
Wen et al. / J Zhejiang Univ SCIENCE A   2006 7(2):275-284 275

 
 
 
 

Nonlinear decoupling controller design  
based on least squares support vector regression*

 

 

WEN Xiang-jun (文香军)1, ZHANG Yu-nong (张雨浓)2, YAN Wei-wu (阎威武)1, XU Xiao-ming (许晓鸣)1 
(1Department of Automatic Control, Shanghai Jiao Tong University, Shanghai 200030, China) 

(2Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1QE, UK) 
E-mail: wenxiangjun@sjtu.edu.cn; ynzhang@ieee.org; yanwwsjtu@sjtu.edu.cn; xmxu@sjtu.edu.cn 

Received Apr. 6, 2005;  revision accepted Sept. 1, 2005 
 

Abstract:    Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable 
interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized 
inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of 
inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this 
paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) 
subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The 
proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un-
known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method. 
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INTRODUCTION 
 

Most practical systems are multivariate nonlin-
ear systems. In general, the MIMO (multiple inputs 
and multiple outputs) systems are coupled. This cou-
pling affects the effectiveness of a specific loop con-
troller on the corresponding output, and in some case, 
may become serious and cause many difficulties to 
the control system design. How to decouple the mul-
tivariate systems and design practical controllers is 
one of the major issues in nonlinear control area. 

In recent years, various linearization and de-
coupling methods have been presented to handle this 
problem. Some methods are based on differential 
geometry method, which solves a group of differen-
tial equations and linearize nonlinear system with 
state feedback (Descusse and Moog, 1985; Godbole 

and Sastry, 1995; Zhang and Wang, 2001; 2002). 
Some methods consider an inverse model of plant, 
such as adaptive control of feedback linearizable 
systems (Hirschorn, 1979) and adaptive inverse con-
trol based on adaptive signal processing (Walach and 
Widrow, 1983). Different from these model-based 
approaches for nonlinear system control, artificial 
neural network (ANN) achieves good approximation 
of nonlinear function, and has the ability of learning 
from experience without considering the precise plant 
model, and so, has drawn the intense interest of many 
researchers in the last decades and led to a large 
number of successful applications such as direct in-
verse control (Nguyen and Widrow, 1990; Zhang et 
al., 2002), adaptive control (Chen and Liu, 1994), and 
generalized inverse neural control (Dai et al., 2004; 
Zhang and Ge, 2003). Unfortunately, most of the 
ANNs using gradient-based training method like 
back-propagation, often suffer from the existence of 
local minima, and it is also not easy to choose a 
suitable neural network structure like the number of 
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hidden neurons. 
As a novel breakthrough to ANN, Support 

Vector Machines (Vapnik, 1998) have proved to be a 
powerful alternative in many areas. Taking into ac-
count that SVM has outperformed many existing 
methods, there is a lot of interest in this new class of 
kernel-based technique, especially in the area of 
control theory. However, the use of SVM in a dy-
namical system and control context becomes quite 
complicated (Suykens, 2001), due to the fact that 
there are stringent requirements for solving online 
large-scale quadratic programming problems in 
standard SVM as SVM is basically non-parametric, 
and the quality and complexity of the SVM solution 
depend directly on the dimensionality of the input 
space. As a reformulation of standard SVM, least 
squares SVM for solving linear KKT systems has 
been extended to dynamical problems of recurrent 
neural networks (Suykens and Vandewalle, 2000) and 
are used in optimal control (Suykens et al., 2001). 
Compared with ANN and standard SVM, LS-SVM 
control has the following advantages: no number of 
hidden units has to be determined for the controller, 
no centers has to be specified for the Gaussian kernel 
when applying Mercer’s condition, and fewer pa-
rameters have to be prescribed via the training process, 
so LS-SVM method is used here to design a general-
ized inverse controller for nonlinear system decoup-
ling control instead of using ANN and standard SVM 
technologies.  

