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INTRODUCTION 
 

We study the problem of online scheduling on 
two identical parallel machines with a new feature 
that service requests from various customers are 
entitled to many different grade of service (GoS) 
levels. The goal is to minimize the makespan under 
the constraint that all requests are satisfied. This 
problem was first proposed by Hwang et al.(2004) 
and is motivated by the following scenario. In the 
service industry, the service providers often have 
special customers, such as, gold, silver, or platinum 
members who are more valued than the regular 
members. Those special members are usually entitled 
to premium services, so some kind of special service 
policy must be implemented by the service provider. 
One simple scheme for providing special service is to 

label machines and jobs with pre-specified GoS levels 
and allow each job to be processed by a particular 
machine only when its GoS level is no less than that 
of the machine. In effect, the processing capability of 
the machines labelled with high GoS levels tends to 
be reserved for jobs with high GoS levels. In such 
situation, assigning jobs to the machines becomes a 
parallel machine scheduling problem with a special 
eligibility constraint. 

Formally, this problem can be described as fol-
lows. We are given a sequence J={p1, p2, …, pn} of 
independent jobs with positive processing times, 
which must be processed on m identical machines M1, 
M2, …, Mm. We identify jobs with their processing 
times. Each job pj is labelled with the GoS level of 
g(pj), and each machine Mi is also labelled with the 
GoS level of g(Mi). Mi is allowed to process job pj 
only if g(Mi)≤g(pj). So, if a job has a GoS level less 
than both levels of all the machines, then the job has 
to be rejected. Without loss of generality, we assume 
no such job exists in this paper. The objective is to 
minimize the makespan, i.e., the maximum comple-
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tion time of all jobs. This problem is called parallel 
machine scheduling with GoS eligibility  (Hwang et 
al., 2004). 

We consider online algorithms in this paper, so 
we assume that jobs arrive in online over list. That is 
to say, jobs arrive one by one and are required to be 
scheduled irrevocably on machines as soon as they 
are given, without any knowledge of the jobs that will 
arrive later. If we have full information on the job data 
before constructing a schedule, it is called offline. 
Algorithms for an online/offline problem are called 
online/offline algorithms. 

Both non-preemptive and preemptive algorithms 
are considered in this paper. For a preemptive algo-
rithm, a job may be cut into a few pieces for assign-
ment to possibly different machines, in non-overlap- 
ping time slots. For a non-preemptive algorithm, jobs 
are not allowed to be cut and have to be processed 
continuously on a machine. Note that in online algo-
rithm design, we may get benefit to introduce idle 
time between two consecutive jobs on the same ma-
chine and fill it for the subsequent jobs, especially for 
preemptive algorithms, see for example, references 
(Epstein and Favrholdt, 2002; He and Jiang, 2004). 
But it may violate a basic service rule of 
first-come-first serve for jobs assigned to the same 
machine, so, in this paper we assume that idle time is 
not allowed to be introduced before the last job is 
completed. 

The performance of an online algorithm is 
measured by its competitive ratio. For a job sequence 
J and an algorithm A, let cA(J) (or in short cA) denote 
the makespan produced by A and let c*(J) (or in short 
c*) denote the optimal makespan in an offline version. 
Then the competitive ratio of A is defined as 
RA=sup{cA(J)/c*(J)}. An online problem has a lower 
bound ρ if no online deterministic algorithm has a 
competitive ratio smaller than ρ. An online algorithm 
is called optimal if its competitive ratio matches the 
lower bound. 

Clearly, the offline version of this problem is 
NP-hard. Note that Lenstra et al.(1990) proposed a 
binary search algorithm based on linear programming 
with makespan no more than 2 times the optimum for 
the most general problem of unrelated parallel ma-
chine scheduling, which certainly covers the problem 
under consideration. Recently, for the problem under 
consideration, Hwang et al.(2004) presented an off-

line algorithm LG-LPT with makespan no more than 
5/4-times the optimum for m=2, and (2−1/(m−1))- 
times the optimum for m≥3. For the online version, 
Azar et al.(1995) presented an online algorithm with 
competitive ratio log22m for any m. In particular, the 
competitive ratio turns into 2 for m=2. However, all 
the results are for non-preemptive algorithms, and no 
result is obtained in the literature for preemptive al-
gorithms of the considered problem. 

