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Abstract:    This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation 
scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new function F(x, y)=0 
where the same curve with f(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)>0 and F(x, y)<0 
alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the 
curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an 
adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has 
the following advantages: (1) it can plot C0 planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) 
by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly 
searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per 
moving step, while most existing similar methods cost more evaluations of the function. 
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INTRODUCTION 
 

Tracing a planar implicit curve f(x, y)=0 on a 
rectangular region [xl, xr]×[yb, yt] is of great interest in 
Computer-Aided Design and Computer Graphics. 
While parametric curves are easy to plot, plotting 
implicit curves is a challenging problem. Planar im-
plicit curve plotting method can be classified into two 
categories (Shou et al., 2005; Martin et al., 2002; 
Lopes et al., 2002). In the first category are subdivi-
sion methods (Shou et al., 2005; Martin et al., 2002) 
which are also called enumeration methods by Lopes 
et al.(2002). In the other category are continuation 
methods (Cai, 1990; Chandler, 1988; van Aken and 
Novak, 1985; van Aken, 1984; Bresenham, 1965; 
1977; Cohen, 1976; Lennon et al., 1973). Subdivision 

methods begin with the whole plotting rectangular 
region itself as a start cell. If the cell is empty, namely 
it is not passed by the plotting curve, it is discarded; 
otherwise it is subdivided into smaller cells, which are 
then visited recursively, until these cells reach pixel 
size. There are two main problems with subdivision 
methods: the selection of the grid, so that we do not 
lose small components of the curve, and determina-
tion of whether a cell in the grid intersects the curve. 
Continuation methods are usually cheap because they 
use one or more seed pixels on the curve and then 
trace the curve continuously. 

Here we introduce existing continuation methods. 
Bresenham (1965) drew a line by deciding the next 
tracing point using midpoint method. Bresenham’s 
circle algorithm (Bresenham, 1977) takes advantage 
of symmetry and the equation of the circle to simplify 
greatly the arithmetic of the decision procedure for 
selecting the next pixel at each step of the represen-
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tation. Both of the above Bresenham’s methods 
cannot be adapted to general planar implicit curves. 
Lennon’s method (Lennon et al., 1973) and Cohen’s 
method (Cohen, 1976) trace the implicit curves by 
computing the tangent vectors at the tracking points 
of every step. Therefore, the two methods also cannot 
plot C0 planar implicit curves. van Aken (1984) pre-
sented an incremental ellipse generator which is only 
used in plotting an ellipse. van Aken and Novak (1985) 
presented a midpoint method for deriving curve- 
drawing algorithms for generating nonparametric 
curves. The method may not be successful, however, 
in a region where two edges of a curve actually cross 
each other. Chandler (1988) proposed a tracking al-
gorithm for implicitly defined curve [described by an 
equation of the form f(x, y)=0], which produces the 
next approximating pixel by looking for a sign dif-
ference in function evaluations at midpoints between 
the eight nearest neighboring pixels. It is possible for 
the algorithm to track the implicit curve when there 
are multiple points (where the curve crosses itself). 
However, the procedure costs between two and eight 
evaluations of function f(x, y) per moving step for the 
curves without multiple point.  

The continuation method presented here as 
compared to earlier approaches has main advantages 
which include: 

(1) Generality: The algorithm can plot general 
planar implicit curves.  

(2) Efficiency: By the use of the two rules given 
in this paper, the tracking procedure directly searches 
for the tracing direction. For the curves without mul-
tiple points, the procedure costs only one of two 
evaluations of function f(x, y) for each moving step. 
The algorithm does not need to compute the tangent 
vector at points on the curve.  

(3) Robustness: The algorithm can plot C0 planar 
implicit curves and be used to plot the planar implicit 
curves with multiple points.  

(4) Simplicity: The algorithm is relatively simple 
to implement.  

The rest of our paper is structured as follows. 
Section 2 presents our method of plotting planar im-
plicit curve. Section 3 gives 4 examples. Section 4 
presents conclusions and future work.  
 