This paper is organized as follows. We first give a 
brief review on LS-SVM regression, and then discuss a 
practical approach based on Bayesian evidence 
framework for parameters optimization of LS-SVM 
regression. Followed in Section IV deals with the 
concepts of generalized inverse system and decoupling 
controller design based on LS-SVM method. Section V 
gives details of numerical experiments conducted on a 
high-order multivariate nonlinear system in order to 
assess the effectiveness of our method. Finally, Section 
VI gives conclusions the work done.  
 
 
LEAST SQUARES SVM REGRESSION 
 

Given a training dataset D of l samples (input 
and output pairs 1{ , }l

i i ix y = ) independent and identi-
cally drawn (i.i.d.) from an unknown probability dis-

tribution µ(X,Y) on the product space Z=X×Y: 
 

D={z1=(x1,y1), …, zn=(xl,yl)},                  (1) 
 
where the input data X is assumed to be a compact 
domain in a Euclidean space Rd and the output data Y 
is assumed to be a closed subset of R. Learning from 
the training data can be viewed as a multivariate 
function f approximation that represents the relation 
between the input X and output Y. Nonlinear mapping 
φ(⋅) is used to map input X into a hypothesis space Rnh 
(feature space) in which the learning machine (algo-
rithm) selects a certain function f. 

Due to a generalized representer theorem, fea-
ture space endowed with an inner product is a func-
tion space with the linear structure of a vector space, 
in which a linear function estimation is defined: 
 

T( ) ( )f x x= + bω ϕ .                         (2) 
 

In the case of least squares Support Vector Ma-
chines (LS-SVMs) (Suykens et al., 2001; 2002), the 
optimization problem is defined as 
 

T T

, ,

1 1min ( , )
2 2

J γ= +
b e

e e e
ω
ω ω ω ,                    (3) 

s.j.     T ( ) ,  1,  ,  k k kx k l= + + =y b e …ω ϕ ,              (4) 
 

where e∈Rl×1 denotes the error vector, regularization 
parameter γ denotes an arbitrary positive real con-
stant.  

The conditions for optimality lead to a set of 
solutions: 
 

T

1

    
 

    +γ −

     
=     

      

0 1 0
1

b
α yK I

,                    (5) 

 
where y=[y1, y2, …, yl]T, 1l×1=[1, …, 1]T, α=[α1, …, 
αl]T. Application of the Mercer condition (Mercer, 
1909) yields  
 

T( , ) ( ) ( ),  ,  1,  ...,  i j i jx x x x i j l= =K ϕ ϕ .      (6) 
 

The resulting LS-SVM model for function es-
timation becomes: 
 

1

( ) ( , )
l

k k
k

f x x x
=

= +∑α K b ,                       (7) 
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where αk, b are the solutions to the linear system 
Eq.(5). 

As one of the most popular kernel functions in 
machine learning, Gaussian kernel function is se-
lected for controller design in this paper. It takes the 
following form: 
 

  ( )2 2( , ) exp || || /(2 )i j i jx x x x δ= − −K ,               (8) 

 
where δ denotes the kernel (bandwidth) parameter. 
 
 
BAYESIAN PARAMETERS OPTIMIZATION  
 

The Bayesian evidence framework first intro-
duced by Mackay (1992; 1997) has been applied to 
the design of neural networks with great success. 
Then Kwok (2000) applied the Bayesian evidence 
framework to the standard SVM classification algo-
rithm. van Gestel et al.(2001; 2002) has extended this 
integration to the LS-SVM classifier and regression 
problems. This approach starting from the feature 
space formulation, while analytic expressions are 
obtained in the dual space on the different levels of 
Bayesian inference, which yields the similar expres-
sions of Gaussian Processes (GPs). It is known that 
this novel approach shows good generalization per-
formances but with very complicated expressions for 
practical use. In this section, we apply the Bayesian 
evidence framework to the LS-SVM regression algo-
rithm and proposed a practical approach to select 
optimal regularization parameter γ and optimal kernel 
parameter δ of Gaussian kernel. Our method is quite 
simplified and similar to the Bayesian interpretation 
of standard SVM. 