In this paper, we will consider the online version 
of this problem on two identical machines. Without 
loss of generality, we assume that g(Mi)=i, i=1,2. 
Since if both machines have the same GoS level, the 
problem becomes the classical parallel machine 
scheduling aimed at minimizing the makespan, which 
has been extensively studied in the literature. We will 
propose an optimal non-preemptive online algorithm 
with competitive ratio 5/3, which greatly improves 
the known upper bound 2 (Azar et al., 1995), and will 
consider the preemptive case and present an optimal 
preemptive online algorithm with competitive ratio 
3/2. 

Note that as pointed out in (Hwang et al., 2004), 
the offline version of two identical machine cases is 
equivalent to parallel machine scheduling with 
non-simultaneous machine available time (Lee, 1991; 
Lin et al., 1997; Lee et al., 2000). However, for the 
online version, these two problems are definitely 
different, and an online algorithm for one problem 
cannot be applied to another directly. 

The rest of the paper is organized as follows. 
Section 2 gives some basic notations and lower 
bounds for the problem. Section 3 presents an optimal 
non-preemptive online algorithm. Finally, Section 4 
presents an optimal preemptive online algorithm.  

 
 

PRELIMINARY 
 

To simplify the presentation, we use the fol-
lowing notations in the remainder of the paper. Define 
moment j≥0 as the moment right after the jth job is 

scheduled. Denote 
1

j

j i
i

T p
=

= ∑  and max max{ |j kp p k= =  

1,…,j}. Let i
jL denote the completion time of ma-

chine Mi at moment j in an online algorithm A, i=1,2. 
Let A

jL  and *
jL be the current makespan yielded by 
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algorithm A and the optimal makespan at moment j, 
respectively. Then A A

nc L=  and * * .nc L= Let P1= 
{pk|g(pk)=1,k=1,2,…,n}, P2={pk|g(pk)=2,k=1,2,…,n}, 
and 

1 ,i

j i
p P i j

S p
∈ ≤

= ∑ . 

Lemma 1    No matter whether preemption is allowed 
or not, the optimal makespan is at least 
LBj≡ maxmax{ , / 2, }j j jp T S  at any moment j≥1. 

Proof    It is clear that the optimal makespan satisfies 
* maxmax{ , / 2}j j jL p T≥  at any moment j. By the defi-

nition of the problem, all the jobs in set P1 can only be 
processed on machine M1, which implies that the 
optimal makespan is not smaller than the current total 
size of the jobs in P1, that is, *

j jL S≥  according to the 

definition of Sj. The proof is completed. 
Theorem 1    The competitive ratio of any online 
non-preemptive algorithm is at least 5/3. 
Proof    We use adversary method to establish the 
result. Let A be an non-preemptive online algorithm 
with competitive ratio C. The first two jobs with 
p1=p2=1 and g(p1)=g(p2)=2 arrive. If both of them are 
assigned to one machine by algorithm A, then no more 
job arrives. It follows that cA=2 and c*=1 which imply 
that C≥2. Therefore, we assume that the algorithm 
schedules the two jobs on different machines. Then 
the third job with p3=1 and g(p3)=2 arrives. If it is 
scheduled on machine M1, then the last job with p4=3 
and g(p4)=1 arrives. Therefore we have cA≥5 and c*=3, 
from which it follows that C≥5/3. On the other hand, 
if the third job is scheduled on machine M2, then the 
fourth job with p4=3 and g(p4)=2 arrives. If p4 is as-
signed to M2, then we have cA=5 and c*=3, from 
which it follows that C≥5/3. If the fourth job is as-
signed to M1, we have 1

4 4L =  and 2
4 2L = . Then the 

last job with p5=6 and g(p5)=1 arrives. It follows that 
cA=10 and c*=6, implying C≥5/3.  

In summary, we have shown that any online al-
gorithm has a competitive ratio of at least C≥5/3.  
Theorem 2    The competitive ratio of any preemptive 
online algorithm is at least 3/2. 
Proof    Similarly, let A be an online preemptive al-
gorithm with competitive ratio C. The first job with 
p1=1 and g(p1)=2 arrives. p1 must be assigned com-
pletely to a machine (Splitting it would introduce idle 
time, which is not allowed in our problem). If it is 
assigned to machine M1, then the second and last job 

with p2=1 and g(p2)=1 arrives. Since p2 has to be 
assigned to machine M1 as g(p2)=1, it follows that the 
makespan of algorithm A is 2, while the optimal 
makespan is 1. So, we have C≥2>3/2. On the other 
hand, if p1 is assigned to machine M2, then when the 
second job with p2=1 and g(p2)=1 arrives, it has to be 
assigned to machine M1. Now both loads of the two 
machines are 1. Then the third and last job with p3=2 
and g(p3)=2 arrives. We thus have that the makespan 
of algorithm A is at least 3, while the optimal 
makespan is 2. Hence, we obtain C≥3/2, too. 