 

PLOTTING PLANAR IMPLICIT CURVES 
 

Generally, in an xy-plane, an implicit curve f(x, 
y)=0 has the property of partitioning a plane into three 
point sets (Cai, 1990): the first set, f 0 (on the curve) 
satisfies f(x, y)=0; the second f 

+ (positive domain) 
satisfies f(x, y)>0; and the third f − (negative domain) 
satisfies f(x, y)<0. If the curve defined by the equation 
f(x, y)=0 has no such property, the equation becomes 
the formula that can partition a plane into positive and 
negative domains. For example, although, the equation 
(x2+y2−r2)2=0 does not have the property, the curve 
defined by the equation, can be translated into the same 
curve defined by another equation x2+y2−r2=0.  

In this section, the whole procedure of plotting a 
planar implicit curve is discussed in detail. First, we 
discuss how to plot planar implicit curves without 
multiple points. Second, the method for tracing the 
planar implicit curves with multiple points is pre-
sented.  
 
Plotting planar implicit curves without multiple 
points 

To plot planar implicit curves without multiple 
points, we first form the initial state for tracing the 
curves, then trace the curves according to two rules to 
obtain a ladder polyline, and then generate an exact 
approaching polyline by recursive binary subdivision.  

1. Forming the initial state for tracing a planar 
implicit curve  

To trace the planar implicit curve f(x, y)=0, we 
must give or compute the following data: the ranges 
of arguments x and y (xl ≤x≤xr and yb≤y≤yt), step size 
dx (dx>0) in x direction, step size dy (dy>0) in y di-
rection, starting point (x0, y0) on the curve, starting 
direction (∆x, ∆y).  

We can give starting direction (∆x, ∆y) as fol-
lows. Give the quadrant number G of the starting 
direction (for example, if the tangent direction on the 
starting point of the curve is (−1, 2), then G is equal to 
2), then compute the starting direction by the fol-
lowing equation:  

 

sign(( 1.5)( 3.5)),
sign(2.5 ),              

x dx G G
y dy G

∆ = ⋅ − −
∆ = ⋅ −

        (1) 
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where
1,   if 0,

 sign( )
1,  if 0.

x
x

x
≥

= − <
 

Apparently, for an arbitrarily given expression 
of a planar implicit curve f(x, y)=0 which can partition 
a plane into three domains (f +, f 0, and f −), first, we 
generally do not know which domain is f +, and which 
domain is f −. Therefore, we make a new expression 
F(x, y) for the curve as shown in Eq.(2) according to 
the expression f(x, y)=0: 

 
F(x, y)=σf(x, y),                         (2) 

 
where in the monotonous segment of the curve be-
ginning with the starting point (x0, y0), we give σ the 
value below: 
 

0 0

0 0

1, if ( , ) 0,
1,     if ( , ) 0.

f x x y
f x x y

σ
−     + ∆ ≥

=      + ∆ <
 

 
Obviously, from Eq.(2), we have F(x0+∆x, y0)<0. 

Suppose the starting direction of the curve is in the 
first quadrant, then ∆x=dx>0, ∆y=dy>0. If F(x0+∆x, 
y0)<0, then F(x0, y0+∆y)>0 according to the property 
that the curve partitions a plane to positive and nega-
tive domains. If the starting direction of the curve is in 
other quadrant, we get the same conclusion. There-
fore F(x0, y0+∆y)>0. 

After forming the initial state and making the 
function F(x, y), we begin to trace the implicit curve 
according to the two rules which are presented below.  

2. Two rules for plotting a planar implicit curve  
As soon as the initial state is formed, we begin to 

trace the planar implicit curve. As shown in Fig.1, 
given the ranges of arguments x and y: xl≤x≤xr, yb≤y≤ 
yt, we explain our method of tracing the planar im-
plicit curve f(x, y)=0 using a large step. First, we 
formulate F(x, y) according to Eq.(2), where f(x, y)=0 
and F(x, y)=0 define the same curve, so that F(x0+∆x, 
y0)<0. Suppose that the starting point P0=(x0, y0) is on 
the curve F(x, y)=0. That is P0∈F0, where F0 means 
F(x, y)=0. First, we move one step of ∆x, and get to 
P1=(x0+∆x, y0). According to Eq.(2), we have F(P1)= 
F(x0+∆x, y0)<0. As soon as we have entered into F−: 
F(x, y)<0, we move to the domain of F+:F(x, y)>0 in 
an appropriate direction (positive or negative) along 
the y-axis. In Fig.1, we apparently must move forward 
by |∆y|, until we enter into the domain of F+, or get to 

