
Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(3):309-314 309

Optimal online algorithms for scheduling on two identical machines

under a grade of service*

JIANG Yi-wei (蒋义伟)†1,2, HE Yong (何 勇)2, TANG Chun-mei (唐春梅)2
(1Laboratory of Information and Optimization Technologies, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China)

(2Department of Mathematics, Zhejiang University, Hangzhou 310027, China)
†E-mail: jywzju@163.com

Received Feb. 10, 2005; revision accepted Apr. 19, 2005

Abstract: This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new
feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and
machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less
than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-
gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.

Key words: Online algorithm, Competitive analysis, Parallel machine scheduling, Grade of service (GoS)
doi:10.1631/jzus.2006.A0309 Document code: A CLC number: TP393; O223

INTRODUCTION

We study the problem of online scheduling on
two identical parallel machines with a new feature
that service requests from various customers are
entitled to many different grade of service (GoS)
levels. The goal is to minimize the makespan under
the constraint that all requests are satisfied. This
problem was first proposed by Hwang et al.(2004)
and is motivated by the following scenario. In the
service industry, the service providers often have
special customers, such as, gold, silver, or platinum
members who are more valued than the regular
members. Those special members are usually entitled
to premium services, so some kind of special service
policy must be implemented by the service provider.
One simple scheme for providing special service is to

label machines and jobs with pre-specified GoS levels
and allow each job to be processed by a particular
machine only when its GoS level is no less than that
of the machine. In effect, the processing capability of
the machines labelled with high GoS levels tends to
be reserved for jobs with high GoS levels. In such
situation, assigning jobs to the machines becomes a
parallel machine scheduling problem with a special
eligibility constraint.

Formally, this problem can be described as fol-
lows. We are given a sequence J={p1, p2, …, pn} of
independent jobs with positive processing times,
which must be processed on m identical machines M1,
M2, …, Mm. We identify jobs with their processing
times. Each job pj is labelled with the GoS level of
g(pj), and each machine Mi is also labelled with the
GoS level of g(Mi). Mi is allowed to process job pj
only if g(Mi)≤g(pj). So, if a job has a GoS level less
than both levels of all the machines, then the job has
to be rejected. Without loss of generality, we assume
no such job exists in this paper. The objective is to
minimize the makespan, i.e., the maximum comple-

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

*Project supported by the National Natural Science Foundation of
China (No. 10271110) and the Teaching and Research Award Pro-
gram for Outstanding Young Teachers in Higher Education, Institu-
tions of MOE, China

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(3):309-314 310

tion time of all jobs. This problem is called parallel
machine scheduling with GoS eligibility (Hwang et
al., 2004).

We consider online algorithms in this paper, so
we assume that jobs arrive in online over list. That is
to say, jobs arrive one by one and are required to be
scheduled irrevocably on machines as soon as they
are given, without any knowledge of the jobs that will
arrive later. If we have full information on the job data
before constructing a schedule, it is called offline.
Algorithms for an online/offline problem are called
online/offline algorithms.

Both non-preemptive and preemptive algorithms
are considered in this paper. For a preemptive algo-
rithm, a job may be cut into a few pieces for assign-
ment to possibly different machines, in non-overlap-
ping time slots. For a non-preemptive algorithm, jobs
are not allowed to be cut and have to be processed
continuously on a machine. Note that in online algo-
rithm design, we may get benefit to introduce idle
time between two consecutive jobs on the same ma-
chine and fill it for the subsequent jobs, especially for
preemptive algorithms, see for example, references
(Epstein and Favrholdt, 2002; He and Jiang, 2004).
But it may violate a basic service rule of
first-come-first serve for jobs assigned to the same
machine, so, in this paper we assume that idle time is
not allowed to be introduced before the last job is
completed.

The performance of an online algorithm is
measured by its competitive ratio. For a job sequence
J and an algorithm A, let cA(J) (or in short cA) denote
the makespan produced by A and let c*(J) (or in short
c*) denote the optimal makespan in an offline version.
Then the competitive ratio of A is defined as
RA=sup{cA(J)/c*(J)}. An online problem has a lower
bound ρ if no online deterministic algorithm has a
competitive ratio smaller than ρ. An online algorithm
is called optimal if its competitive ratio matches the
lower bound.

