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Abstract:    A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap-
proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To 
improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network 
model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval 
SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop 
system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities 
(LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design 
procedure, and the performance of the proposed approach is compared with that of a related method reported in literature. 
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INTRODUCTION 
 

Neural networks have been successfully em-
ployed for controlling nonlinear systems since the 
1990’s (Narendra and Parthasarathy 1990; Hunt et al., 
1992; Suykens et al., 1996). In these nonlinear control 
systems, neural networks have been used either for 
modelling the system to be controlled, or for design-
ing a controller, or both. Recently, the robustness 
issue has been an important focus of research in 
neuro-control circles (Suykens et al., 1996; Wams et 
al., 1999; Ayala Botto et al., 2000; Xu and Ioannou, 
2003; Lin and Lin, 2001). It is well known that the 
performance of a carefully designed system may 
degrade seriously due to the unavoidable uncertain-
ties resulting from modelling error, external distur-
bance and parameter fluctuation during on-line op-
eration, if the robustness of the controller is not taken 
into account during design. Thus, it is essential to 

introduce robustness measures in designing control-
lers in the presence of uncertainties. If deviations and 
perturbations in system parameters are the main 
sources of uncertainty, and are all bounded, the sys-
tem is called an interval system. Recently, based on 
the linear matrix inequality (LMI) approach (Boyd et 
al., 1994), several global and robust stability criteria 
for interval recurrent neural networks have been 
proposed (Li et al., 2004; Xu et al., 2004). In this 
paper, we follow the ideas of Li et al.(2004) and Xu et 
al.(2004) and extend the method to controllers design 
for nonlinear systems. Robustness of controllers is the 
focus of this paper. 

Several neural network models have been em-
ployed for modelling nonlinear systems, and the ap-
proaches to controller synthesis are also quite diver-
sified. In this paper, we propose a new neural network 
model termed standard neural network model (SNNM) 
which is the extension of Lur’e system (Boyd et al., 
1994) to provide a general framework for describing 
various neural networks. Based on this unified model, 
we first design a state-feedback controller for the 
SNNM with known parameters using the Lyapunov 
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method and S-procedure such that the close-loop sys-
tem is globally asymptotically stable, then we extend 
the design approach to the interval SNNM (ISNNM). 
The resulting design equations turn out to be a set of 
LMIs which can be solved conveniently using existing 
optimization software, e.g., MATLAB LMI Control 
Toolbox (Gahinet et al., 1995). Next, we train neural 
networks to approximate nonlinear systems and 
transform the neural networks into SNNMs or 
ISNNMs when we consider the influence of approxi-
mation errors and the deviations and perturbations of 
parameters of neural networks on nonlinear systems. 
Then, based on the design methodology for SNNMs 
and ISNNMs, we design state-feedback controllers to 
stabilize or robustly stabilize the nonlinear systems. 

The following notations are used throughout the 
paper. ún denotes n dimensional Euclidean space, 
ún×m is the set of all n×m real matrices, I denotes 
identity matrix of appropriate order, ||x|| denotes the 
Euclidean norm of the vector x, ∗ denotes the sym-
metric parts. The notations X>Y and X≥Y, respec-
tively, where X and Y are matrices of the same di-
mensions, mean that the matrix (X−Y) is positive 
definite and positive semi-definite, respectively. If 
X∈úp and Y∈úq, C(X; Y) denotes the space of all 
continuous functions mapping úp→úq. 
 
 
STANDARD NEURAL NETWORK MODEL 
 

In linear robust control theory, a system with 
uncertainties can be transformed into a standard form 
known as linear fractional transformation (LFT) 
(Chandrasekharan, 1996). Similar to the LFT, as 
shown in (Moore et al., 1968; Rios-Patron, 2000), we 
can synthesize controllers for nonlinear systems 
composed of a neural network by transforming them 
into SNNMs. The SNNM represents a neural network 
model in form of a linear dynamic system coupled 
with static nonlinear operators consisting of bounded 
activation functions. Here, we discuss only the dis-
crete-time SNNM, though similar architecture and 
results for continuous-time SNNMs can also be 
achieved (Zhang and Liu, 2005). A discrete-time 
SNNM with inputs and outputs is shown in Fig.1. The 
block Φ is a block diagonal operator composed of 
nonlinear activation functions φi(ξi(k)), which are 
typically continuous, differentiable, monotonically 