F0. Suppose the point that we get to is P2. Then we 
continue moving forward to F− by selecting an ap-
propriate direction. The rest to get to (P3, P4, …) may 
be deduced by analogy. In Fig.1, before getting to P7, 
the selected directions of ∆x and ∆y are positive. As 
soon as we stride over the turning point * *

1 1( , )x y  of the 
y direction on the curve, where the turning point 
means the point (x, y) where Fx(x, y)=0 or Fy(x, y)=0, 
∆y is changed by −|∆y|. In the same way, as soon as 
we stride over the turn point * *

2 2( , )x y  of the x direc-
tion on the curve, ∆x is changed by −|∆x|. If we go on, 
we will get a ladder-shape polyline (P0P1P3P4…) 
approaching the curve F(x, y)=0. During the tracing 
procedure, the two rules given in the following are 
obeyed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rule 1 for plotting a monotony planar implicit 
curve    At first, we discuss how to plot a monotony 
planar implicit curve. Theorem 1 tells us that if ∆x 
and ∆y are determined and we obey Eq.(3), we must 
move close to the curve at the monotony-segment of 
the curve.  
Theorem 1    If ∆x and ∆y are determined, and we 
obey Eq.(3), then we must move close to the curve 
F(x, y)=0 at the monotony-segment of the curve. Set 
P0P1…Pn as the moving path, and di (i=0,1,…,n) as 
the distance between Pi and the curve. Set the error 
εd=max(d0, d1, …, dn), then we have Eq.(4). 
 

 

0if ( , ) , namely, ( , ) 0,
           then move one step ;                     (3a)
if ( , ) ,  namely, ( , ) 0,
           then move one step ,                     (3b)

x y F F F x y
x

x y F F x y
y

+

−

 ∈ ∪ ≥


∆


∈ <
 ∆

 

εd≤max(dx, dy).                                (4)  

Fig.1  Plotting curve F(x, y)=0 using our method 
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Here Eq.(3) is called Rule 1 for plotting a mo-
notony planar implicit curve. 
Proof    As in Fig.2, since we prescribe that the 
starting point (x0, y0) is at the curve, and F(x0, y0)=0 
satisfies Eq.(3a), we move forward in the x direction 
at the first step. In Fig.2, the solid lines with arrow 
represent the direction of movement. After moving 
one step ∆x, we get to (x0+∆x, y0). Since F(x0+∆x, 
y0)<0, we move one step ∆y for the second step ac-
cording to Eq.(3b). For the third step, whether we 
move ∆x or ∆y in the same way is decided by F(x0+∆x, 
y0+∆y) which satisfies Eq.(3a) or Eq.(3b). The rest 
after the third step may be deduced by analogy. 
 
 
 
 
 
 
 
 
 
 
 

Since the segment from the starting point to the 
first turning point (if the curve has turning points) 
must be monotony, if we have not reached the first 
turning point, we move towards the curve, and the 
moving path must intersect with the curve if we con-
tinue on. To prove Eq.(4), we suppose that the curve 
keeps monotony-adding in the first quadrant, as in 
Fig.2a. The curve can be surrounded by some rec-
tangles which only contain the two types as shown in 
Fig.2b and Fig.2c. As shown in Fig.2b, in the rectan-
gle, the distance from a point on the curve to the edge 
of the rectangle is less than or equal to l. Since the 
error εd=max(d0, d1, …, dn), where di (i=0,1,…,n) is 
the distance between Pi (the vertex of moving path) 
and the curve, we have εd ≤l. As shown in Fig.2c, in 
the rectangle, the distance from a point on the curve to 
the edge of the rectangle is less than or equal to h. 
Therefore, the error εd satisfies εd≤h.  l, h≤max(dx, dy), 
and εd≤max(dx, dy). 
Rule 2 for plotting a non-monotony planar im-
plicit curve    From Fig.1, we know that we need to 
automatically control the direction if we want to pass 
the turning points on the planar implicit curve. How-
ever, generally, it is not easy to compute the coordi-

