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Abstract:    In this paper, the Chung’s strong law of large numbers is generalized to the random variables which do not need the 
condition of independence, while the sequence of Borel functions verifies some conditions weaker than that in Chung’s theorem. 
Some convergence theorems for martingale difference sequence such as Lp martingale difference sequence are the particular cases 
of results achieved in this paper. Finally, the convergence theorem for A-summability of sequence of random variables is proved, 
where A is a suitable real infinite matrix. 
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INTRODUCTION 
 

Chung (1947) proved the so-called “Chung’s 
strong law of large numbers”. Let {Xn, n∈ù} be a 
sequence of independent random variables with 
EXn=0 for all n and 0<an↑∞, if ϕ is a positive even 
and continuous function such that either 

 
ϕ(t)/| t |↓ as |  t  |↑  

or                ϕ(t)/|  t  |↑  and  ϕ(t)/t2↓ as |  t  |↑ 
and 
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Jardas et al.(1998) extended the classical Chung’s 

SLLN to a sequence of independent random variables 
{Xn, n∈ù} weighted by a sequence of non-zero reals 
{an, n∈ù} with EXn=0 for all n, by using a sequence 

of {ϕn, n∈ù} of Borel functions verifying some 
conditions weaker than Chung’s condition. 

We try to remove the independent condition of 
random variables. Let {Xn, n∈ù} be a sequence of 
random variables defined on a probability space (Ω, 
F, P), F0={∅, Ω}, {Fn, n∈ù} be a sequence of 

σ-fields in F satisfying Fn⊆Fn+1, for all n∈ù. Sup-

pose that {Xn, n∈ù} is adapted to {Fn, n∈ù}. This 
paper aims at studying the SLLN for stochastic se-
quence {Xn, Fn, n∈ù}. As corollaries, some conver-
gence theorems for martingale difference sequence 
are obtained. Chung’s classical strong law of large 
numbers for sequence of independent random vari-
ables is a particular case of the result of this paper. 
The almost certain A-summability for random vari-
ables is also considered.  
 
 
MAIN RESULTS 
 

Theorem 1    Let {Xn, Fn, n∈ù} be a stochastic se-

quence defined as before, and let {an, n∈ù} be a 
sequence of non-zero reals. Let φn: ú+→ú+ be Borel 
functions and let αn≥1, βn≤2, Cn>0, Dn>0 (n∈ù) be 
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where An=max(1/Cn, Dn), then 
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Proof    Let = {| | | |},n n n nX X I X a′ ≤  n∈ù. It follows 
from Eq.(1) that on the set {x: |x|>|an|}, we have 
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Thus we have  
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By Eqs.(2) and (4), we have 
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where n(k)=+∞ if 1
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{n(k)=+∞}. Since I{n(k)≥n} is measurable Fn−1, 

ϕn(|Xn|)/ϕn(|an|) is nonnegative, and  
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By the Borel-Cantelli lemma, we have 
 

{ { },  i.o.}=0.k n nP X XΩ ′ ≠  
Hence we have 
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Since Ω=∪kΩ k, it follows that 
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Put 1=( [ | ]) / ,n n n n nY X E X a−′ ′− F  n∈ù, then |Yn|≤2, 

E[Yn|Fn−1]=0 a.s. and 2 2
1 1[ | ] [( ) | ] /n n n nE Y E X− −′≤F F  

2
na  a.s. Let  

 

 1

1
1

exp( )
,

[exp( ) | ]

n

m
m

n n

m m
m

Y

E Y
ξ =

−
=

=
∏

∏ F
         (10) 

 1

1
1

exp( )
,  .

[exp( ) | ]

n

m
m

n n

m m
m

Y
n

E Y
η =

−
=

−
= ∈

−

∏

∏ F
       (11) 

 

It is easy to show that the sequences {ξn, n∈ù} and 
{ηn, n∈ù} are Martingales. Since E|ξn|=Eξn=Eξ1=1, 
by Doob’s Martingale convergence theorem, we have 
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= < ∞  a.s.              (12) 

 

By inequality 0≤ex−1−x≤2x2, when | x |≤2, we have 
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On the set {x: |x|≤|an|}, we have 
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It follows from Eq.(14) and Eq.(2) that  
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By Eqs.(10), (12) and (15), we have 
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By Eqs.(5), (9) and (18), Eq.(3) follows. 
Remark 1    By putting µ =ν (or by using a continuity 
argument, if ϕn is continuous), it is clear that 0<Cn≤1 
and Dn≥1. Moreover, βn≥αn. The family of functions 
verifying Eq.(1) is wider than the family of functions 
verifying (ϕn(x)/| x |)↑ and (ϕn(x)/x2)↓. 
Corollary 1    Let {Xn, Fn, n∈ù} be a Martingale 

difference sequence, ϕn and an be as in Theorem 1. If 
Eq.(2) holds, then 
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Corollary 2 (Jardas et al., 1998)    Let {Xn, n∈ù} be a 
sequence of independent random variables with 
EXn=0 for all n, and let {an, n∈ù} be a sequence of 
non-zero reals. Let φn: ú+→ú+ be a Borel function 
and let αn≥1, βn≤2, Kn≥1, Mn≥1 (n∈ù) be constants 
satisfying 
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Proof    Let An=max(Kn, Mn), Fn=σ(X1, …, Xn) and 

F0={∅, Ω}. By Eq.(21) and nonnegativeness of ϕn, 
we have 
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and by the independence of {Xn}, we have 
 

 1[ | ] [ ] 0n n nE X E X− = =F   a.s.        (23) 
 

By Eq.(22), Eq.(23) and Theorem 1, this corollary 
follows: 
Remark 2    Chung’s theorem in (Chung, 1974; 
Petrov, 1975) is a special case of Corollary 2. 
Corollary 3 (Chow and Teicher, 1998)    Let {Xn, Fn, 

n∈ù} be an Lp Martingale difference sequence for 
p∈[1,2], and let 0<an↑∞. If  
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Proof    By letting ϕn(x)=|x|p, αn=1, βn=2, Cn=Dn= 

An=1 in Corollary 1, then we have 
1

/n nn
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converges a.s. Since 0<an↑∞, Eq.(25) follows from 
Corollary 1 and the Kronecker lemma. 

Now we prove almost sure A-summability of 
sequences of random variables satisfying the condition 
of Theorem 1, where A is a suitable infinite matrix. 

Let A=[anj] (n, j∈ù) be a real infinite matrix and 
let {Xn, n∈ù} be a sequence of real numbers. If all the 

series 
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and say that the sequence {Xn, n∈ù} is A-summable. 
A matrix A such that lim nn

x
→∞
−A  exists whenever 

1 nn
x∞

=∑  converges is called a β-matrix. 

Theorem 2    Let {Xn, Fn, n∈ù} be a stochastic se-

quence defined as Theorem 1. Let A=[anj] (n, j∈ù) be 
a real infinite matrix, and let {cn, n∈ù} be a sequence 
of non-zero reals such that 
 

 lim 0,   njn
a j

→∞
= ∈                       (26) 

and 

 1 , 1
1

sup | | .j nj j n j
n j

c a c a
∞

+ +
∈ =

− < ∞∑
N

            (27) 

 
If Eq.(1) and Eq.(2) hold, then 
 
 1lim( [ | ]) 0n n nn

X E X −→∞
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Proof    We shall use the idea of the proof of the 
Proposition in (Butković and Sarapa, 1981). Eq.(28) 
can be obtained by slight modification of the proof of 
Theorem 2 in (Jardas et al., 1998) with E[Xn|Fn−1] 
instead of E[Xn]. 
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