 
 

AN OPTIAMAL NON-PREEMPTIVE ALGORI- 
THM 
 

In this section, we present an optimal 
non-preemptive algorithm for the considered problem, 
which can be formally described as follows. 
Algorithm H1: 
0. Let 0 0

1 2 0L L= =  and j=0. 
1. While job pj exists, do {  
2. If pj∈P1, schedule pj on machine M1. 
3. Else {define 2 1

1 15j j ja p L L− −= + −  and  
1 2

1 12j j jb p L L− −= + − . 

(i) if a>0 and b≤0, schedule pj on machine M1. 
(ii) else schedule pj on machine M2.} 

4. Let j=j+1.} 
Lemma 2    If 2 1 2/ 5 5j j jL L L≤ ≤  at moment j, then we 

have 1 */ 5 / 3H
j jL L ≤ .  

Proof   2 1 2/ 5 5j j jL L L≤ ≤  implies that 1 1 25( )j j jL L L≤ +  

/6 and  2 1 25( ) / 6.j j jL L L≤ +  Hence, 1 1 2max{ , }H
j j jL L L≤  

1 25( ) / 6j jL L≤ + 5 / 6.jT=  On the other hand, we have 
* maxmax{ , / 2, } / 2j j j j jL p T S T≥ ≥  due to Lemma 1. 

Combining them, we obtain that 
1

*

5 / 6 5
/ 2 3

H
j j

j j

L T
L T

≤ ≤ . 

Lemma 3    If  1 25j jL L>  at moment j, then we have: 

(a) Sj>Tj/2; and (b) 1 */ 5 / 3H
j jL L ≤ .  

Proof    (a) Let pk, k≤j, be the last job such that 
1 22k kL L>  and 1 2

1 12k kL L− −≤ . That is to say, at any 

moment k≤i≤j, 1 22i iL L>  holds. Then we can conclude 
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that pk∈P1 by the algorithm rule. 
We claim that, in {pk+1, …, pj}, all those jobs 

assigned to machine M1 are from set P1. To see it, 
suppose that there is a job pi∈P2, k<i≤j, which is as-
signed to machine M1. It implies that pi is scheduled 
by Step 3(i) of Algorithm H1. So, we know that the 
current value of b satisfies b≤0, that is, 1 22i iL L≤ , 
which contradicts the definition of pk. Hence, the 
claim is true. It implies that 

 
                           1 1

1j j kS L L −≥ − .                              (1) 

 
From 1 25j jL L>  and 1 2 ,j j jT L L= + we obtain that 

1 5 / 6j jL T>  and 2 / 6.j jL T<  And from 1 2
1 12k kL L− −≤ , 

we have 1 2 2
1 12 2 / 3.k k j jL L L T− −≤ ≤ < Combining it with 

Eq.(1), we have 5 / 6 / 3 / 2j j j jS T T T> − = . 

(b) Lemma 1 implies * maxmax{ , / 2, }j j j jL p T S≥  

jS≥ . Moreover, by 1 25j jL L>  and Eq.(1), we have 
1 1 1

1
H
j j j kL L S L −= ≤ + . Therefore, we have  

 
1 1 1

1 1
*

/ 3 51 1
/ 2 3

H
j j k jk

j j j j

L S L TL
L S S T

− −
+

≤ = + < + ≤ . 

 
Lemma 4    If a>0 and b>0 at moment j, then we have: 
(a) pj>Tj–1, that is, max

j jp p=  and pj>Tj/2; and (b) 
1 */ 5 / 3H

j jL L ≤ . 

Proof    (a) By the assumption and definitions of a and 
b, we have  
 

1 2
1 15j j jp L L− −> −                                   (2) 

and  
2 1

1 12j j jp L L− −> −                                     (3) 

 
at moment j. Suppose 1 2

1 1 1j j j jp T L L− − −≤ = + . Then 

according to Eq.(2), we have 1 2
1 15 j jL L− −−  

< 1 2
1 1j jL L− −+ , i.e., 2 1

1 12j jL L− −> . On the other hand, 

from Eq.(3), we obtain that 2 1
1 12 j jL L− −− < 1 2

1 1j jL L− −+ , 

i.e., 2 1
1 1j jL L− −< . It is a contradiction. Thus we con-

clude that 1j jp T −> , and max
j jp p=  obviously. 