Clearly, the offline version of this problem is
NP-hard. Note that Lenstra et al.(1990) proposed a
binary search algorithm based on linear programming
with makespan no more than 2 times the optimum for
the most general problem of unrelated parallel ma-
chine scheduling, which certainly covers the problem
under consideration. Recently, for the problem under
consideration, Hwang et al.(2004) presented an off-

line algorithm LG-LPT with makespan no more than
5/4-times the optimum for m=2, and (2−1/(m−1))-
times the optimum for m≥3. For the online version,
Azar et al.(1995) presented an online algorithm with
competitive ratio log22m for any m. In particular, the
competitive ratio turns into 2 for m=2. However, all
the results are for non-preemptive algorithms, and no
result is obtained in the literature for preemptive al-
gorithms of the considered problem.

In this paper, we will consider the online version
of this problem on two identical machines. Without
loss of generality, we assume that g(Mi)=i, i=1,2.
Since if both machines have the same GoS level, the
problem becomes the classical parallel machine
scheduling aimed at minimizing the makespan, which
has been extensively studied in the literature. We will
propose an optimal non-preemptive online algorithm
with competitive ratio 5/3, which greatly improves
the known upper bound 2 (Azar et al., 1995), and will
consider the preemptive case and present an optimal
preemptive online algorithm with competitive ratio
3/2.

Note that as pointed out in (Hwang et al., 2004),
the offline version of two identical machine cases is
equivalent to parallel machine scheduling with
non-simultaneous machine available time (Lee, 1991;
Lin et al., 1997; Lee et al., 2000). However, for the
online version, these two problems are definitely
different, and an online algorithm for one problem
cannot be applied to another directly.

The rest of the paper is organized as follows.
Section 2 gives some basic notations and lower
bounds for the problem. Section 3 presents an optimal
non-preemptive online algorithm. Finally, Section 4
presents an optimal preemptive online algorithm.

PRELIMINARY

To simplify the presentation, we use the fol-
lowing notations in the remainder of the paper. Define
moment j≥0 as the moment right after the jth job is

scheduled. Denote
1

j

j i
i

T p
=

= ∑ and max max{ |j kp p k= =

1,…,j}. Let i
jL denote the completion time of ma-

chine Mi at moment j in an online algorithm A, i=1,2.
Let A

jL and *
jL be the current makespan yielded by

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(3):309-314 311

algorithm A and the optimal makespan at moment j,
respectively. Then A A

nc L= and * * .nc L= Let P1=
{pk|g(pk)=1,k=1,2,…,n}, P2={pk|g(pk)=2,k=1,2,…,n},
and

1 ,i

j i
p P i j

S p
∈ ≤

= ∑ .

Lemma 1 No matter whether preemption is allowed
or not, the optimal makespan is at least
LBj≡ maxmax{ , / 2, }j j jp T S at any moment j≥1.

Proof It is clear that the optimal makespan satisfies
* maxmax{ , / 2}j j jL p T≥ at any moment j. By the defi-

nition of the problem, all the jobs in set P1 can only be
processed on machine M1, which implies that the
optimal makespan is not smaller than the current total
size of the jobs in P1, that is, *

j jL S≥ according to the

definition of Sj. The proof is completed.
Theorem 1 The competitive ratio of any online
non-preemptive algorithm is at least 5/3.
Proof We use adversary method to establish the
result. Let A be an non-preemptive online algorithm
with competitive ratio C. The first two jobs with
p1=p2=1 and g(p1)=g(p2)=2 arrive. If both of them are
assigned to one machine by algorithm A, then no more
job arrives. It follows that cA=2 and c*=1 which imply
that C≥2. Therefore, we assume that the algorithm
schedules the two jobs on different machines. Then
the third job with p3=1 and g(p3)=2 arrives. If it is
scheduled on machine M1, then the last job with p4=3
and g(p4)=1 arrives. Therefore we have cA≥5 and c*=3,
from which it follows that C≥5/3. On the other hand,
if the third job is scheduled on machine M2, then the
fourth job with p4=3 and g(p4)=2 arrives. If p4 is as-
signed to M2, then we have cA=5 and c*=3, from
which it follows that C≥5/3. If the fourth job is as-
signed to M1, we have 1

4 4L = and 2
4 2L = . Then the

last job with p5=6 and g(p5)=1 arrives. It follows that
cA=10 and c*=6, implying C≥5/3.

