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INTRODUCTION 
 

Almost split sequences, also called Auslander- 
Reiten sequences, were discovered by Auslander et 
al.(1995) for finitely generated modules over a finite- 
dimensional (artin) algebra and play an important role 
in other settings as well. While the proof of the exis-
tence of almost split sequences for arbitrary artin 
algebras  (see Section 1 of Chapter V in (Auslander et 
al., 1995)) is fairly constructive, it is sometimes pos-
sible to give other ways of constructing almost split 
sequences which are particularly well suited to spe-
cial types of artin algebras. This paper is devoted to 
illustrating this point of view in the case for a special 
kind of Hopf algebras, which are unimodular and the 
square of their antipodes are inner automorphisms. 
Fortunately, the quantum double D(H)=(Hop)*   H) of 
any finite dimensional Hopf algebra automatically 
satisfies these conditions (see Section 4). 

In order to discuss almost split sequences, it is 
natural to require that H is not semisimple. Therefore, 
in Section 2, we give an equivalent description for a 
Hopf algebra H to be semisimple by its trivial module. 

It is interesting to note that we can give a new proof of 
the well-known Maschke Theorem for Hopf algebras 
(see Theorem 2.2.1 in (Montgomery, 1993)). Since 
our methods seem special, we always require the artin 
algebras to be symmetric. When is a Hopf algebra 
symmetric? Fortunately, by Proposition 2.5 of (Lo-
renz, 1997), we know that a Hopf algebra H is sym-
metric if and only if it is unimodular and the square of 
its antipode is an automorphism. That is the reason 
why we always need our Hopf algebras in this paper 
to be unimodular and the square of their antipodes to 
be inner automorphisms. 

The main result is in Section 3. Let 0→A→E 
0f k→ → be the almost split sequence ending with 

trivial H-module k. Then for each indecomposable 
module X, we obtain the exact sequence of H-modules 
0 0.Xid fX A X E X⊗→ ⊗ → ⊗ → → The results 
of this section show that the epimorphisms idX⊗f: 
X⊗E→X are either slit epimorphisms or right almost 
split morphisms and to determine for which X they are 
right almost split morphisms. In the last section, by 
using the results obtained in Section 3, we give an 
application of the case of quantum doubles. 

We now fix some notations for this paper. k al-
ways denotes a field where all spaces are finite di-
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mensional k-spaces. ⊗ means ⊗k. For a Hopf algebra 
H, ∆ means its comultiplication, ε its counit, S its 
antipode and S−1 the composition inverse of S. We 
accept Sweedler notations for ∆ without sigma nota-
tions and indices, i.e., we write ∆(h)=h′⊗h″ for all 
h∈H. HM means left H-module category. For any 
H-module, A*=Homk(A,k). In this paper, we freely use 
some definitions and results about almost split se-
quences. But for completeness, we list them in the 
Appendix. 
 
 
SOME RESULTS ON REPRESENTATION OF 
HOPF ALGEBRAS 
 

Let H be a finite dimensional Hopf algebra and A, 
B two H-modules. Then A⊗B becomes an H-module 
through ∆, the comultiplication of H and Homk(A,B) 
becomes an H-module by (h⋅f)(a):=h″f(S−1(h′)a) for 
h∈H, f∈Homk(A,B) and a∈A. The field k is clearly an 
H-module through ε. Unless stated to the contrary, 
this is the only way we will consider A⊗B, Homk(A,B) 
and k as H-modules. In particular, we call k the 
“trivial” H-module. As a special case of these defini-
tions, we have (h⋅f)(a)=f(S−1(h′)a) for all h∈H, f∈A* 
and a∈A. 
 
A conclusion on projective module 
Theorem 1    Let A be a projective H-module. Then 
B⊗A is also projective as H-module for all H-module 
B. 

Before giving the proof of this result we give an 
interesting application. 
Corollary 1    The following statements are equiva-
lent for H. 

(1) H is semisimple. 
(2) The trivial H-module is projective. 

Proof    We know that H is semisimple if and only if 
every H-module is projective. Therefore (1) implies 
(2). Suppose k is projective. Then A≅A⊗k is projec-
tive for each H-module A by the theorem above. 
Hence (2) implies (1). 

