the contours of objects 
in the image. The image segmentation problem con-
sists in the detection of such discontinuities with the 
simultaneous suppression of noise. Mumford and 

Shah (1989) proposed a variational method for image 
segmentation which looks for a piecewise smooth 
approximation u of the function g, with u discon-
tinuous across a closed set K. The variational problem 
consists in the minimization of the following func-
tional 

 
2 2 1

\
( , )= | | d + ( ) d + ( )

K
E u K u x u g x H K

Ω Ω
α β∇ −∫ ∫     (1) 

 
over closed set K⊂Ω and u∈÷1(Ω\K). Here, H1 is the 
one-dimensional Hausdorff measure, and α, β are 
positive weights. By the Mumford-Shah model, the 
image segmentation problem is then reduced to find a 
set K of contours decomposing the image into regions 
and a function u which is piecewise smooth on that 
decomposition. Here, the first term penalizes strong 
variations of u, thus ensuring that u is a smooth ap-
proximation of g, the second term forces u to be close 
to the given image g, and the last term prevents the 
edges from filling up the whole image. 

 
 

WEAK FORMULATION AND Γ-CONVERGENCE 
 
Heuristically, we expect solutions to Eq.(1) to be 

smooth and close to the image g at places x∉K, and K 
constitutes edges of the image. To show existence of 
solutions to Eq.(1), a weak formulation was proposed 
by de Giorgi et al.(1990) by setting K=Su (the jumps 
set of  u) and minimizing only over u∈SBV, the space 
of special functions of bounded variation. We recall 
some definitions and properties concerning functions 
with bounded variation. 
Definition 1    Let u∈L1(Ω;ú2). We say that u is a 
function with bounded variation in Ω, and we write 
u∈BV(Ω;ú2), if the distributional derivative Du of u is 
a vector-valued measure on Ω with finite total varia-
tion. 
Definition 2    Let u∈L1(Ω;ú2). We denote by Su the 
complement of the Lebesgue set of u, i.e., x∉Su if and 
only if 

( )0
lim | ( ) | d 0n

B x
u y z y

ρρ
ρ −

→
− =∫  for some z∈ú2, 

where Bρ(x)={y∈ú2:| y−x|<ρ}. 
Definition 3    Let u∈BV(Ω). We define the three 
measures Dau, Dju and Dcu as follows. 

By the Radon-Nikodym theorem we set Du= 
Dau+Dsu where Dau is the absolutely continuous part 
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of Du, Dsu is the singular part of Du. Dsu can be fur-
ther decomposed into the part supported on Su (the 
jump part Dju) and the rest (the Cantor part 
Dcu): j s |

uSD u D u=  and c s
\|

uSD u D u= Ω . Thus, we can 

then write Du=Dau+Dju+Dcu. 
Definition 4    Let u∈BV(Ω). We say that u is a spe-
cial function of bounded variation, and we write 
u∈SBV(Ω), if Dcu=0.  

De Giorgi et al.(1990) gave the weak formula-
tion of the original problem Eq.(1) as follows: 

 
2 2 1( )= | | d + ( ) d + ( ).uE u u x u g x H S

Ω Ω
α β∇ −∫ ∫         (2) 

 
They also proved that minimizers of the weak 

problem Eq.(2) are minimizers of the original prob-
lem Eq.(1). However, from a numerical point of view, 
it is not easy to compute a minimizer for Eq.(2), due 
to the term H1(Su), and to the fact that this functional 
is not lower-semicontinuous with respect to Su. It is 
natural to try to approximate Eq.(2) by simpler func-
tionals defined on SBV spaces. Ambrosio and Tor-
torelli (1990) showed that Eq.(2) can be approximated 
by a sequence of elliptic functionals which are nu-
merically more tractable. The approximation takes 
place in the sense of Γ-convergence.  

To approximate and compute solutions to Eq.(2), 
the most popular and successful approach is to use the 
theory of Γ-convergence. This theory, introduced by 
de Giorgi and Franzoni (dal Maso, 1993), is designed 
to approximate a variational problem by a sequence of 
regularized variational problems which can be solved 
numerically by finite difference/finite element 
methods. Note that Γ-convergence is stable under 
continuous perturbations, and guarantees the con-
vergence of minima and minimizers. 
Definition 5    Let X be a metric space, let {Fk} be a 
sequence of functions defined in X with values in ú. 

Let us set 
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If - liminf ( )= -limsup ( )= ( )k kk k
Γ F u Γ F u F u

→+∞ →+∞
for all x∈X, 

we say that F is the Γ-limit of {Fk}, and we write 

( )= - lim ( )kk
F x Γ F x

→+∞
. 