(b) From  Lemma  1,  we  have  * maxmax{ ,j jL p≥  
max/ 2, } .j j j jT S p p≥ =  From (a), we have 1 2H

j jL L= ≤  
2

1.j jp L −+ From Eq.(3), we have 2 1
12 j j j jL p L T−< + =  

2
1,jL −−  resulting in 2

1 / 3j jL T− < . Thus we have  
 

1 2 2
1 1

*

/ 3 51 1
/ 2 3

H
j j j j j

j j j j

L p L L T
L p p T

− −+
≤ = + < + ≤ . 

 
Theorem 3    The competitive ratio of Algorithm H1 
is 5/3. Thus it is optimal. 
Proof    We show that 1 */ 5 / 3H

j jL L ≤  holds for every 

j=1,2,…,n by induction method. The result is trivially 
true at moment 1. Assume 1 *

1 1/ 5 / 3H
j jL L− − ≤  holds at 

moment j–1 (j≥2). Now we consider pj (j≥2). Two 
cases are considered according to the value of g(pj). 
Case 1    g(pj)=1. By the algorithm rule, pj is assigned 
to machine M1. 

(a) If 2 1 2/ 5 5 ,j j jL L L≤ ≤ then we have 
1 */ 5 / 3H

j jL L ≤  due to Lemma 2. 

(b) If 1 2 / 5j jL L< , since pj is assigned to machine 

M1, we know that 2 2
1j jL L −= . Hence, 1 2 2

1
H
j j jL L L −= =  

1
1

H
jL −= , that is, the current makespan yielded by H1 is 

unchanged after assigning job pj. Because * *
1j jL L −≥ , 

we obtain 1 * 1 *
1 1/ /H H

j j j jL L L L− −≤ 5 / 3≤  by induction. 

(c) If 1 25j jL L> , we obtain the result directly 

from Lemma 3. 
Case 2    g(pj)=2. We distinguish three subcases ac-
cording to the assignment of pj. 
Subcase 2.1    a≤0. It implies that pj is scheduled on 
machine M2 and 2 15j jL L≤ , i.e., 1 2 / 5j jL L≥ . Moreover, 

if 1 25 ,j jL L≤  we can obtain 1 */ 5 / 3H
j jL L ≤  due to 

Lemma 2. If 1 25j jL L> , since pj is assigned to machine 

M2, we can conclude that the current makespan 
yielded by H1 is unchanged after assigning job pj, that 
is, 1 1 1 1

1 1
H H
j j j jL L L L− −= = = , from which it follows that 

1 * 1 *
1 1/ /H H

j j j jL L L L− −≤ 5 / 3≤  by induction. 
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Subcase 2.2    a>0 and b≤0. It implies that pj is 
scheduled on machine M1 and 1 22j jL L≤ . Moreover, if 

1 2 / 5,j jL L≥ we can obtain 1 */ 5 / 3H
j jL L ≤  due to 

Lemma 2. If 1 2 / 5j jL L< , we have 1 */ 5 / 3H
j jL L ≤  by 

the same argument for (b) of Case 1. 
Subcase 2.3    a>0 and b>0. It is easy to obtain 

1 */ 5 / 3H
j jL L ≤  by Lemma 4. 

We have thus proved that 1 */ 5 / 3.H
j jL L ≤  

Moreover, Algorithm H1 is optimal by Theorem 1. 
 
 
AN OPTIAMAL PREEMPTIVE ALGORITHM 
 

In this section, we present an optimal preemptive 
algorithm for the considered problem, which can be 
formally described as follows. 
Algorithm H2: 
0. Let 0 0

1 2 0L L= =  and j=0. 
1. While job pj exists, do { 
2. If pj∈P1, schedule pj on machine M1. 
3. Else { 

compute the value of LBj according to Lemma 1 . 

(i) if 2
1

3
2j j jL p LB− + ≤ , schedule pj on machine 

M2 completely. 

(ii) else schedule the part 2
1

3
2 j jLB L −−  of pj on 

machine M2 and the leftover on machine M1. 
} 

4. Let j=j+1.} 
Clearly, to show the feasibility of Algorithm H2, 

we only need to prove that the assignment of the job pj 
scheduled by Step 3(ii) is feasible, that is, the time 
slots assigned to pj on two machines do not overlap. 
Furthermore, to obtain that the competitive ratio of 
H2 is 3/2, it suffices to verify 2 */ 3/ 2H

j jL L ≤  for 

pj∈P1 since the assignment of pj∈P2 satisfies 
2 */ 3/ 2H

j jL L ≤  obviously (because of the algorithm 

rule of Step 3). The detailed arguments begin with the 
following lemma. 
Lemma 5    Algorithm H2 is feasible. 
Proof    As stated above, we only have to show the 
time slots assigned to pj in Step 3(ii) do not overlap, 
which is equivalent to showing 