In summary, we have shown that any online al-
gorithm has a competitive ratio of at least C≥5/3.
Theorem 2 The competitive ratio of any preemptive
online algorithm is at least 3/2.
Proof Similarly, let A be an online preemptive al-
gorithm with competitive ratio C. The first job with
p1=1 and g(p1)=2 arrives. p1 must be assigned com-
pletely to a machine (Splitting it would introduce idle
time, which is not allowed in our problem). If it is
assigned to machine M1, then the second and last job

with p2=1 and g(p2)=1 arrives. Since p2 has to be
assigned to machine M1 as g(p2)=1, it follows that the
makespan of algorithm A is 2, while the optimal
makespan is 1. So, we have C≥2>3/2. On the other
hand, if p1 is assigned to machine M2, then when the
second job with p2=1 and g(p2)=1 arrives, it has to be
assigned to machine M1. Now both loads of the two
machines are 1. Then the third and last job with p3=2
and g(p3)=2 arrives. We thus have that the makespan
of algorithm A is at least 3, while the optimal
makespan is 2. Hence, we obtain C≥3/2, too.

AN OPTIAMAL NON-PREEMPTIVE ALGORI-
THM

In this section, we present an optimal
non-preemptive algorithm for the considered problem,
which can be formally described as follows.
Algorithm H1:
0. Let 0 0

1 2 0L L= = and j=0.
1. While job pj exists, do {
2. If pj∈P1, schedule pj on machine M1.
3. Else {define 2 1

1 15j j ja p L L− −= + − and
1 2

1 12j j jb p L L− −= + − .

(i) if a>0 and b≤0, schedule pj on machine M1.
(ii) else schedule pj on machine M2.}

4. Let j=j+1.}
Lemma 2 If 2 1 2/ 5 5j j jL L L≤ ≤ at moment j, then we

have 1 */ 5 / 3H
j jL L ≤ .

Proof 2 1 2/ 5 5j j jL L L≤ ≤ implies that 1 1 25()j j jL L L≤ +

/6 and 2 1 25() / 6.j j jL L L≤ + Hence, 1 1 2max{ , }H
j j jL L L≤

1 25() / 6j jL L≤ + 5 / 6.jT= On the other hand, we have
* maxmax{ , / 2, } / 2j j j j jL p T S T≥ ≥ due to Lemma 1.

Combining them, we obtain that
1

*

5 / 6 5
/ 2 3

H
j j

j j

L T
L T

≤ ≤ .

Lemma 3 If 1 25j jL L> at moment j, then we have:

(a) Sj>Tj/2; and (b) 1 */ 5 / 3H
j jL L ≤ .

Proof (a) Let pk, k≤j, be the last job such that
1 22k kL L> and 1 2

1 12k kL L− −≤ . That is to say, at any

moment k≤i≤j, 1 22i iL L> holds. Then we can conclude

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(3):309-314 312

that pk∈P1 by the algorithm rule.
We claim that, in {pk+1, …, pj}, all those jobs

assigned to machine M1 are from set P1. To see it,
suppose that there is a job pi∈P2, k<i≤j, which is as-
signed to machine M1. It implies that pi is scheduled
by Step 3(i) of Algorithm H1. So, we know that the
current value of b satisfies b≤0, that is, 1 22i iL L≤ ,
which contradicts the definition of pk. Hence, the
claim is true. It implies that

 1 1

1j j kS L L −≥ − . (1)

From 1 25j jL L> and 1 2 ,j j jT L L= + we obtain that

1 5 / 6j jL T> and 2 / 6.j jL T< And from 1 2
1 12k kL L− −≤ ,

we have 1 2 2
1 12 2 / 3.k k j jL L L T− −≤ ≤ < Combining it with

Eq.(1), we have 5 / 6 / 3 / 2j j j jS T T T> − = .