In order to determine precisely when the trivial 
H-module is projective, it is convenient to make the 
following observations. For an H-module A we denote 
by AH the H-submodule of A consisting of all a in A 
such that ha=ε(h)a for all h in H. Moreover, if f:A→B 

is a morphism in HM, then f(AH)⊆BH. Hence we obtain 
the fixed point functor ()H:HM→HM given by 
()H(A)→AH and for f:A→B in HM, 

|
() ( ):= :H

H H
A

f f A  

→BH. We now give another description of the fixed 
point functor. 

Let A be an H-module. Then it is easily seen that 
an element a is in AH if and only if there is an 
H-morphism f:k→A such that f(1)=a. Therefore for 
each A in HM we have isomorphisms HomH(k,A)→AH 
functorial in A given by (1)f f  for all f in H(k,A). 
Hence we have an isomorphism between HomH(k, ) 
and the fixed point functor ()H. We now apply these 
considerations to determine when k is a projective 
H-module. 

Clearly, the counit ε is an H-epimorphism from 
H to k. Therefore k is a projective H-module if and 
only if there is an H-morphism f:k→H such that εf=idk. 
By our previous remarks, this is equivalent to saying 
that there is an element z in HH such that ε(z)=1. 

Summarizing, we have the following theorem 
which gives a new proof of the well-known Maschke 
Theorem for Hopf algebras (see Theorem 2.2.1 in 
(Montgomery, 1993)). 
Theorem 2    The following are equivalent for the 
Hopf algebra H: 

(1) H is semisimple. 
(2) The trivial H-module is projective. 
(3) There is an element t in HH such that ε(t)≠0. 
We will finish the proof of Theorem 2 by giving 

a proof of Theorem 1. This will require two prelimi-
nary results. 
Lemma 1 (Lorenz, 1997)    Let A, B be two H-mod-
ules. Then 
 

(Hom ( , )) =Hom ( , ).H
k HA B A B               (1) 

 
Lemma 2    Let A, B and C be in HM. Then the mor-
phism α:HomH(A,Homk(B,C))→HomH(B⊗A,C) given 
by α(f)(b⊗a)=f(a)(b) for all f in HomH(A,Homk(B,C)) 
and all a in A and b in B are isomorphism functorials 
in A, B and C. 
Proof    It is well known that functors Hom and ⊗ are 
adjoint to each other. Therefore we have the following 
isomorphism α′:Homk(A,Homk(B,C))→Homk(B⊗A,C) 
of k-vector spaces given by α′(f)(b⊗a)=f(a)(b) for all 
f in Homk(A,Homk(B,C)) and all a in A and b in B 
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which are functorials in A, B and C. We claim that α′ 
is also an H-morphism. In fact, for all f in Homk(A, 
Homk(B,C)) and a in A and b in B and all h in H,  

 
α′(h⋅f)(b⊗a)=(h⋅f)f(a)(b)=(h″⋅f(S−1(h′)a))(b) 

          =h″′f(S−1(h′)a)(S−1(h″)b), 
(h⋅α′(f))(b⊗a)=h″′α′(f)(S−1(h″)b⊗S−1(h′)a)              

           =h″′f(S−1(h′)a)(S−1(h″)b). 
 

Therefore, α′ induces an isomorphism α on fixed 
points, which gives our desired result by the lemma 
above. 

As a consequence of this result we obtain the 
following proof of Theorem 1. 
Proof    Let A be a projective H-module and let B be 
an arbitrary H-module. We want to show that B⊗A is 
projective. Let 0→C→C′→C→C″→0 be an exact 
sequence of H-modules. Since Homk(B, ) is an exact 
functor and A is a projective H-module, we obtain by 
applying Lemma 2 the following commutative exact 
diagram. 
 
 
 
 
 
 

This shows that HomH(B⊗A,C)→HomH(B⊗A, 
C″) →0 is exact, which proves that B⊗A is projective. 
This finishes the proof of Theorem 1. 
 
When S2 is an inner automorphism 

In this subsection, we always assume the square 
of the antipode S of H is an inner automorphism, i.e., 
there exists an invertible element u∈H such that 
S2(x)=uxu−1 for any x∈H. Clearly, in this case, 
S−2(x)=u−1xu−1 for x∈H. 
Lemma 3 (Lorenz, 1997)    Let B and C be two 
H-modules. Then the vector space isomorphism 
δ:B⊗C→Homk(B*,C) given by δ(b⊗c)(f)=f(u−1b)c for 
f in B*, for all b in B and c in C is an H-isomorphism 
functorial in B and C. 