According to the Bayesian evidence theory, the 
inference is divided into three distinct levels. Training 
of the LS-SVM regression can be statistically inter-
preted in Level 1 inference. The optimal regulariza- 
tion parameter can be inferred in Level 2. The optimal 
kernel parameter selection can be performed in Level 3. 

 
Level 1 inference 

To be convenient, we divide optimization ob-
jective in Eq.(3) by γ and then replace 1/γ by λ. For a 
given value of λ, the first level of inference infers the 
posterior of ω by 

( / , , ) ( / , )( / , , )
( / , )

                     ( / , , ) ( / , ),

p D H p Hp D H
P D H

p D H p H

θ θλ
θ

λ λ

=

∝

ω ωω

ω ω
      (9) 

 
where D is the training dataset and H represents 
model with parameter vector ω. 

Assuming training data are independently iden-
tically distributed, and p(ω/λ,H) is the Gaussian 
probability distribution. We obtain 
 

1

( / , , ) ( / , , , ) ( / , , )
l

i i i
i

p D H p y x H p x Hλ λ λ
=

=∏ω ω ω , 

(10) 
/ 2

T( / , ) exp
2 2

k

p H λ λλ    = −   π   
ω ω ω ,              (11) 

 
where ( / , , )ip x Hλω  is a constant. Let us assume 
 

( / , , , ) exp( ( , ( )))i i i ip y x H L y f xλ ∝ −ω ,      (12) 
 
where ( , ( ))i iL y f x denotes the loss function.  

The substitution of Eqs.(10), (11), and (12) in 
Eq.(9) yields 
 

T

1
( / , , ) exp ( , ( ))

2

l

i i
i

p D H L y f xλλ
=

 
∝ − − 

 
∑ω ω ω .    (13) 

 
Level 1 inference, training of LS-SVM Eq.(3) 

can be interpreted as maximizing ( / , , )p D Hλω  with 
respect to ω. 
 
Level 2 inference 

Applying the Bayesian rule in the second level of 
inference, we obtain the posterior probability of λ: 
 

/ 2
T

1

( / , ) ( / , ) ( / ) ( / , )

( / , , ) ( / , )d

exp ( , ( )) d ,
2 2

k l

i i
i

p D H p D H p H p D H

p D H P H

L y f x

λ λ λ λ

λ λ

λ λ
=

∝ ∝

∝

  ∝ − −   π   

∫

∑∫

ω ω ω

ω ω ω

(14) 

 
The most possible value of λ can be determined 

by maximizing the posterior probability of λ as 
p(λ/D,H).  
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Let us define T= /2Eω ω ω , 
1

= ( , ( ))
l

D i i
i

L y f x
=
∑E  

to obtain  
/ 2 MP MP

MP MP

/ 2 MP MP / 2 1/ 2

( / , ) exp[

1     ( ) ( )]d
2

     exp( )(2 ) det ,

k
D

k k
D

p D Hλ λ λ

λ λ −

∝ − −

− − −

= − − π

∫ E E

A

E E A

ω

ω

ω ω ω ω ω   (15) 

 
where ωMP is the most possible value of parameters 
ω, 

2
2

2
1

( )
( , ( ))

l
D

i i
i

L y f xλ
λ

=

∂ +  
= = + ∂  

∑ω
ωω

E EA E∇ . 

 
From Eq.(15), there exists 

 

MP MP

ln ( / , ) ln ( / , )
1ln ln(det ) constant.

2 2D

p D H p D H
k

λ λ

λ λ

∝

= − − + − +E E Aω

   (16) 

 
Maximization of the log-posterior probability of 
p(λ/D,H) with respect to λ leads to the most probable 
value of λMP obtained by the following equation: 
 

MP
MP2λ ς=ωE ,                            (17) 

 

where 1= tracekς λ −− A is called the effective number 
of parameters.  