Theorem 1    Assume Fk Γ-converges to F and for 
every k, let uk be a minimizer of Fk over X. If the 
sequence (or a subsequence) uk converges to some      
u∈X, then u is a minimizer for F and Fk(uk) converges 
to F(u). 

So, we say that a family {Fε}ε>0 of functions 
Γ-converges to F as ε→0+, if { }

j
Fε  Γ-converges to F 

for every sequence {εj}→0+. 
 
 
DISCRETE FUNCTIONAL OF NUMERICAL 
APPROXIMATION 
 

Now we consider the numerical approximation, 
in the sense of Γ-convergence, by a sequence of dis-
crete functionals defined on finite elements spaces 
over structured and adaptive triangulation.  

Let Ω=(0,1)×(0,1), let Tε(Ω) be the triangulations 
and let ε denote the greatest length of the edges in the 
triangulations. Moreover let Vε(Ω) be the finite ele-
ment space of piecewise affine functions on the mesh 
Tε(Ω), let { }

j
Tε  be a sequence of triangulations with 

εj→0 and let f:[0,+∞)→[0,+∞) be a non-decreasing 

continuous function such that 
0

( )lim 1
t

f t
t→

= and 

lim ( )
t

f t f∞→+∞
= < +∞ . 

Negri (1999) proved the following theorem. 
Theorem 2  For each sequence of triangulations 
{ }

j
Tε  there exists a convex, 1-homogeneous function 

φ:ú2→[0,+∞) such that the functional 
 

2 21( , )= ( | | )d + ( ) d .
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j
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ε
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Γ-converges with respect to strong L2-topology to the 
anisotropic Mumford-Shah model 
 

2 2 1( )= (| | +( ) )d + ( )d ,
u

uS
F u u u g x f v H

Ω
φ∞∇ −∫ ∫  (4) 

 
where u∈Vε (Ω), T∈Tε (Ω), uT∈Vε (Ω)×Tε (Ω). 

We choose ( )=(2 / arctan( / 2 ),f x xβ βπ) π  and 
define the minimizing discrete model as follows: 
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By Theorem 2, we know that Eq.(5)  Γ-converges to 
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              (6) 

 
where vu is a unit normal to Su. Eq.(6) is an anisotropic 
version of Eq.(2), and the function φ is applied to take 
into account the anisotropy introduced by the ge-
ometry of the triangulation T. 

 
 

NUMERICAL IMPLEMENTATION 
 
In order to arrive at the joint minimum (u, T) of 

Eq.(5), we propose an iterative relaxation algorithm 
to implement the numerical solving of Eq.(5). The 
main idea of the proposed algorithm is as follows: 
alternating back and forth between minimizing Eq.(5) 
holding T constant and adapting triangulation T 
holding u constant. 

The intuitive idea behind the algorithm is that if 
the triangulation T were known and held constantly, it 
would be straightforward to calculate the variable u, 
and the triangulation T can be straightforwardly cal-
culated if the variable u were known. At each iteration, 
a scheme for the mesh adaptation is first enforced to 
refine and reorganize a triangular mesh to character-
ize the essential contour structure. Then, the 
quasi-Newton algorithm is applied to find the abso-
lute minimum of the discrete functional. Fig.1 is the 
outline of the proposed algorithm. 

 
Mesh adaptation algorithm 

There are several approaches to refine and re-
organize an existing triangulation. Delaunay trian-
gulation algorithms have been used successfully for 
unstructured mesh generation. In this paper, we use 
the Delaunay type mesh generator BL2D (Borouchaki 
and Laug, 1996) to make the triangular mesh accu-
rately characterize the essential contour structure.  

BL2D  is  a  bidimensional, adaptive  and  anisot- 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
ropic mesh generator. It uses the Delaunay’s method 
to generate a triangular mesh. In BL2D, the back-
ground mesh is an existing mesh applied to generate 
an adaptive foreground mesh. The foreground mesh is 
built from the background mesh by an estimator 
which consists of giving a metric at each point of the 
background mesh. The metric is represented by a 
symmetric positive definite matrix with three coeffi-
cients (a,b,c). By a rotation at an angle θ making a 
reference line parallel to one of the two axes of the 
ellipse, the metric (a,b,c) is easily obtained by the 
relation 

 
2

1
2
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              ,
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where the values h1 and h2 represent the desired sizes 
along two orthogonal directions. As the three quanti-
ties (θ, h1, h2) are related to the orientation and ani-
sotropy factor of the elements in the adapted trian-
gulation, we can enforce an adaptation of the trian-
gular mesh as follows: (1) setting three quantities 
according to the function u obtained from the mini-
mizing component at the previous iteration, and (2) 
building the foreground mesh as a Delaunay triangu-
lation with respect to the metric which is given at each 
point of the background triangulation, according to 
the above three quantities. The interested reader can 
refer to the book (George and Borouchaki, 1998) for 
detailed description of the building of the adaptive 
mesh. 