As a consequence of this lemma we obtain the 
following result. 
Proposition 1    Let A, B and C be in HM. Then we 
have the following 
 

β:HomH(A,B⊗C)→HomH(B*⊗A,C)          (2) 

given by β(f)(g⊗a)=η(g)(f(a)) for all f∈HomH(A, 
B⊗C), a∈A and g∈B*, where η(g)(b⊗c)=g(u−1b)c for 
all b∈B and c∈C, is an isomorphism functorial in A, B 
and C. 
Proof    By Lemma 3, we know that δ:B⊗C→ 
Homk(B*,C) given by δ(b⊗c)(f)=f(u−1b)c for f in B*, 
for all b in B and c in C is an H-isomorphism functorial 
in B and C. This induces the isomorphism HomH(A,δ): 
HomH(A,B⊗C)→HomH(A,Homk(B*,C)) functorial in 
A, B and C. By Lemma 2, we have the canonical 
isomorphism α:HomH(A,Homk(B*,C))→HomH(B*⊗A, 
C) which is also functorial in A, B and C. It is not dif-
ficult to check that the composition αHomH(A,δ) is our 
morphism β:HomH(A,B⊗C)→HomH(B*⊗A,C). There- 
fore, β is an isomorphism functorial in A, B and C. 

It is easy to check that the usual vector space 
isomorphism ε:A*⊗A→Endk(A), given by ε(f⊗a)(x)= 
f(x)a for all f∈A* and a, x∈A, is an H-isomorphism 
whose inverse can be described as follows. Let 
{a1, …, ad} be a k-basis for A with dual basis {f1, …, 
fd}. Then it is easily seen that the map 

µ:Endk(A)→A*⊗A given by
1

( ) ( ( ))d
i ii

g f g aµ
=

= ⊗∑  

for all g∈Endk(A) is the inverse of ε and therefore an 
H-isomorphism. It is also not difficult to see that 

1
( ( )) tr( )d

i ii
f g a g

=
=∑ , the trace of g, for all g∈ 

Endk(A). 
We now use Proposition 1 with A=B and C=k, 

the trivial H-module. Then β:HomH(A,A)→HomH 

(A*⊗A,k) given by β(f)(g⊗a)=g(u−1f(a)) for all f∈ 
HomH(A,A), g∈A* and a∈A is an isomorphism. From 
these remarks it follows that the isomorphism v: 
Endk(A)→HomH(Endk(A),k) which is the composition 
 

*

Hom ( , )

Hom ( , ) Hom ( , )

  Hom (End ( ), )H

H H
k

H k

A A A A k

A k

β

µ

→ ⊗

→
          (3) 

 

is given by v(f)(g)=(HomH(µ,k)β)(f)(g)=β(f)(u(g))= 
1 1

1 1
( )( ( ))= ( ( ))=tr( )d d

i i i ii i
f f g a f fg a u fgβ µ− −

= =
⊗∑ ∑

for all f∈EndH(A) and g∈Endk(A), where we consider 
u−1 as a linear endomorphism of A. We are particu-
larly interested in the following property of the iso-
morphism v. 
Lemma 4    Let A be in HM. 

(1) An element f in EndH(A) has the property that 
v(f):Endk(A)→k is a split H-epimorphism if and only 

Hom ( ,Hom ( , )) Hom ( ,Hom ( , )) Hom ( ,Hom ( , )) 0
                                                                             

Hom ( , )         Hom ( , )            Hom ( , )   

H k H k H k

H H H

A B C A B C A B C

B A C B A C B A C

′ ′′→ → →
↓ ↓ ↓

′ ′′⊗ → ⊗ → ⊗   

≅ ≅ ≅ 
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if there is some g∈EndH(A) such that tr(u−1fg)≠0. 
(2) The trivial module k is an H-summand of 

Endk(A) if and only if there is some g∈EndH(A) such 
that tr(u−1g)≠0. 
Proof    (1) Obviously v(f):Endk(A)→k is a split 
H-epimorphism if and only if there is an H-morphism 
t:k→Endk(A) such that v(f)t≠0. The isomorphism 
HomH(k,Endk(A))→Endk(A)H=EndH(A) (Lemma 1) 
given by t t(1) shows that there is an H-morphism 
t:k→Endk(A) such that v(f)t≠0 if and only if there is 
some g∈EndH(A) such that v(f)(g)≠0. Using the fact 
that v(f)(g)=tr(u−1fg), we have our desired result. 