nates of the turning points. The following describes 
how we can automatically change directions without 
computing the coordinates of the turning points.  
Definition 1    In an xy-plane, for g(x, y)=c1 and g(x, 
y)=c2, if |c1|>|c2|, then we state that g(x, y)=c1 is farther 
than g(x, y)=c2 off from g(x, y)=0.  
Definition 2    In an xy-plane, if g(A) and g(B) (where 
A and B are points on the xy-plane) have the same 
signs, and |g(B)|>|g(A)|, then we state that point A to 
point B is off the curve. If g(A) and g(B) have the 
different signs, or if g(A) and g(B) have the same 
signs but |g(B)|≤|g(A)|, then we state that point A to B 
is towards the curve.  
Theorem 2    In an xy-plane, from point A to point B 
is considered off the curve g(x, y)=0 if and only if 
 

 g(A)(g(B)−g(A))>0.                     (5) 
 

Proof    Sufficiency condition: 
Since g(A)(g(B)−g(A))>0, and if g(A)>0, then 

g(B)>g(A)>0. According to Definition 2, point A to 
point B are off the curve g(x, y)=0. If g(A)<0, then 
g(B)<g(A)<0. According to Definition 2, point A to 
point B are off the curve g(x, y)=0. 

Necessary condition: 
Point A to point B are off the curve g(x, y)=0, 

according to Definition 2, if g(A) and g(B) have the 
same signs, and |g(B)|>|g(A)|, then if g(A)<0, then 
g(B)<g(A)<0; else if g(A)>0, then g(B)>g(A)>0. 
Therefore g(A)(g(B)−g(A))>0.  

Theorem 2 tell us that if Eq.(5) is satisfied when 
we move from A to B for plotting the planar implicit 
curve, we need to change direction. According to 
Theorem 2, we suppose that A is (x, y) and B is (x+∆x, 
y) for the planar implicit curve F(x, y)=0, where F(x, y) 
is defined by Eq.(2), we have Eq.(6a); if we suppose 
that A is (x, y) and B is (x, y+∆y) for the planar implicit 
curve F(x, y)=0, where F(x, y) is defined by Eq.(2), we 
have Eq.(6b).  

 
 if ( , )( ( , ) ( , ))
   ( , )( ( , ) ( , ))     (6a)

    ( , )( ( , ) ( , )) 0,
 and  change their signs;

 if ( , )( ( , ) ( , )) 
    ( , )( ( , ) ( , ))

F x y F x x y F x y
f x y f x x y f x y

f x y f x x y f x y
y

F x y F x y y F x y
f x y f x y y f x y

σ σ σ

σ

σ σ σ

+ ∆ −
= + ∆ −      
= + ∆ − >

∆
+ ∆ −

= + ∆ −         (6b)
    ( , )( ( , ) ( , )) 0,

 and   change their signs. 
f x y f x y y f x y

x σ









   


= + ∆ − >
∆

 

(x0,y0) F− 

F+ F0 

(a) 

l 

(b) 

h 

(c) 

Fig.2  Drawing a monotony-segment of planar implicit
curve. 
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We assume the following: if f(x+∆x, y)−f(x, y)=0, 
∆y and σ change their signs, and if f(x, y+∆y)−f(x, 
y)=0, ∆x and σ change their signs.  

If f(x, y)>0 and move one step ∆x, then before ∆y 
and σ change their signs according to Eq.(3a), σ=1. 
According to Eq.(6a) and the assumption, before ∆y 
and σ change their signs, means f(x, y)(f(x+∆x, y)−f(x, 
y))<0. Therefore when σ(f(x+∆x, y)−f(x, y))<0, ∆y 
and σ do not change their signs. That is, when 
σ(f(x+∆x, y)−f(x, y))≥0, ∆y and σ change their signs.  