1. Initialize iteration index: j←0; 
2. Set initial εj and uj; 
3. Generate the adapted triangulation 

j
Tε  by the mesh

adaptation algorithm, according to uj; 
4. Minimize ( )

j jF uε  on the triangulation 
j

Tε  by the

quasi-Newton minimizing algorithm; 
5. Update the current index: j←j+1; 
6. Generate a new εj; 
7. If  |εj−εj−1| >µ, return to Step 3. Otherwise, goto Step

8; 
8. Stop. 

Fig.1  Outline of the proposed algorithm 
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The minimizing algorithm 
Once a triangulation T is given, we need to 

minimize Fε (u) with respect to u, which is piecewise 
linear on each element of T and continuous on Ω. In 
general, standard minimizing techniques may fail due 
both to the lack of convexity and to the presence of 
many local minima. In order to ensure that the energy 
decreases at each iteration, we apply the quasi- 
Newton algorithm to minimize Fε(u). The quasi- 
Newton algorithm is the most popular algorithms in 
nonlinear optimization, with a reputation for fast 
convergence. The most widely used quasi-Newton 
formula is BFGS, which preserves the symmetry and 
positive definiteness of the approximation of the 
Hessian matrix, which may be satisfied with a line 
search using the Wolfe condition. In this paper, we 
use BFGS formula to approximate the Hessian matrix. 
Fig.2 shows a flowchart of the minimizing algorithm 
for the functional Fε(u). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXPERIMENTAL RESULTS 
 

In this section, we carry out some experiments 
respectively on a synthetic image (256×256 pixels), 
and three jacquard images (256×256 pixels) with 
different types of contours and shapes. The results 
were obtained using software written in C program-
ming language on the UNIX operating system run-
ning on an IPC SUN workstation. In our numerical 
experiments, we chose the parameters as follows: 
α=0.1, β=0.001, γ=2.5×10−2, µ=3.125×10−4 ε=1/256≈ 
0.004. As in practice it is difficult to exactly deter-
mine the noise in real images, here we examine the 
performance of our algorithm by adding “salt and 
pepper” noise to all the tested images. First, we obtain 
the initial background mesh by BL2D software. Then, 
we generate the initial adapted triangulation T0 by the 
mesh adaptation algorithm according to the original 
image function u0. Fig.3 illustrates the above seg-
mentation process of a synthetic image. Fig.3a gives a 
synthetic image u0 with 40% noise. Fig.3b gives the 
initial background mesh generated by BL2D. After 8 
mesh adaptation processes, the final foreground mesh 
T7 is shown in Fig.3c. The segmented image and its 
edge set are shown in Figs.3d and 3e. 

We measure the order of accuracy of the mesh 
adaptation algorithm by comparing the length and 
area error of the triangular-shape in Fig.3a between 
the analytical solution and numerical solution. Table 
1 provides detailed accuracy measurements. It shows 
how the length error, area error, the three quantities 
(θ,h1,h2), and the three coefficients (a,b,c) of the 
symmetric positive definite matrix depend on the 
mesh size ε. As the mesh size decreases, the adaptive 
triangular mesh will be more and more approaching 
the boundary of the triangular-shape. 

We also conducted experiments to compare our 
 
 
 
 
 
 
 
 
 
 
 

1. Initialize step index: k←0; 
2. Compute the gradient ∇Fε(uk) and the Hessian

approximation matrix 2 ( )kF uε∇ ; 
3. If ∇Fε (uk)=0, get a minimizer uk and goto Step 9;
4. Compute a preconditioner for 2 ( )kF uε∇ with

incomplete Cholesky factorization to preserve
the sparsity of the original matrix; 

5. Compute the descent direction dk by the linear
system 2 ( ) ( )k kF u F uε ε∇ = −∇ ; 

6. Compute the optimum step tk along dk by mini-
mizing the 1-dimensional restriction of F(uk) to
the interval {uk+tdk} for [0,1]t∈ ; 

7. Update the current index: k←k+1; 
8. If |uk−uk−1|<γ, return to Step 2. Otherwise, goto

Step 9. 
9. Stop. 