increasing, slope-restricted, and bounded. The matrix 
N represents a linear mapping between the inputs and 
outputs with a time delay operator z−1I in the dis-
crete-time case (or the integrator ∫ in the continu-
ous-time case) and the operator Φ. The vectors ξ(k) 
and φ(ξ(k)) are the input and output of the nonlinear 
operator Φ, respectively. The vectors u(k) and y(k) are 
the inputs and outputs of the SNNM, respectively. 

 

 
 
 
 
 
 
 
 
 
 

 
If N in Fig.1 is partitioned as  
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then the input-output SNNM can be depicted as an 
input-output linear difference inclusion (LDI): 
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where x∈ún is the state vector, A=(aij)∈ún×n, Bp= 
(bp,ij)∈ún×L, Bu=(bu,ij)∈ún×m, Cq=(cq,ij)∈úL×n, Cy=(cy,ij) 
∈úl×n, Dp=(dp,ij)∈úL×L, Du=(du,ij)∈úl×m, Dqu=(dqu,ij)∈ 
úL×m, and Dyp=(dyp,ij)∈úl×L are the corresponding 
state-space matrices, ξ∈úL are the inputs of nonlinear 
operator Φ, φ∈C(úL; úL) are the outputs of nonlinear 
operator Φ satisfying φ(0)=0, u∈úm are the inputs, 
y∈úl are the outputs, and L∈ú is the number of 
nonlinear activation functions (that is, the total 
number of neurons in the hidden layers and output 
layer of the neural network).  

In this paper, we assume that the activation func-
tions in the SNNM satisfy the sector conditions 
φi(ξi(k))/ξi(k)∈[0, ui], i.e., φi(ξi(k))⋅[φi(ξi(k)−uiξi(k))]≤0. 

Fig.1  Discrete-time standard neural network model
(SNNM) with inputs and outputs 
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In the following sections, we will design state-feedback 
controller for the SNNM Eq.(2) whose parameters are 
known such that the overall closed-loop system is glob-
ally asymptotically stable. Based on the above results, 
we then discuss the design approach of the SNNM with 
interval parameters. The controller is of the form 

 
( ) ( ),k k=u Kx                               (3) 

 
where K∈úm×n is the feedback gain. The overall 
closed-loop system of the SNNM Eq.(2) and the 
feedback controller Eq.(3) is described by 
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where  
,u= +A A B K ,q q qu= +C C D K .y y u= +C C D K  

 
 
FEEDBACK STABILIZATION OF THE SNNM 
WITH CONSTANT PARAMETERS 
 
Theorem 1    There exists a state-feedback control 
law u(k)=Kx(k) such that the closed-loop system 
Eq.(4) with constant parameters is globally asymp-
totically stable provided that there exist symmetric 
positive definite matrices X, a matrix Y, diagonal 
positive definite matrix S, and diagonal semi-positive 
definite matrix Ψ  that satisfy the following LMI 
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Furthermore, the feedback gain K is obtained as 
K=YX−1. 
Proof    For simplicity, we denote x(k) as xk, ξi(k) as 
ξk,i, φi(ξi(k)) as φk,i, φ(ξ(k)) as φk. For the closed-loop 
system Eq.(4), we choose the following positive 
definite Lyapunov function 
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where P>0, λi≥0. Thus, ∀xk≠0, V(xk)>0 and V(xk)=0 
iff xk=0. The difference along the solution of Eq.(4) is 
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where ,q iC is the ith row of matrix ,qC  Dp,i is the ith 

row of matrix Dp, Λ=diag(λ1, λ2, …, λL) and Λ≥0. 
The sector conditions, φk,i(φk,i−uiξk,i)≤0, can be 