(2) “If” part: This is a trivial consequence of (1). 
“Only If” part: Since k is an H-summand of 

Endk(A), there is a split H-epimorphism p:Endk(A)→k. 
By v being an isomorphism, we have f∈EndH(A) such 
that v(f)=p. Using (1) again, there is some f ′∈EndH(A) 
such that tr(u−1ff ′)≠0. Therefore we get the result as 
long as we let g=ff ′. 

Recall that a Hopf algebra H is said to be “uni-
modular” if the set of left integrals equals that of right 
integrals, i.e., H has a non-zero two-sided integral. An 
algebra A is called “symmetric” if A≅A* as A–A-    
bimodules. The following result was cited in (Lorenz, 
1997). 
Lemma 5    A finite dimensional Hopf algebra H is 
symmetric if and only if it is unimodular and the 
square of the antipode is an inner automorphism. 

This lemma can also be deduced from the fol-
lowing consequence, which was proved in (Böhm et 
al., 1999), since a Hopf algebra must be a weak Hopf 
algebra and every non-zero integral in a Hopf algebra 
must be non-degenerate. 
Theorem 3    The weak Hopf algebra H is a sym-
metric algebra if and only if it has non-degenerate 
two-sided integrals and the square of the antipode is 
an automorphism. 

Since the group algebra kG is clearly unimodular 
and the square of the antipode equals the identity map 
of kG, we have the following well-known result. 
Corollary 2    The group algebra kG is a symmetric 
algebra. 
 
 
ALMOST SPLIT SEQUENCES FOR A KIND OF 
HOPF ALGEBRAS 
 

In this section, we always assume the Hopf al-

gebra H, which is not semisimple, is unimodular and 
the square of the antipode is an inner automorphism, 
i.e., S2(x)=uxu−1 for x∈H. Therefore H is a symmetric 
algebra by Lemma 5. 

Since H is not semisimple, the theory of almost 
sequences can be applied to HM. In particular, since 
the trivial H-module k is not projective by Corollary 1, 
k has an almost split sequence 0 fA E k→ → → →  
0 (see Appendix). Then for each indecomposable 
module X we obtain the exact sequence of H-module 
0 0.Xid fX A X E X⊗→ ⊗ → ⊗ → →  Our main 
aim is to show that the epimorphisms idX⊗f:X⊗E→X 
are either split epimorphisms or right almost split 
morphisms, and to determine for which X they are 
right almost split morphisms. 

We know that A≅DTr(k) (see Appendix) in the 
almost split sequence 0 0.fA E k→ → → → Since 
H is a symmetric algebra, we know that DTr(k)≅Ω 

2(k) 
(see Appendix). We now show that X⊗Ω 

2(k)≅Ω 2(k)⊕ 
Q for some projective H-module Q. 
Lemma 6    Let 
 

1 2

01

1

1 0         0

n nd d d
n n

dd

P P

P P k

−
−⋅ ⋅ ⋅→ → →⋅⋅ ⋅→

→ → →
          (4) 

 
be a minimal projective resolution of k. Then for each 
H-module X we have the following: 

(1) The exact sequence 
 

1

02 1

1

1 0

      

0

X n X n

XX X

id d id d
n n

id did d id d

X P X P

X P X P X

−⊗ ⊗
−

⊗⊗ ⊗

⋅ ⋅ ⋅ ⊗ → ⊗ →⋅⋅ ⋅

→ ⊗ → ⊗ → →
 

(5) 
 
is a (not necessarily minimal) projective resolution of 
X. 

(2) X⊗Ω 
n(k)≅Ω 

n(X)⊕Qn with Qn a projective 
module for all n>0. 
Proof    By Theorem 1 the X⊗Pn are projective 
H-modules since the Pn are projective H-modules. 
Part (1) follows trivially from this fact. Part (2) also 
follows this fact as long as we note that the definition 
of nth syzygy. 