(b) Lemma 1 implies * maxmax{ , / 2, }j j j jL p T S≥

jS≥ . Moreover, by 1 25j jL L> and Eq.(1), we have
1 1 1

1
H
j j j kL L S L −= ≤ + . Therefore, we have

1 1 1

1 1
*

/ 3 51 1
/ 2 3

H
j j k jk

j j j j

L S L TL
L S S T

− −
+

≤ = + < + ≤ .

Lemma 4 If a>0 and b>0 at moment j, then we have:
(a) pj>Tj–1, that is, max

j jp p= and pj>Tj/2; and (b)
1 */ 5 / 3H

j jL L ≤ .

Proof (a) By the assumption and definitions of a and
b, we have

1 2
1 15j j jp L L− −> − (2)

and
2 1

1 12j j jp L L− −> − (3)

at moment j. Suppose 1 2

1 1 1j j j jp T L L− − −≤ = + . Then

according to Eq.(2), we have 1 2
1 15 j jL L− −−

< 1 2
1 1j jL L− −+ , i.e., 2 1

1 12j jL L− −> . On the other hand,

from Eq.(3), we obtain that 2 1
1 12 j jL L− −− < 1 2

1 1j jL L− −+ ,

i.e., 2 1
1 1j jL L− −< . It is a contradiction. Thus we con-

clude that 1j jp T −> , and max
j jp p= obviously.

(b) From Lemma 1, we have * maxmax{ ,j jL p≥
max/ 2, } .j j j jT S p p≥ = From (a), we have 1 2H

j jL L= ≤
2

1.j jp L −+ From Eq.(3), we have 2 1
12 j j j jL p L T−< + =

2
1,jL −− resulting in 2

1 / 3j jL T− < . Thus we have

1 2 2
1 1

*

/ 3 51 1
/ 2 3

H
j j j j j

j j j j

L p L L T
L p p T

− −+
≤ = + < + ≤ .

Theorem 3 The competitive ratio of Algorithm H1
is 5/3. Thus it is optimal.
Proof We show that 1 */ 5 / 3H

j jL L ≤ holds for every

j=1,2,…,n by induction method. The result is trivially
true at moment 1. Assume 1 *

1 1/ 5 / 3H
j jL L− − ≤ holds at

moment j–1 (j≥2). Now we consider pj (j≥2). Two
cases are considered according to the value of g(pj).
Case 1 g(pj)=1. By the algorithm rule, pj is assigned
to machine M1.

(a) If 2 1 2/ 5 5 ,j j jL L L≤ ≤ then we have
1 */ 5 / 3H

j jL L ≤ due to Lemma 2.

(b) If 1 2 / 5j jL L< , since pj is assigned to machine

M1, we know that 2 2
1j jL L −= . Hence, 1 2 2

1
H
j j jL L L −= =

1
1

H
jL −= , that is, the current makespan yielded by H1 is

unchanged after assigning job pj. Because * *
1j jL L −≥ ,

we obtain 1 * 1 *
1 1/ /H H

j j j jL L L L− −≤ 5 / 3≤ by induction.

(c) If 1 25j jL L> , we obtain the result directly

from Lemma 3.
Case 2 g(pj)=2. We distinguish three subcases ac-
cording to the assignment of pj.
Subcase 2.1 a≤0. It implies that pj is scheduled on
machine M2 and 2 15j jL L≤ , i.e., 1 2 / 5j jL L≥ . Moreover,

if 1 25 ,j jL L≤ we can obtain 1 */ 5 / 3H
j jL L ≤ due to

Lemma 2. If 1 25j jL L> , since pj is assigned to machine

M2, we can conclude that the current makespan
yielded by H1 is unchanged after assigning job pj, that
is, 1 1 1 1

1 1
H H
j j j jL L L L− −= = = , from which it follows that

1 * 1 *
1 1/ /H H

j j j jL L L L− −≤ 5 / 3≤ by induction.