In the case of LS-SVM regression, used of cost 

function 21( , ( ))= ( ( ) )
2i i i i iL y f x y x bφ− −ω  yields 

 

( )2

1

, ( )
l

i i
i

L y f xλ λ
=

 
= + = + 

 
∑ωA E I B∇ ,      (18) 

 

where T

1

( ) ( ) .
l

i i
i

x x
=

= ∑B ϕ ϕ  Denote the eigenvalues of 

B by ρm yields the effective number of parameters ς of 
LS-SVM as follows: 
 

1

1
trace

N
i

i i

k ρ
ς λ

λ ρ
−

=

= − =
+∑A ,                   (19) 

 
where N (N≤l) denotes the number of nonzero ei-
genvalues of l×l matrix T( , )= ( ) ( ),i j i jx x x xK ϕ ϕ i, j=1, 

2, …, l. 

Level 3 inference 
The third level of inference in the evidence 

framework compares the different models by exam-
ining their posterior probabilities p(H/D)∝p(D/H)p(H) 
and can be used to find the optimum kernel parameter. 
Assuming the prior probability p(H) over all possible 
models is uniform, we have 
 

MP

( / ) ( / ) ( / , ) ( / )d

              ( / , ) / .

p H D p D H p D H p H

p D H

λ λ λ

λ ς

∝ ∝

∝

∫ (20) 

Therefore 
MP MP

MP MP

1
MP

1ln ( / )= + ln ln(det )
2 2

1                    ln( trace ) constant.
2

D
kp H D

k

λ λ

λ −

− − −

− − +

E E A

A

ω

  (21) 

 
The optimum kernel parameter can be obtained by 
maximizing log-posterior probabilities lnp(H/D) with 
respect to the kernel parameter. For practical use, the 
selection method of the kernel parameter δ of Gaus-
sian kernel is illustrated in this subsection.  

To obtain the most possible value of the kernel 
parameter δ, we set the derivative of lnp(H/D) with 
respect to δ to zero 
 

ln ( / ) 0p H D
δ

∂
=

∂
.                       (22) 

Noting that 
 

MP
MP

MP

2
2 3

MP 2
, 1

( )

( )
  exp ( ) ,

2

i j

l
i j

i j i j
i j

Ka a

x x
a a x x

λ
λ

δ δ

λ δ
δ

−

=

∂ ∂
= −

∂ ∂
 −

= − − −  
 

∑

Eω

(23) 

1 1ln(det ) trace trace K
δ δ δ

− −  ∂  ∂  ∂ = =     ∂ ∂ ∂     

A AA A , 

(24) 
1

MP

2MP
1

MP

ln( trace )

         trace ,          (25)
trace

k

K
k

λ
δ

λ
λ δ

−

−
−

∂ −
∂

  ∂
=   − ∂  

A

A
A

 
        By substituting Eqs.(23)~(25) into Eq.(22), we 
obtain the kernel parameter in the LS-SVM regres-
sion: 
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1/32
2

MP 2
, 1

1 2MP
1

MP

( )
exp ( )

2
= .

trace trace
trace

l
i j

i j i j
i j

x x
aa x x

K K
k

λ
δ

δ
λ

δ λ δ

=

− −
−

  −
− −     

  ∂   ∂     +      ∂ − ∂        

∑

A A
A

 (26) 
 

It is worth noting that the absolute value of δ is 
employed. This is because the kernel width δ in 
Gaussian kernel should be positive, and such treat-
ment could enhance the convergence speed of the 
iterative process. For further perspective of model 
section method and the Bayesian evidence theory one 
can refer to the previous work (Yan et al., 2004) and 
the references therein. 
 
 
GENERALIZED INVERSE CONTROLLER DE-
SIGN BASED ON LS-SVM METHOD 
 
Generalized αth-order integral inverse system 

Given a linear or nonlinear system Σ:u→y, with 
p-dimensional inputs u=[u1,u2,…,up]T, p-dimensional 
outputs y=[y1,y2,…,yp]T, and an initial state vector 
x(t0)=x0. We define a map operator φ:u→y, i.e.  
 