1 1 2 2
1 1 1

3
2j j j j j jL L p LB L L− − −

 = + − − ≤ 
 

,             (4) 

i.e.,                     1
1

3
2j j jL p LB− + ≤ .                            (5) 

 
We prove Eq.(5) by contradiction. Suppose  
 

1
1

3
2j j jL p LB− + > .                       (6) 

 
Note that the algorithm rule in Step 3(ii) implies 
 

2
1

3
2j j jL p LB− + > .                        (7) 

 
By Eqs.(6), (7) and Lemma 1, we have 1

1j jL p− +  
2

1j jL p−+ + >3LBj≥3Tj/2. Since 1
1 1j j j jT T p L− −= + = +  

2
1j jL p− + ,  we obtain  

 
pj>Tj/2.                                 (8) 

 
It follows that max ,j jp p=  and j jLB p≥  by Lemma 1. 

Then we have 1
1 3 / 2j j jL p p− + >  and L2

j–1+ pj>3pj/2 

from Eqs.(6) and (7). Combining them with 

1j j jT T p−= + = 1 2
1 1j j jL L p− −+ + , we obtain that pj<Tj/2, 

which contradicts Eq.(8). Thus Eq.(5) holds. The 
proof is completed. 
Lemma 6    Suppose that there exists at least one job 
in P2 for which a part of this job is processed on 
machine M1, and let pl be the last of such a job. Then 
we have 1 2

l lL L≤ . 
Proof    From the algorithm description, we can see 
that the job pl must be processed by Step 3(ii). With 
an argument analogous to the proof of Eq.(4), we can 
obtain that 1 2

1l lL L −≤ . As 2 2
1l lL L− ≤  holds trivially, we 

have 1 2
l lL L≤ . 

Theorem 4    The competitive ratio of Algorithm H2 
is 3/2. So it is optimal. 
Proof    By Lemma 1 we have *

j jL LB≥ . Therefore, 

to obtain 2 */ 3/ 2,H
j jL L ≤  it suffices to show 

2 / 3/ 2.H
j jL LB ≤  We distinguish two cases according 
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to the grade of the job achieving the final makespan of 
Algorithm H2. 
Case 3    The makespan of Algorithm H2 is deter-
mined by a job from P2. It is not hard to obtain that 

2 2H
j jL L=  by the assignment of jobs in P2. From the 

algorithm description in Steps 3(i) and 3(ii) we have 
2 / 3/ 2H

j jL LB ≤ . 

Case 4    The makespan of Algorithm H2 is deter-
mined by a job from P1. As we know that the jobs 
from P1 must be processed on machine M1, we have 

2 1H
j jL L= . 

If there does not exist a job from P2 processed on 
machine M1, that is, all the jobs processed on machine 
M1 belong to P1, then we can conclude that 

2H
j j jL S LB= ≤  by Lemma 1. If there exist some jobs 

from P2 processed on machine M1, we denote 
1 1
j lS L L= − , where l is defined in the same way as in 

Lemma 6. Then we have ,jS S≥  and 1 2 2
l l jL L L≤ ≤  by 

Lemma 6. 
Now we are ready to prove 2 / 3/ 2H

j jL LB ≤  for 

Case 4. 
If 1 2 ,l jS L L≤ +  combining 1 2

l jL L≤  and 
1 2

2 2
j l j

j

T S L L
LB

+ +
≥ = , we have 

 
2 21

1 2 1 2

22( )
2

H
j jl

j l j l j

L LS L
LB S L L S L L

+
≤ = −

+ + + +
 

               
2 2

1 2 1 2

2 32 2
2( ) 2

j j

l j j j

L L
L L L L

≤ − ≤ − =
+ +

. 

 
If 1 2 ,l jS L L> + i.e., 1 22 l j jS S L L T> + + = , then it fol-

lows that Sj≥S>Tj/2. Hence, we have LBj≥Sj  by  Lem- 
 
 
 
 
 
 
 
 
 
 

ma 1. Since  1 2 ,l jL L≤  we  have  1 2
l jL S L S< − ≤ − 1

lL , 

i.e., 1 / 2lL S< . Hence  
 

2 1 / 2 3
2

H
j l

j j

L S L S S
LB S S

+ +
≤ ≤ = . 

 
By now we have completed the proof of the 

competitive ratio. Moreover, the optimality of Algo-
rithm H2 is a direct consequence of Theorem 2. 
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