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(3):309-314 313

Subcase 2.2 a>0 and b≤0. It implies that pj is
scheduled on machine M1 and 1 22j jL L≤ . Moreover, if

1 2 / 5,j jL L≥ we can obtain 1 */ 5 / 3H
j jL L ≤ due to

Lemma 2. If 1 2 / 5j jL L< , we have 1 */ 5 / 3H
j jL L ≤ by

the same argument for (b) of Case 1.
Subcase 2.3 a>0 and b>0. It is easy to obtain

1 */ 5 / 3H
j jL L ≤ by Lemma 4.

We have thus proved that 1 */ 5 / 3.H
j jL L ≤

Moreover, Algorithm H1 is optimal by Theorem 1.

AN OPTIAMAL PREEMPTIVE ALGORITHM

In this section, we present an optimal preemptive
algorithm for the considered problem, which can be
formally described as follows.
Algorithm H2:
0. Let 0 0

1 2 0L L= = and j=0.
1. While job pj exists, do {
2. If pj∈P1, schedule pj on machine M1.
3. Else {

compute the value of LBj according to Lemma 1 .

(i) if 2
1

3
2j j jL p LB− + ≤ , schedule pj on machine

M2 completely.

(ii) else schedule the part 2
1

3
2 j jLB L −− of pj on

machine M2 and the leftover on machine M1.
}

4. Let j=j+1.}
Clearly, to show the feasibility of Algorithm H2,

we only need to prove that the assignment of the job pj
scheduled by Step 3(ii) is feasible, that is, the time
slots assigned to pj on two machines do not overlap.
Furthermore, to obtain that the competitive ratio of
H2 is 3/2, it suffices to verify 2 */ 3/ 2H

j jL L ≤ for

pj∈P1 since the assignment of pj∈P2 satisfies
2 */ 3/ 2H

j jL L ≤ obviously (because of the algorithm

rule of Step 3). The detailed arguments begin with the
following lemma.
Lemma 5 Algorithm H2 is feasible.
Proof As stated above, we only have to show the
time slots assigned to pj in Step 3(ii) do not overlap,
which is equivalent to showing

1 1 2 2
1 1 1

3
2j j j j j jL L p LB L L− − −

 = + − − ≤ 
 

, (4)

i.e., 1
1

3
2j j jL p LB− + ≤ . (5)

We prove Eq.(5) by contradiction. Suppose

1
1

3
2j j jL p LB− + > . (6)

Note that the algorithm rule in Step 3(ii) implies

2
1

3
2j j jL p LB− + > . (7)

By Eqs.(6), (7) and Lemma 1, we have 1

1j jL p− +
2

1j jL p−+ + >3LBj≥3Tj/2. Since 1
1 1j j j jT T p L− −= + = +

2
1j jL p− + , we obtain

pj>Tj/2. (8)

It follows that max ,j jp p= and j jLB p≥ by Lemma 1.

Then we have 1
1 3 / 2j j jL p p− + > and L2

j–1+ pj>3pj/2

from Eqs.(6) and (7). Combining them with

1j j jT T p−= + = 1 2
1 1j j jL L p− −+ + , we obtain that pj<Tj/2,

which contradicts Eq.(8). Thus Eq.(5) holds. The
proof is completed.
Lemma 6 Suppose that there exists at least one job
in P2 for which a part of this job is processed on
machine M1, and let pl be the last of such a job. Then
we have 1 2

l lL L≤ .
Proof From the algorithm description, we can see
that the job pl must be processed by Step 3(ii). With
an argument analogous to the proof of Eq.(4), we can
obtain that 1 2

1l lL L −≤ . As 2 2
1l lL L− ≤ holds trivially, we

have 1 2
l lL L≤ .