0( ) [ , ( )]φ⋅ = ⋅y x u or φ=y u .                   (27) 
 
The definition of its inverse system is as follows:  
Definition 1    Given a MIMO system Σ expressed by 
Eq.(27). Assume Π is a system : dφ → uϕ with p- 
dimensional inputs and p-dimensional outputs, where 

T
1 2=[ , , , ]pϕ ϕ ϕ…ϕ and T

1 2( )=[ , , , ]d d d dpt u u u…u both 

are subject to some initial conditions. Let φi be the 
αith-order derivative of ydi. That is, ( )= ,d

αyϕ  where 
T

1 2=[ , , , ]d d d dpy y y…y  is the expected outputs, and 

1 2=[ , , , ]pα α α…α  with integer αi≥0. Then Π is re-

ferred as αth-order integral inverse system of Σ (or 
call αth-order inversion in short) ifφ satisfies 
 

( )( )d d d
αφφ φφ φ= = =y u yϕ .                (28) 

 
If αth-order inversion exists, then the original system 
Σ is said to be invertible.  

Connecting an ordinary αth-order inversion with 

its original system, a composite system with a map 
M φφ� of diagonal matrix property is obtained, it 
means that there is no cross-interaction between in-
puts and outputs, the original system Σ is decoupled 
into many SISO independent nonlinear subsystems. 
For α=0, it is known as the identical matrix decoup-
ling system.  

According to this notion, the core of decoupling 
controller design for a general nonlinear dynamic 
continuous system is to construct an inversion model. 
If we can design a multivariate LS-SVM approxi-
mator to construct a map function ( )φ ⋅ as an 
αth-order inversion, then connect this inversion with 
the original system, a pseudo-linear composite system 
with the property of integral linearization and de-
coupling will be obtained (Fig.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, it is not easy to design an additional 
linear controller as the integrator ( =1,  2, ..., )iS i pα− is 
not stable, and it frequently fails when the states of 
system are difficult to measure. In order to get stable 
linearization and decoupling of the original system, 
we consider the poles configuration and decoupling 
process simultaneously. More generally, let  
 

( ) ( 1) ( 2)
0 1 2 ,  

                       1,  2,  ,  ,                        (29)

i i i
i i di i di i di i dia y a y a y a y

i p

α α α
αϕ − −= + + + +

=

…
…

   
where ai0, ai1, …, aiα being real and ai0≠0. If there 
exists a map gφ of system Π satisfies the relation of 

Eq.(28), we call it as the generalized (αth-order) in-
version of the original system Σ. If we set ai1= 
ai2=…=aiα=0 and ai0=1, the ordinary αth-order in-

Fig.1  Decoupling process via αth-order inversion 

LS-SVM based 
αth-order inversion 

u1 
Original MIMO 

system 

φ1 

φp up yp 

y1 

φ1 

φp pS α− yp 

y1 1S α−
 

…
 

…
 

…
 

…
 

…
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version can be derived from generalized inversion as 
a special case in Eq.(29). 
 
Generalized inversion based on LS-SVM regres-
sion 

To design a generalized inversion of a MIMO 
system, some theoretic analysis is briefly discussed. 
Lemma 1 (He et al., 2002)    Given a MIMO (multi-
ple inputs and multiple outputs) system 
 

Σ:F(Y(N),XY,XU,U(M))=0.                     (30) 
 
With XY(t0)= 0YX  and XU(t0)= 0

,UX if ∂F/∂U(M) is 

nonsingular and continuous in certain open set D, 
then the system is invertible and there exists a gener-
alized inverse system Πg.  

Where 
 

1 2=( , , , ),pN n n n…     1 2=( , , , ),pM m m m…  

1 2 ( )( ) ( )( ) T
1 2=[ , , , ] ,pnn nN

py y y…Y  

1 2 ( )( ) ( )( ) T
1 2=[ , , , ] ,pmm mM

pu u u…U  

1 2

T=[ , , , ] ,
pY Y Y YX X X X… ( 1)=[ , , , ],i

i

n
Y i i iy y y −X � …  

1 2

T=[ , , , ] ,
pU U U UX X X X… ( 1)=[ , , , ],i

i

m
U i i iu u u −X � …  

=1,  2,  ,  ,i p…   
and F(⋅) are locally analytic functions. 