Thus we see that if X is an indecomposable non- 
projective module, the exact sequence 0→X⊗Ω 

2(k)→ 
0Xid fX E X⊗⊗ → → is isomorphic to 0→Ω 

2(k)⊕ 
0Xid fQ X E X⊗→ ⊗ → → with Q projective. 
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Since H is a Frobenius algebra, Q is also injective. 
Hence the exact sequence 0→Ω2(X)⊕Q→X⊗E 

0Xid f X⊗→ → can be written as the sum of exact 
sequences 2

00 ( ) ( )Qg idX Q X E QΩ ⊕→ ⊕ → ⊗ ⊕  
0(( ) ,0) 0.Xid f X⊗→ →  

Consequently idX⊗f is a split epimorphism or a 
right almost split morphism according to whether 
(idX⊗f)0 is a split epimorphism or a right almost split 
morphism. Also idX⊗f is right almost split if and only 
if 0( )2

00 ( ) ( ) 0Xid fgX X E XΩ ⊗→ → ⊗ → → is 
an almost split sequence (see Appendix). We use 
these observations and notations freely throughout 
this section. 

Our proof that idX⊗f:X⊗E→X is either a split 
epimorphism or a right almost split morphism is  
based on the following comparison with the mor-
phism HomH(X,idX⊗f):HomH(X,X⊗E)→HomH(X,X). 
Lemma 7    Let 20 ( ) 0fk E kΩ→ → → →  be an 
almost split sequence. Then the following are 
equivalent for an indecomposable H-module X. 

(1) The Jacobson radical radEndH(X) is contained 
in ImHomH(X,idX⊗f), image of HomH(X,idX⊗f). 

(2) idX⊗f:X⊗E→X is either a split epimorphism 
or a right almost split morphism. 
Proof    Proof of this lemma is similar to that of 
Lemma 4.2 in Chapter V of (Auslander et al., 1995). 
For completeness, we write it out. 

(1)⇒(2) Since X is indecomposable, EndH(X) is a 
local ring. Therefore ImHomH(X,idX⊗f)⊇radEndH(X) 
implies that ImHomH(X,idX⊗f) is EndH(X) or 
radEndH(X). If ImHomH(X,idX⊗f)=EndH(X), then 
idX⊗f is a split epimorphism. Suppose now that Im-
HomH(X,idX⊗f)=radEndH(X). Then the exact sequence 
 

0( )2
00 ( ) ( ) 0Xid fgX X E XΩ ⊗→ → ⊗ → →   (6) 

 
also has the property that ImHomH(X,(idX⊗f)0)= 
radEndH(X). This means that an endomorphism X→X 
factors through (idX⊗f)0 if and only if it is not an 
isomorphism. Then it follows from Proposition 2.2 in 
Chapter V of (Auslander et al., 1995) that the exact 
sequence Eq.(6) is almost split since it is not split,      
Ω 

2(X)≅DTrX and every endomorphism X→X which 
is not an automorphism factor through (idX⊗f)0. 
Hence (idX⊗f)0 is right almost split and therefore 

idX⊗f is right almost split. 
(2)⇒(1) This is trivial. 
In view of this lemma it is of interest to have a 

description of ImHomH(X,idX⊗f). 
Proposition 2    Let 20 ( ) 0fk E kΩ→ → → → be 
an almost split sequence and X be an H-module. Then 
the following are equivalent for an element f ′∈ 
EndH(X). 

(1) Hom ( , )Im(Hom ( , ) H XX id f
Hf X X E ⊗′∈ ⊗ →  

HomH(X,X)). 
(2) tr(u−1f ′g)=0 for all g in EndH(X). 

Proof     Recall Proposition 1, for all A, B, C∈HM we 
have H-isomorphism 
 

β:HomH(A,B⊗C)→HomH(B*⊗A,C),        (7) 
 

and it is functorial in A, B and C. On the other hand, 
we also have another kind of H-isomorphism 
ε:A*⊗A→Endk(A) which was also given in Section 2. 
Combining these two kinds of H-isomorphism, we 
have the following commutative exact diagram. 

 
 

 
 
 
 
  
Since f:E→k is right almost split, we have that 

Im(Hom (Hom ( , ), ) Hom (Hom ( , ), ))H k H kX X E X X k→
consists of morphisms g:Endk(X)→k which are not 
split epimorphisms. Then by Lemma 4(1) we have 
that 
 

Hom ( , )Im((Hom ( , ) Hom ( , ))H XX id f
H HX X E X X⊗⊗ →

(8) 
 
consists of the f ′ such that tr(u−1f ′g)=0 for all g in 
EndH(X). Therefore, the proof of this proposition is 
now complete. 