Theorem 4 The competitive ratio of Algorithm H2
is 3/2. So it is optimal.
Proof By Lemma 1 we have *

j jL LB≥ . Therefore,

to obtain 2 */ 3/ 2,H
j jL L ≤ it suffices to show

2 / 3/ 2.H
j jL LB ≤ We distinguish two cases according

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(3):309-314 314

to the grade of the job achieving the final makespan of
Algorithm H2.
Case 3 The makespan of Algorithm H2 is deter-
mined by a job from P2. It is not hard to obtain that

2 2H
j jL L= by the assignment of jobs in P2. From the

algorithm description in Steps 3(i) and 3(ii) we have
2 / 3/ 2H

j jL LB ≤ .

Case 4 The makespan of Algorithm H2 is deter-
mined by a job from P1. As we know that the jobs
from P1 must be processed on machine M1, we have

2 1H
j jL L= .

If there does not exist a job from P2 processed on
machine M1, that is, all the jobs processed on machine
M1 belong to P1, then we can conclude that

2H
j j jL S LB= ≤ by Lemma 1. If there exist some jobs

from P2 processed on machine M1, we denote
1 1
j lS L L= − , where l is defined in the same way as in

Lemma 6. Then we have ,jS S≥ and 1 2 2
l l jL L L≤ ≤ by

Lemma 6.
Now we are ready to prove 2 / 3/ 2H

j jL LB ≤ for

Case 4.
If 1 2 ,l jS L L≤ + combining 1 2

l jL L≤ and
1 2

2 2
j l j

j

T S L L
LB

+ +
≥ = , we have

2 21

1 2 1 2

22()
2

H
j jl

j l j l j

L LS L
LB S L L S L L

+
≤ = −

+ + + +

2 2

1 2 1 2

2 32 2
2() 2

j j

l j j j

L L
L L L L

≤ − ≤ − =
+ +

.

If 1 2 ,l jS L L> + i.e., 1 22 l j jS S L L T> + + = , then it fol-

lows that Sj≥S>Tj/2. Hence, we have LBj≥Sj by Lem-

ma 1. Since 1 2 ,l jL L≤ we have 1 2
l jL S L S< − ≤ − 1

lL ,

i.e., 1 / 2lL S< . Hence

2 1 / 2 3
2

H
j l

j j

L S L S S
LB S S

+ +
≤ ≤ = .

By now we have completed the proof of the

competitive ratio. Moreover, the optimality of Algo-
rithm H2 is a direct consequence of Theorem 2.

References
Azar, Y., Naor, J., Rom, R., 1995. The competitiveness of

on-line assignments. Journal of Algorithms, 18(2):
221-237. [doi:10.1006/jagm.1995.1008]

Epstein, L., Favrholdt, L., 2002. Optimal preemptive
semi-online scheduling to minimize makespan on two
related machines. Operations Research Letters, 30(4):
269-275. [doi:10.1016/S0167-6377(02)00179-7]

He, Y., Jiang, Y.W., 2004. Optimal algorithms for semi-online
preemptive scheduling problems on two uniform ma-
chines. Acta Informatica, 40(5):367-383. [doi:10.1007/
s00236-003-0134-7]

Hwang, H., Chang, S., Lee, K., 2004. Parallel machine
scheduling under a grade of service provision. Computers
& Operations Research, 31(12):2055-2061. [doi:10.1016/
S0305-0548(03)00164-3]

Lee, C.Y., 1991. Parallel machine scheduling with
non-simultaneous machine available time. Discrete Ap-
plied Mathematics, 30(1):53-61. [doi:10.1016/0166-
218X(91)90013-M]

Lee, C.Y., He, Y., Tang, G.C., 2000. A note on “Parallel ma-
chine scheduling with non-simultaneous machine avail-
able time”. Discrete Applied Mathematics, 100(1-2):133-
135. [doi:10.1016/S0166-218X(99)00201-2]

Lenstra, J.K., Shmoys, D.B, Tardos, N.E., 1990. Approxima-
tion algorithms for scheduling unrelated parallel ma-
chines. Mathematical Programming, 46(1-3):259-271.
[doi:10.1007/BF01585745]

Lin, G., He, Y., Yao, Y., Lu, H., 1997. Exact bounds of the
modified LPT algorithms applying to parallel machines
scheduling with non-simultaneous machine available
times. Applied Math.-JCU, 12B:109-116.