For easy to understand the process of the poles 
configuration and decoupling process of generalized 
inversion of MIMO system, let us assume that there 
exists certain SISO nonlinear subsystem which satis-
fies 
 

( ) ( 1) ( ) ( 1)( , , , , , , , ) 0n n m m
i i i i i if y y y u u u− − =… … ,     (31) 

 
where f(⋅) is a locally analytic function, and  
 

( ) ( )
0 0( ) ,  0,  1,  ,  1k k

i iu t u k m= = −… ,               (32) 
( ) ( )

0 0( ) ,  0,  1,  ,  1l l
i iy t y l n= = −… .                 (33) 

 
According to Lemma 1, the generalized inversion 
exists if (∂f/∂u)(m)≠0 and is continuous on D. Obvi-
ously, there must exist a unique solution of ( )m

iu ac-
cording to the implicit function theorem (Nijmeijer 
and Schaft, 1990), that is 

( ) ( ) ( 1) ( 1)( , , , , , , ), .i i i im n n m
i i i i i iu g y y y u u i p− −= ∈… …    (34) 

Let  

0

1

( 1)

,  

i
i

i i

i i
i

n
in i

z y
z y

i p

z y −

   
   
   = ∈   
   

     

A
�

# #
,             (35) 

 
where matrix Ai is the following ( +1) ( +1)i in n×  
non-singular matrix with aikk≠0, k=0, 1, …, ni. That is  
 

00

10 21

0 1

0 0
0

.

i i i i

i

i i
i

in in in n

a
a a

a a a

 
 
 =  
 
  

"
"

" " % "
"

A               (36) 

 
From Eq.(35), we obtain  

 

0

11

( 1)i
i

ii

ii
i

n
ini

zy
zy

zy

−

−

  
  
   =   
  

      

�
……

A .                  (37) 

 
Substituting Eq.(37) into Eq.(34) yields 

 
( ) ( 1)

( 1) 0( , , , , , , )i i

i i

m m
i in i n i i iu g z z z u u−

−= … … .       (38) 
 

Let =
ii inzϕ  be the input, and ui be the output. 

Combining this inverse system Πi:ϕi→ui with the 
original SISO nonlinear subsystem Σi:ui→yi yields a 
pseudo-linear SISO subsystem whose transfer func-
tion is 
 

1 0

( ) 1( )
( ) i

i i i i

i
ii n

i in n in in

y sg s
s a s a s aϕ

= =
+ + +…

.      (39) 

 
So far, a generalized inversion of the SISO system 
Eq.(31) can be obtained. Evidently, by regulating the 
elements of matrix Ai Eq.(36), we can configure the 
poles of pseudo-linear SISO system Eq.(39) to de-
sired positions.  

In the case of MIMO system of Eq.(30), it is 
known that there exists an equivalent implicit func-
tion G on certain open set D, which satisfies 
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( ) ( )( , , )M N
Y UG=U Y X X .                    (40) 

 
Similar to the design of the generalized inversion of 
SISO system, it is easy to deduce  
 

( ) ( , , )M
N Z Uσ=U Z X X ,                    (41) 

where 

1 2

T=[ , , , ] ,
pZ Z Z ZX X X X…  

0 1 ( 1)=[ , , , ],
i iZ i i i nz z z −X …

1 2

T=[ , , , ] ,
pU U U UX X X X…  

( 1)=[ , , , ],i

i i

m
U i iu u u −X � … and

1 2

T
1 2=[ , , , ] ,

pN n n pnz z zZ …  

.i p∈  
Let Ψ=ZN=[ϕ1, ϕ1, …, ϕp]T be the input, we can 

obtain a generalized inversion of the original MIMO 
system. By connecting this generalized inverse sys-
tem with the original system, we obtain a series of 
pseudo-linear SISO subsystems whose poles are con-
figured according to the matrix Ai in Eq.(36). Fig.2 
shows the linearization and decoupling process of 
MIMO system through a generalized inversion 
method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taking advantage of the good generalization 
ability of LS-SVM regression algorithm, we can 
construct a nonlinear static function approximator σ(⋅) 
in Eq.(41). By combining this static LS-SVM ap-
proximator with some linear dynamic components, 
such as integral or inertial components, a novel dy-
namic generalized inverse controller based on 
LS-SVM regression is proposed for the linearization 