If f(x, y)<0 and move one step ∆x, then before ∆y 
and σ change their signs, according to Eq.(3b), σ =−1. 
According to Eq.(6a) and the assumption, before ∆y 
and σ change their signs means f(x, y)(f(x+∆x, y)−f(x, 
y))<0. Therefore when σ(f(x+∆x, y)−f(x, y))<0, ∆y 
and σ do not change their signs. That is, when 
σ(f(x+∆x, y)−f(x, y))≥0, ∆y and σ change their signs.  

If f(x, y)=0 and f(x+∆x, y)=0 according to the 
assumption, ∆y and σ change their signs. If f(x, y)=0 
and f(x+∆x, y)≠0, according to Eq.(2), σ(f(x+∆x, 
y)−f(x, y))=σf(x+∆x, y)<0, ∆y and σ do not change 
their signs. 

In general, if σ(f(x+∆x, y)−f(x, y))≥0, ∆y and σ 
change their signs. Similarly, if σ(f(x, y+∆y)−f(x,y)) 
<0, ∆x and σ change their signs.  

From Eq.(6a), if f(x, y)(f(x+∆x, y)−f(x, y))>0, 
move one step ∆x. According to Eq.(3a), if we move 
one step ∆x, then F(x, y)≥0. Therefore σ−1F(x, 
y)(f(x+∆x, y)−f(x, y))>0. Since F(x, y)≥0, we have 
σ(f(x+∆x, y)−f(x, y))>0. Similarly, if f(x, y)(f(x, y+ 
∆y)−f(x, y))<0, then σ(f(x, y+∆y)−f(x, y))<0. 

Therefore we have Eq.(7) 
 

 if ( ( , ) ( , )) 0,
     and  change their signs;
if ( ( , ) ( , )) 0,
     and  change their signs.

f x x y f x y
y

f x y y f x y
x

σ
σ

σ
σ

+ ∆ − ≥
 ∆
 + ∆ − ≤
 ∆

 

 
Eq.(7) is called Rule 2 for plotting a non-monotony 
planar implicit curve.  

3. Tracing a planar implicit curve  
Before we give the algorithm for tracing a planar 

implicit curve by equal step size or adaptive step size, 
we discuss how to obtain an exact polyline by inter-
secting the ladder polyline with the curve using re-
cursive binary subdivision.  

As shown in Fig.1, we trace the curve by using 
two rules to obtain a ladder polyline (P0P1P2P3P5P7P8 

P10…) approaching the curve. Then, we get the in-
tersection point Pi, j between the line segment PiPj and 
the curve using recursive binary subdivision. We get 
an exact polyline (P0P1,2P2,3P3,4…) that approaches 
the curve F(x, y)=0. However, the line segment whose 
next tracing direction is changed, such as line seg-
ment P5P7, does not intersect the curve, therefore, we 
make the middle perpendicular line of the line seg-
ment. Compute the intersection point between the 
perpendicular line and the curve by the recursive 
binary subdivision, so that we get a vertex of the exact 
polyline, namely the intersection point.  

When we render a planar implicit curve f(x, y)=0 
by adaptive step size, how do we decide dx and dy by 
giving the value d (d=dx+dy)? As shown in Fig.1, P0 is 
the starting point on the curve. Suppose that the tangent 
vector at P0 on the curve 

0
( , ) ( , )| ,y xT tx ty f f≡ = − P  

then dx=d|tx|/(|tx|+|ty|), dy=d|ty|/(|tx|+|ty|). Using the 
size of dx and dy, we can move two steps to get to P2. 
Let lx represent the length of the last moving poly-line 
segment in the x direction, ly the length of the last 
moving polyline segment in the y direction. When we 
get to P2, P5, P8, P11 and P14, we can determine dx and 
dy again according to Eq.(8).  

 
/( ),
/( ).

x x y

y x y

dx d l l l
dy d l l l

= ⋅ +
 = ⋅ +

                     (8) 

 

Now we give the following algorithm. 
 