rewritten as follows 
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where dp,i,j is the element of matrix Dp at ith row and 
jth column. By the S-procedure (Boyd et al., 1994), if 
there exist τi≥0 (i=1, …, L), such that the following 
inequality holds 
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where U=diag(u1,u2,…,uL), T=diag(τ1,τ2,…,τL) and 
T≥0, then T0<0, that is, ∀xk≠0, ∆V(xk)<0 and ∆V(xk)= 
0 iff xk=0. So, if there exist a symmetric positive 
definite matrix P, and diagonal semi-positive definite 
matrices Λ and Τ, such that the LMI Eq.(7) holds, 
then the origin of the closed-loop system Eq.(4) is 
globally asymptotically stable. Study of the structure 
of the parameters in Eq.(7) shows that Eq.(7) is a 
nonlinear matrix inequality over P, T, Λ, and K. Since 
no efficient algorithms are available for solving 
Eq.(7), we must convert Eq.(7) into LMI which can be 
solved by the MATLAB LMI Control Toolbox (Gahi- 
net et al., 1995). Using the well-known Schur com-
plements (Boyd et al., 1994), Eq.(7) can be expressed 
as: 
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Pre- and post-multiplying the left-hand side matrix of 
Eq.(8) by the diagonal matrix (P−1, P−1, (Λ+UT)−1) 
makes Eq.(8) equivalent to 
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By letting X=P−1, Y=KX, S=(Λ+UT)−1, and Ψ=(Λ+ 
UT)−1T(Λ+UT)−1, Eq.(9) can be rewritten as Eq.(5). 
 
 
FEEDBACK STABILIZATION OF THE INTER- 
VAL SNNM 
 

Theorem 1 is obtained under the assumption that 
all the parameters in the SNNM Eq.(2) are known. 
However, deviations and perturbations may occur to 
the parameters; such deviations and perturbations are 
usually bounded. Under this assumption, we may 
intervalize the parameters in Eq.(2). Assume the pa-
rameters of the SNNM in Eq.(2) satisfy the following 
constraints:  
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are called reference matrices of interval matrices A, 
Bp, Bu, Cq, Dp, Dqu, Cy, Dyp, and Du, respectively. 
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is called the reference system of the SNNM Eq.(2). 
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where Ii denotes the ith column vector of the identity 
matrix. Obviously, we have  
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=diag + , , + .
n L n L

u j qu j u jm qu jm
j j j j m m

b d b d
= = = =

 
  
 
∑ ∑ ∑ ∑…

 
From Lemma 1 in (Li et al., 2004), the SNNM 

Eq.(2) with interval parameters is equivalent to the 
following system: 
 

0 0
1 1 1 2 2 2

0
3 3 3

0 0
4 4 4 5 5 5

0
6 6 6

0 0
7 7 7 8 8 8

( 1) ( + ) ( )+( + ) ( ( ))

                ( ) ( ),

( ) ( ) ( ) ( + ) ( ( ))

            ( ) ( ),

( ) ( ) ( ) ( + ) ( ( ))

          

p

u

q p

qu

y yp

k k k

k
k k k

k

k k k

φ

φ

+ =

+ +

= + +

+ +

= + +

x A E Σ F x B E Σ F ξ

B E Σ F u
ξ C E Σ F x D E Σ F ξ

D E Σ F u

y C E Σ F x D E Σ F ξφ
0

9 9 9  ( ) ( ),u k










 + + D E Σ F u
                                                                              (11) 

 
where Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7, Σ8, and Σ9 are diagonal 
matrices of appropriate dimension, and absolute val-
ues of their diagonal elements are not larger than 1. 

Next, we develop a design procedure for the in-
terval SNNM Eq.(11). The following lemma is nec-
essary to derive Theorem 2 below. 
Lemma 1 (Khargonekar et al., 1990)    Let D and E 
be real matrices of appropriate dimensions. Then, for 
any scalar δ>0, 
 

T T T 1 Tδ δ −+ ≤ +DE E D DD E E . 
 