and decoupling control of a general nonlinear in-
vertible MIMO system Eq.(30). The static LS-SVM 
approximator is responsible for approximating the 
static nonlinear mapping described by the analytical 
expression of the generalized inversion and the linear 
components are used to represent the dynamics 
property. Fig.3 shows the dynamic generalized in-
version structure based on the static multivariate 
LS-SVM approximator and dynamic components, 
where ϕi (i=1, 2, …, p) is the ith input of the gener-
alized inverse system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Implementation of generalized inversion model-
ling based on LS-SVM 

Since the mathematical model of the plant is 
frequently not completely known, and as the feedback 

( 1) ,  ,  i
i iy yα − �… (i=1, 2, …, p) and the state variables 

of the plant are not always measurable, the nonlinear 
property and the complex coupling existing in the 
plant often make it quite hard for the implementation 
of generalized inversion in practice. Fortunately, 
modelling based on LS-SVM is a black-box model 
based only on input-output measurements of the 
original nonlinear system. In the modelling procedure, 
the relationship between the input and output of the 
plant can be emphasized while the sophisticated inner 
structure is ignored. The modelling process of a gen-
eralized inversion based on LS-SVM method is il-
lustrated in Fig.4.  

For simplicity, only the canonical form of Ai in 
Eq.(36) is considered in this paper. That is 

 

1

0 ( 1)

  ,
, ,

i i i

i i i i i

n n n
i

in in n in na a a
× ×

−

 
=  
  

0

…

I
A (i=1, 2, …, p).   (42) 

Fig.2  Decoupling process via generalized inversion 
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…
 

…
 

1/s 

1/s 



Wen et al. / J Zhejiang Univ SCIENCE A   2006 7(2):275-284 282

 
 
 
 
 
 
 
 
 

The implementation procedure of the LS-SVM 
based generalized inversion is summarized as fol-
lows: 

Step 1: Determine the structure of the general-
ized inversion system.  

To get a pseudo-linear composite system with 
ideal dynamic and static characteristic of a MIMO 
system, the desired poles for each pseudo-linear 
subsystem should be prescribed initially. According 
to the determined poles, one can find the parameters 
of the matrix Ai (i=1, 2, …, p), then obtain the linear 
components that stand for the dynamic part of the 
generalized inversion. Moreover, the matrix Ai (i=1, 
2, …, p) can determine the training dataset in Eq.(41) 
with {ZN, XZ, XU} as the input and {U(M)} the output, 
respectively. 

Step 2: Generate the training datasets. 
(1) If the plant has no mathematical model or is 

only poorly modelled, one should generate ‘rich’ 
enough exciting or testing signals, such as square 
wave or ramp signals, to capture the dynamics of the 
original system.  

(2) Sample inputs, outputs and states of the 
original system (if possible).  

(3) Calculate the derivatives of each output to 
obtain the required training datasets.  

Step 3: Train the inversion model based on 
LS-SVM within Bayesian framework. 

(1) Given certain initial value for regularization 
parameter γ and kernel parameter δ, the generalized 
inversion model based on LS-SVM can be obtained. 

(2) The second level of inference determines the 
most possible value of the regularization parameter γ. 

(3) The third level of inference determines the 
most possible value of the kernel parameter δ. 

(4) Retrain the LS-SVM inversion model using 
the most possible values of the regularization pa-
rameter γ and kernel parameters δ until enough ac-
curacy is reached. 