Fig.2  The minimizing algorithm 

     
 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 
Fig.3  Segmentation of a synthetic image with 40% noise. (a) Noisy synthetic image; (b) Initial background mesh; (c) 
Final foreground mesh; (d) Segmented image; (e) Edge set 
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algorithm with a traditional active contours algorithm, 
the geometric active contours algorithm (Malladi et 
al., 1995) under different noise environments. Fig.4 
and Fig.5 illustrate the segmentation results of three 
jacquard images using the geometric active contours 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(GAC) algorithm and our algorithm, respectively. We 
select three images with different shapes of petals 
from our jacquard image database. The shapes of 
petals in Figs.4a~4c are roundish, cuspidate and ir-
regular, respectively. Figs.5a~5c show the segmenta- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Number of length and area error changes during the mesh adaptation processes 
Mesh size (ε) Length error Area error θ h1 h2 a b c 
0.004 0.05400 0.007300 42.34 3.230 3.483 0.08976 0.00668 0.08851 
0.002 0.02800 0.003600 42.56 3.452 3.463 0.08367 0.00026 0.08363 
0.001 0.00870 0.000940 43.68 3.479 3.498 0.08219 0.00044 0.08215 
0.0005 0.00450 0.000450 43.73 3.485 3.491 0.08220 0.00014 0.08218 
0.00025 0.00180 0.000260 44.54 3.469 3.521 0.08190 0.00121 0.08186 
0.000125 0.00094 0.000160 44.92 3.488 3.538 0.08104 0.00115 0.08103 
0.0000625 0.00034 0.000083 45.04 3.495 3.541 0.08080 0.00105 0.08081 
0.00003125 0.00018 0.000045 45.17 3.450 3.553 0.08160 0.00240 0.08163 
ε is the greatest length of the edges in the triangulation 

(a) (c) (b) 

Fig.4  Three shapes of petals with 40% noise. (a) Roundish; (b) Cuspidate; (c) Irregular 

(a)                                                             (b)                                                           (c) 

(d)                                                             (e)                                                           (f) 

Fig.5  Segmentation results of jacquard images using two different algorithms. (a)~(c) and (d)~(f) are segmenta-
tion results using GAC algorithm and our algorithm, respectively 
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tion results of jacquard images in Fig.4 using the 
GAC algorithm. Figs.5d~5f show the segmentation 
results of jacquard images in Fig.4 using our algo-
rithm after 10 mesh adaptation processes. Comparing 
with Figs.5a~5c, sharp boundaries are accurately 
detected and strengthened in Figs.5d~5f. They clearly 
demonstrate the sturdiness of our algorithm when 
subject to noise. Analysis of the experiment results 
showed that false detected or missed boundaries are 
mainly caused by noise occurring on the boundaries, 
which confuses the detection of boundaries by the 
GAC algorithm. This experiment also showed how 
our algorithm can be applied to detect edges or other 
features in contours without gradients, while it is 
impossible for the GAC algorithm based on the gra-
dient information. Here, we can see that our algorithm 
is more robust than the GAC algorithm for the seg-
mentation of noise-corrupted jacquard images. Fig.6 
shows the triangular meshes of the pedals in Figs.5d~ 
5f which are generated by BL2D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig.7, we give 3D plots of the segmented 
petals in Fig.4 using two different algorithms. It can 
be seen clearly that our algorithm is more suitable for 
the preservation of topological shapes of petals under 
noisy environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In summary, we have presented a novel algo-
rithm for jacquard image segmentation based on the 
Mumford-Shah model. For solving the corresponding 
minimization problem, an iterative relaxation algo-
rithm is proposed. The proposed algorithm is applied 
to segment noisy jacquard images and shows its ca-
pability of accurate segmentation. Experimental re-
sults showed that the proposed algorithm enhances its 
resistance to noise, so that the drawback of the active 
contour methods being easily affected by noise is 
greatly reduced. Future work would look into learning 

(a) 

(c) 

(b) 

Fig.6  Triangular mesh generated by BL2D 

                   (a)                                            (b) 

                   (e)                                            (f) 

                   (c)                                            (d) 

Fig.7  Comparison of segmentation results with 40%
noise. (a)~(c) GAC algorithm; (d)~(f) Our algorithm 
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patterns of variability from a training set and ex-
ploiting prior knowledge to provide more robust and 
accurate results. 
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