Theorem 2    There exists a state-feedback control 
law u(k)=Kx(k) such that the closed-loop system 
Eq.(4) with interval parameters is globally robustly 
asymptotically stable provided that there exist sym-
metric positive definite matrices X, a matrix Y, di-
agonal positive definite matrix S, diagonal semi- 
positive definite matrix Ψ, and a scalar α>0 that sat-
isfy the following LMI 
 

1 2
T
2 3

0
 

< 
 

G G
G G

,                          (12) 

where  
T T T 0 0

1 1 2 2 3 3
0 0 T

1
0 T 0 0

0

0 0 T

0 0 T T T T
4 4 5 5 6 6

+ ( + ) +
( + )

( ) +

        ( ) ,
+ ( ) 2 + ( + + )

u

u

p q qu

p

q qu

p p

α

α

− +
= −



+ 
− 

X E E E E E E A X B Y
G A X B Y X

S B C X D Y

B S
C X D Y

D S S D Ψ E E E E E E

T T
2 1 3

2

 
 =  
  

G X R Y R
SR

0 0 0 0
0 0
0 0 0

, 

3 diag( , , , )α α α α= − − − −G I I I I . 

 
Furthermore, the feedback gain K is obtained as 
K=YX−1. 
Proof    Let 

 
1 1 1 3 3 3 2 2 2

4 4 4 6 6 6 5 5 5

1 1 3 3 2 2

4 4 6 6 5 5

   

+ 
 =  
 + 
 
 =  
  

E F X E F Y E F S
V

E F X E F Y E F S

E E E

E E E

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

0
0 0 0
0

0 0 0
0 0 0 0 0 0
0 0 0

 

1

3

2

4

6

5

 
 
 
 

× 
 
 
 
  

F X
F Y

F S
F X
F Y

F S

0 0
0 0
0 0
0 0
0 0
0 0

. 

 
Using Lemma1 1, we can deduce the following 

inequality: 

 
T T T T

1 1 2 2 3 3

T T T 1 T T
4 4 5 5 6 6 1 1

T T T T T
4 4 3 3 6 6 2 2 5 5

diag( ,0,

    ) diag(0, (

    + ) + ( + ) , ( + ) ).T

α

α−

+ ≤ + +

+ + +

V V E E E E E E

E E E E E E X F F

F F X Y F F F F Y S F F F F S
                                                                              (13) 

 
On the other hand, for system Eq.(11), by Eq.(5) in 
Theorem 1 together with Eq.(13) 
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0 0
1 1 1 3 3 3

0
2 2 2

0 0 T
4 4 4 6 6 6

0 0 T
5 5 5 5 5 5

( ) ( )

( )
(( ) ( ) )

( ) ( ) 2

*
* *

u

p

q qu

p p

− + + +
 −


+
+ + + 
+ + + − 

X A E Σ F X B E Σ F Y
X

B E Σ F S
C E Σ F X D E Σ F Y

D E Σ F S S D E Σ F Ψ

 

0 0 0

0 0 T 0 0 T

0 T 0 0 0 0 T

T 1 T T T
1 1 1 4 4

T T T T
3 3 6 6 2 2 5 5

+
= ( + ) ( + )

( ) + + ( ) 2

  diag(0, ( )

  ( ) , ( ) )

u p

u q qu

p q qu p p

T

α−

 −
 − 
 − 
+ + ≤ + +

+ + +

X A X B Y B S
A X B Y X C X D Y

S B C X D Y D S S D Ψ

V V G X F F F F X
Y F F F F Y S F F F F S

         

T T
1 1 3

2

1 1 1 1

T

T T
1 3

2

  diag( , , , )

  0.            (14)

α α α α− − − −

 
 = +  
  

×

 
 × < 
  

G X R Y R
SR

I I I I

X R Y R
SR

0 0 0 0
0 0
0 0 0

0 0 0 0
0 0
0 0 0

 

 
By applying the Schur complements (Boyd et al., 
1994), Eq.(14) can be expressed as Eq.(12). 
 
 
CONTROLLER SYNTHESIS FOR THE NON- 
LINEAR SYSTEM 
 

Before employing Theorems 1 and 2 to synthe-
size the state-feedback controller to stabilize the 
neural-network-based system, we first re-express the 
system in the form of the SNNM described in Eq.(2). 