Step 4: connect the optimal generalized inver-
sion model with the original system.  

So far, a practical generalized inversion based on 
LS-SVM for decoupling control has been proposed.  
 
 
SIMULATION RESULTS 
 

Given a nonlinear MIMO (two inputs two out-
puts) system Σ (He et al., 2002): 
 

1 1 1 2 1

2 2 2 2 2 2

0.8 2 sin( ) ,
1.8 2.5 3 0.8 .

y y y y u
y y y y y u
+ + − =
+ + + + =

�� � ��
��� �� � �

         (43) 

 
Let the expected transfer function be 
 

  11 22( ) diag{ ( ), ( )}G s g s g s= ,                  (44) 
 

where g11(s)=(s2+1.1414s+1)−1 with two poles being 
−0.707±0.707j and g22(s)=(0.1s3+1.1414s2+1.514s+ 
1)−1 with three poles being −0.707±0.707j and −10. 
We assume that we have no prior knowledge of the 
real mathematical model except the parameters of the 
highest order of inputs and outputs.  

According to Lemma 1, the system Eq.(43) is 
obviously invertible. Then we can obtain the structure 
of generalized inversion from Eq.(36), i.e. 

 

1

1 0 0
0 1 0
1 1.1414 1

 
 =  
  

A , 

and 

2

1 0 0 0
0 1 0 0

.
0 0 1 0
1 1.514 1.1414 0.1

 
 
 =
 
 
 

A  

 
We can construct a generalized inverse system based 
on LS-SVM as illustrated in Fig.3. For training the 
LS-SVM inversion model, we first generate two 
random signals as inputs to the original system 
Eq.(43). In our experiment, we selected multi-am-
plitude varying-step square wave as testing signals. 
By sampling the inputs and outputs at high speed, we 
obtain data {y1, y2, u1, u2}. After computing the de-
rivatives 1 1 2 2 2{ , , , , }y y y y y� �� � �� ��� off-line, and let 

Fig.4  Generalized inverse modelling via LS-SVM  
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we can obtain the training dataset of the generalized 
inversion. Finally, we train the LS-SVM inversion 
model using Bayesian parameter optimization and 
connecting the optimal LS-SVM inversion model 
with the original system. In our experiment, the 
training dataset consisted of 300 samples, Gaussian 
kernel is selected and the regularization parameter 
and kernel parameter are optimized efficiently with 
{γ1=4127, δ1=13.55} and {γ2=3795, δ2=15.33}.  

The simulation results are illustrated in Fig.5 and 
Fig.6. Fig.5 shows the response of the original system 
with square wave input, and Fig.6 shows the response 
of the compensated system via the novel approach. 
The dash line denotes compensated system output, and 
solid line denotes desired output. It is worth noting 
that they can hardly be distinguished from each other 
in Fig.6. 

The simulation results showed that, the outputs 
of decoupled MIMO systems could follow closely the 
expected outputs. This means that the LS-SVM-based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

αth-order inverse system controller has good de-
coupling effects and good control performance. Fur-
thermore, it is straightforward to design a closed loop 
stabilization controller by using an additional closed- 
loop linear controller like a PID controller. 
 
 
CONCLUSION 
 

In this paper, we discussed a LS-SVM-based 
generalized inverse of decoupling control for multi-
variate nonlinear systems. By using a multivariate 
LS-SVM inverse controller and a number of linear 
components, the nonlinear system can be decoupled 
into a number of pseudo-linear SISO subsystems and 
regulated to desired response. A case study showed 
that our method is effective. This technique does not 
require accurate mathematical models of the plants, 
and compared with standard SVM, is a more practical  
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Fig.5  The response of the original system with square
wave input. (a) The original response y1; (b) The original
response y2 
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Fig.6  The response of the decoupled system with square
wave input. (a) The compensated system response y1; (b)
The compensated system response y2 
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alternative in nonlinear control. In general, the 
LS-SVM methodology might offer a better opportu-
nity in the area of control theory although its appli-
cation still needs further study.  
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