We deduce some consequences from this 
proposition. 
Corollary 3    Let 20 ( ) 0fk E kΩ→ → → → be an 
almost split sequence. For each H-module X we have 
the following 

(1)  
Hom ( , )Im((Hom ( , ) HomH XX id f

H HX X E ⊗⊗ →  

*

Hom ( , )

* Hom ( , ) *

Hom (Hom ( , ), )

Hom ( , ) Hom ( , )

Hom ( , ) Hom ( , )

Hom (Hom ( , ), ) Hom (Hom ( , ), )

H X

H

H k

X id f
H H

X X f
H H

X X f
H k H k

X X E X X

X X E X X k

X X E X X k

⊗

⊗

⊗ →
↓ ↓

⊗ → ⊗
↓ ↓

→

≅ 

≅ ≅ 

≅ 
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(X,X)) contains radEndH(X). 
(2) Xid fX E X⊗⊗ → is a split epimorphism if 

and only if tr(u−1f ′)=0 for all f ′ in EndH(X). 
Proof    Suppose f ′ is in radEndH(X). Then f ′g is in  
radEndH(X) for all g in EndH(X). Therefore f ′g is 
nilpotent for all g in EndH(X) and so u−1f ′g is also 
nilpotent since clearly u−1 commutes with any g∈ 
EndH(X). This means that tr(u−1f ′g)=0 for all g in 
EndH(X). Hence is f′ in Im(Hom ( , )H X X E⊗  

Hom ( , ) Hom ( , ))H XX id f
H X X⊗→  by Proposition 2. 

(2) This is a trivial consequence of Proposition 2. 
Combining Lemma 7 and Corollary 3 we have 

the following. 
Theorem 4    Let 20 ( ) 0fk E kΩ→ → → →  be 
an almost split sequence and X an indecomposable 
H-module. 

(1) idX⊗f:X⊗E→X is a split epimorphism if and 
only if tr(u−1f ′)=0 for all f ′ in EndH(X). Otherwise 
idX⊗f:X⊗E→X is right almost split. 

(2) If tr(u−1)≠0, then idX⊗f:X⊗E→X is right al-
most split. 

(3) If k is algebraically closed, then idX⊗f: 
X⊗E→X is right almost split if and only if tr(u−1)≠0. 
Proof    (1) This is an easy consequence of Lemma 7 
and Corollary 3. 

(2) This is a direct consequence of (1) since 
tr(u−1)=tr(u−1idX)≠0. 

(3) Suppose k is algebraically closed. Then the 
elements of the local ring EndH(X) can be written as 
v⋅idX+f ′ with v∈k and f ′∈radEndH(X). We then get 
tr(u−1(v⋅idX+f′))v(tr(u−1)). Hence it follows that     
tr(u−1(v⋅idX+f ′))≠0 if and only if v≠0 and tr(u−1)≠0. 
Therefore, by part (1), we have that idX⊗f:X⊗E→X is 
right almost split if and only if tr(u−1)≠0. 

The following is an immediate consequence of 
this theorem and seems interesting. 
Corollary 4    Let X be an indecomposable projective 
H-module. Then we have tr(u−1f′)≠0 for all f′∈ 
EndH(X). 

Theorem 4 can be formulated in terms of almost 
split sequences as follows. 
Theorem 5    Let 20 ( ) 0fk E kΩ→ → → →  be 
an almost split sequence and X an indecomposable H- 
module. Then the exact sequence 20 ( ) gXΩ→ →  

0( )
0( ) 0Xid fX E X⊗⊗ → →  has the following 

properties. 
(1) It is either split or almost split. 
(2) It is split if and only if tr(u−1f ′)=0 for all f′∈ 

EndH(X). 
(3) It is almost split if tr(u−1)≠0. 
(4) Suppose k is algebraically closed. Then the 

sequence is almost split if and only if tr(u−1)≠0. 
Remark 1    In the case of group algebras, we can take 
u=1 since the square of antipodes of group algebras 
are identical. In this case, we recover the conclusions 
in Section V.4 of (Auslander et al., 1995). 
 
 
APPLICATION TO QUANTUM DOUBLE 
 

Let H be a non-semisimple Hopf algebra. Then 
its quantum double D(H) is not semisimple and un-
imodular (Montgomery, 1993). Moreover, it is a 
braided Hopf algebra (Kassel, 1995) and thus its an-
tipode S satisfying S2 is an inner automorphism (see 
Proposition VIII.4.1 in (Kassel, 1995)). In fact we can 
write this inner automorphism explicitly. 