Now we consider a class of discrete-time non- 
linear systems in the following form: 

 
( )= ( ( 1), , ( ), ( 1), , ( )),y uk k k d k k d− − − −y F y y u u… …

                                                                              (15) 
 
where {y(k)},{u(k)} are the ny-dimensional system 
output and the nu-dimensional system input at time 
instance k, respectively, and ( ; )y y u u yn d n d n+∈F C  is 
a continuous function, which is assumed to be un-
known. Assume a neural network NN(y(k−1), …, 
y(k−dy), u(k−1), u(k−du)) is used to approximate the 

nonlinear system Eq.(15), which can be written as: 
 

( ) ( ( 1), , ( ), ( 1),yk NN k k d k= − − −y y y u…  

..., ( )) ( )uk d k− +u E , 
 

where E(k) is the approximation error vector. We 
assume that E(k) satisfies 
 

||E(k)||<ε 
 

for all y(k−1), …, y(k−dy), u(k−1), u(k−du), where ε  is 
a given positive scalar. We can then transform the 
neural network NN(y(k−1), …, y(k−dy), u(k−1), 
u(k−du)) into the SNNM Eq.(2), and design a state- 
feedback control law by using Theorems 1 and 2. 

Assumption on the approximation error is 
common in neural-network-based control design 
literature (Lin and Lin, 2001; Limanond and Si, 1998). 
This assumption ensures that a controller designed for 
a neural-network-based approximation model can 
maintain its performance when applied to the actual 
nonlinear system, which, as we will show afterwards, 
plays an important role in establishing global uniform 
ultimate boundedness of the closed-loop system. 

Now we consider a simple example to illustrate 
that the ISNNM-based feedback controller can 
guarantee the robust stability of the closed-loop sys-
tem. In particular, consider the following single-input 
single-output nonlinear system (Limanond and Si, 
1998): 

 
2 2

1

2

3

( 1) ( ) ( 1) /[1 ( ) ( 1)]
               sin[0.5( ( ) ( 1))]cos[0.5( ( )
               ( 1))] ( ),

k f k k k k
f k k k

k f k

+ = − + + −

+ + −
+ − +

y y y y y
y y y

y u
                         

(16) 
 
where u(k) and y(k) denote the scalar input and output, 
the parameters f1, f2, and f3 in (Limanond and Si, 1998) 
are set to 1.5, 0.7, and 1.2, respectively. Similar to the 
work by Limanond and Si (1998), we employ a 
multi-layer perceptions (MLP) network for approxi-
mating the system Eq.(16). The MLP with hyperbolic 
tangent activation functions has the following form: 
 

2 1

( )
( 1) tanh tanh ( 1)

( )

k
k a k

k

   
   + = ⋅ −   

      

y
y W W y

u
,    (17) 



Liu / J Zhejiang Univ SCIENCE A   2006 7(4):530-538 537

where a is a scalar adjusting the range of the output, 
W1 and W2 are 3×3 and 1×3 matrices that denote the 
weight matrix of the hidden and the output layer, 
respectively. These weight matrices are trained 
off-line using the backpropagation learning algorithm. 
The training data are obtained by sampling the input 
space in the interval [−1.8, 1.8] randomly and uni-
formly. After 5639 training steps, we obtain the 
weights of the MLP as follows:  
 

a=2.7468,                                                      
1 11(3 2) 12(3 1)

2

[ ]

0.4811 0.1843 0.2316
    0.5554 0.1529 0.6986

0.2718 0.0846 0.3220
[1.1997 0.4027 1.2829].

× ×=

− 
 = − 
 − 

= −

W W W

W

, 

 
Converting MLP Eq.(17) into the SNNM Eq.(2) where 

x(k)=[y(k)  y(k−1)]T, 
0 0

=
1 0
 
 
 

A , 2 3= 0
0p

a
×

  
  

  
B , 

=0uB , 11

1 2

=
0q

×

 
 
 

W
C , 3 3 3 1

2 1 1

0 0
=

0p
× ×

×

 
 
 

D
W

, 12

1 1

=
0qu

×

 
 
 

W
D , 

=[1 0],yC  Dyp=0, Du=0, U=I, and adopting a state- 

feedback controller described by Eq.(3), we can de-
sign a stabilized controller according to Theorem 1. 
Solving the LMI Eq.(5) with respect to the parameters 
X, Y, S, and Ψ by the LMI Control Toolbox (Gahinet 
et al., 1995), we achieve the following solution: 
 

0.7028 0.0541
=

0.0541 1.2999
 
 
 

X , Y=[−0.4383, 0.2118], 

=diag(0.3433,1.0054,0.3103,  0.0828) S , 
=diag(0.7989,0.7989,0.7989,0.7989)Ψ , 

K=YX−1=[−0.6383, 0.1894]. 
 

When the state-feedback law u(k)=Kx(k) is applied on 
the nonlinear system Eq.(16), the output of the 
closed-loop system y(k) converges to zero asymp-
totically. In order to demonstrate the advantage of our 
approach, we compare the controller designed using 
our approach to that designed according to the ap-
proach suggested by Limanond and Si (1998). The 
results are presented in Fig.2, where the solid and 
dashed lines denote the output of the system with 
controller designed by our approach and the approach 

suggested by Limanond and Si (1998), respectively. 
Fig.2 shows that although both closed-loop systems 
are finally stabilized, our controller stabilizes the 
system within a much shorter time period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next, we consider the case where the parameters 
f1, f2, and f3 of nonlinear system Eq.(16) vary within a 
given range. In this case, the weights of the MLP can 
be expressed as follows with intervals: 

 
= =2.7468,a a                                                  

1 11(3 2) 12(3 1)

2

1 11(3 2) 12(3 1)

[ ]

0.6812 0.1843 0.8316
    0.9558 0.0529 1.6955 ,

0.0718 0.1284 0.5322

[2.5679 0.2028 2.2900],
[ ]

0.0811 1.1843 0.2356
    0.2556 1.1529 0.2887

1.0018 0.0046

× ×

× ×

=

 
 = − 
 − 

= −
=

− −
= − −

− −

W W W

W
W W W

2

,
0.9927

[0.1227 0.8824 0.2856].

 
 
 
  

= −W

 

 

Similar to the above design procedure, we can obtain 
the feedback gain K=[−0.1365, −0.0685] using 
Theorem 2. We again compare our controller to the 
one designed using the approach suggested by Li-
manond and Si (1998) when the parameters are per-
turbed. It can be seen from Fig.3 that the controller 
designed by Limanond and Si (1998) fails to stabilize 
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Fig.2  Output of the closed-loop system whose feedback gain 
K is [−0.6383, 0.1894] designed by our approach (the solid 
line), and [0.0278, −0.1522] designed by Limanond and Si 
(1998) (dashed line). y(k) is initialized arbitrarily at k=0, 30, 
60, respectively 
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the system, while our controller succeeds. The dif-
ference in performance of the controllers can be at-
tributed to the fact that the robustness of the system 
had been considered in the design approach proposed 
in this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In this paper, we suggested an algorithm for de-
signing robust controllers for a class of discrete-time 
nonlinear systems with bounded parameter uncer-
tainty when neural networks are used to approximate 
the system. We proposed a novel interval standard 
neural network model (ISNNM) which describes a 
class of neural networks whose weights vary in a 
given range. One of the most important features of 
ISNNM is that the model can be represented as an 
interval LDI so that a controller for the ISNNM can 
be easily designed via the LMI approach. A 
state-feedback controller has been designed for the 
ISNNM such that the closed-loop system is globally 
robustly asymptotically stable. The robustness of 
controllers in the presence of approximation errors 
and parameter perturbations is guaranteed in our de-
sign approach which can be extended to the synthesis 
of any nonlinear control systems as long as the sys-
tems can be described in the form of the SNNM or 
interval SNNM. Note that no standard methods exist 
to convert non-SNNMs into the SNNMs, but the state 
transformation can be applied in general. 
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Fig.3  Output of the closed-loop system whose feedback
gain K is [−0.1365, −0.0685] designed by our approach
(solid line), and [0.0278, −0.1522] designed by Limanond
and Si (1998) (dashed line). f1,  f2 and f3 are set to 1.5, 0.7
and 6.0, respectively 