Let {ei}i∈I be a basis of the vector space H and 
{ei}i∈I its dual basis in (Hop)*. Then the universal 
R-matrix of D(H) is 

 

(1 )( 1).i
i

i I
R e e

∈

= ⊗ ⊗∑                       (9) 

 

Let = ( 1)(1 ).i
ii I

u S e e
∈

⊗ ⊗∑ Then 2 1( )=S x uxu− by 

Proposition VIII.4.1 in (Kassel, 1995). In this case, 
the inverse of R equals (1 )(( ) 1)i

ii I
e e S

∈
⊗ ⊗∑  and 

1 1= (( ) 1)(1 )i
ii I

u S e S e− −
∈

⊗ ⊗∑ . 

By the above discussion and the conclusions 
developed in Section 2, we have the following results. 
Proposition 3    Let H be a finite dimensional Hopf 
algebra, then its quantum double D(H) is a symmetric 
algebra. 
Theorem 6    Let H be a finite dimensional non- 
semisimple Hopf algebra, {ei}i∈I be a basis of the 
vector space H with its dual basis {ei}i∈I in (Hop)* and 

20 ( ) 0fk E kΩ→ → → →  be an almost split se-
quence in D(H)M. Assume H is an indecomposable 
D(H)-module. Then the exact sequence 0→Ω 

2(X)  
0( )

0( ) 0Xid fg X E X⊗→ ⊗ → →  has the following 
properties: 
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(1) It is either split or almost split. 
(2) It is split if and only if ( 1tr (( )i

i I
S e S−

∈∑  

)1)(1 ) 0ie f ′⊗ ⊗ =  for all f ′∈EndH(X). 

(3) It is almost split if ( 1tr (( ) 1)i
i I

S e S−
∈

⊗ ⋅∑   
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APPENDIX 
 

We first fix an artin algebra Λ and all modules in 
this appendix are Λ-modules. 

We say that a morphism f:B→C is a split epi-
morphism if idC:C→C, the identity morphism of C, 
factors through f. Dually, we say that a morphism 
g:A→B is a split monomorphism if idA factors through 
g. A morphism f:B→C is right almost split if (1) it is 
not a split epimorphism and (2) any morphism X→C 
which is not a split epimorphism factors through f. 
Dually, a morphism is left almost split if (1) it is not a 
split monomorphism and (2) any morphism A→Y 
which is not a split monomorphism factors through g. 
An exact sequence 0 0g fA B C→ → → → is 
called an almost split sequence if g is left almost split 
and f is right almost split. 

If C is an indecomposable non-projective mod-
ule, then there is, up to isomorphisms of short exact 
sequence, a unique almost split sequence 0→A 

0.g fB C→ → → (Theorem 1.15 and 1.16 in 
Chapter V of (Auslander et al., 1995)). 

Dually,  for  any  non-injective  indecomposable 
 
 
 
 
 
 

 

)(1 ) 0.ie⊗ ≠  

(4) Suppose k is algebraically closed. Then the 
sequence is almost split if and only if 

( )1tr (( ) 1)(1 ) 0.i
ii I

S e S e−
∈

⊗ ⊗ ≠∑  
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module A, we have, up to isomorphisms of short exact 
sequence, a unique almost split sequence 0→A 

0.g fB C→ → →  
Let A∈ΛM and 01

1 0 0ddP P A→ → → be a 
minimal projective presentation of A. Then Tr(A):= 
CokerHom(d1,Λ). Let D=Homk( ,k). 

The following are equivalent for an exact se-
quence 0 0g fA B C→ → → →  (Proposition 
1.14 in Chapter V of (Auslander et al., 1995)): 

(1) The sequence is an almost split sequence. 
(2) The module C is isomorphic to TrD(A) and g 

is left almost split. 
(3) The module A is isomorphic to TrD(C) and f 

is right almost split. 
Suppose 1 2 1

1 1
n nd d d d

nP P−
−⋅ ⋅ ⋅→ →⋅⋅ ⋅→ →  

0
0 0dP A→ →  the minimal projective resolution of 

A, then the ith syzygy of A defined by Ω i(A)=Ker(di−1) 
for i≥1. 

If Λ is a symmetric algebra, then DTr≅Ω 
2 as 

functors (Proposition 3.8 in Chapter IV of (Auslander 
et al., 1995)). 
 
 
 