Step 1 (Form the initial state): Input the following data: the 
ranges of arguments x and y (xl≤x≤xr and yb≤y≤yt), step 
size dx and dy for equal step size (d≡dx+dy for adaptive 
step size), starting point (x0, y0) and end point (xe, ye) on 
the curve, the quadrant number G of the starting direction, 
compute the starting direction (∆x, ∆y) and σ in F(x, 
y)≡σf(x, y).  
f(x0, y0)⇒f 

Step 2: f⇒f 0 
Step 3 (According to Rule 1, move a step in ∆x direction or ∆y 

direction): If σf≥0, then {if the curve traced by adaptive 
step, compute dx and dy according to Eq.(8), ∆x and ∆y; 
else if the curve traced by equal step, do not change dx 
and dy, ∆x and ∆y; Do Step 3.1} else do Step 3.2  

Step 3.1: x+∆x⇒x, f(x, y)⇒f. Do Step 3.1.1.  
Step 3.1.1 (According to Rule 2, decide if the signs of ∆y and σ 

chage): If σ(f−f0)≥0, then {−∆y⇒∆y, −σ⇒σ} 
Step 3.2: y+∆y⇒y, f(x, y)⇒f. Do Step 3.2.1.  

(7a)

(7b)
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Step 3.2.1 (According to Rule 2, decide if the signs of ∆x and σ 
change): If σ(f−f0)≥0, then {−∆x⇒∆x, −σ⇒σ}.  

Step 4: Join current path point (x, y) with the last path point 
Step 5: If we get to the end point, then output the ladder poly-

line; else goto Step 2  
Step 6: Get an exact polyline approaching a planar implicit 

curve by recursive subdivision.  
 
If the implicit curve is monotony, the algorithm 

becomes simpler because only Rule 1 is adapted. The 
algorithm for plotting the monotony curve need not be 
listed any more.  
 
Plotting planar implicit curves with multiple 
points  

How to find the multiple point Pm on the curve? 
Make a circle whose center is Pm, radius is small, such 
as about step size. Divide the circle into n equal parts 
to get the points (P0P1P2…Pn−1) on the circle. Com-
pute the signs of f(Pi) (i=0, 1, …, n−1). As shown in 
Fig.3, here n=8, mark Pi(+) (i=0, 1, …, n−1) if f(Pi)≥0; 
mark Pi(−) (i=0, 1, …, n−1) if f(Pi)<0. If the marks of 
PiPi+1 (i=0,1,…,n−2) are not the same, there is a 
segment of the implicit curve passing through the 
small arc PiPi+1; If the marks of P0Pn−1 are not the 
same, there is a segment of the implicit curve passing 
through the small arc P0Pn−1. If the number of these 
segments passing through the curve is greater than 3, 
then the center of the circle is the multiple point.  

Now we discuss how to find the starting point (or 
end point) of a segment around the multiple point. As 
shown in Fig.3, compute the intersection point be-
tween line P1P2 and the curve by recursive subdivi-
sion. Regard the intersection point as the starting 
point and end point of the segment of the curve.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLES 
 
Example 1 
 

2 2
1( , ) 25 (( 3) ( 4) ),f x y x y≡ − − + +  

2 2
2 ( , ) 25 (( 3) ( 4) ),f x y x y≡ − + + +  

2 2
3 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , ),f x y f x y f x y f x y f x y= + − +

2 2
4 ( , ) ( 4) 1,f x y x y≡ + + −                                           

2 2
3 4 3 4( , ) ( , ) ( , ) ( , ) ( , ).f x y f x y f x y f x y f x y= + − +    

 
Fig.4 is the example of plotting the curve f(x, 

y)=0 where −5≤x≤5, −10≤y≤5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4a yields the ladder polyline when plotting 

the planar implicit curve by equal step size 
(dx=dy=0.2). Fig.4b is the result of plotting the curve 
by equal step size (dx=dy=0.2). Fig.4c yields the 
ladder polyline when plotting the planar implicit 
curve by equal step size (dx=dy=0.1). Fig.4d is the 
result of plotting the curve by equal step size 
(dx=dy=0.1).  

The black points in Fig.4 are the starting point or 
end point for plotting the curve.  
Example 2    A planar implicit curve 
 

f(x, y)≡y−sin(1/x)=0, 
 

where 0.1≤x≤2.7, −1.5≤y≤1.5.  
Fig.5a is the original planar implicit curve gen-

erated by the following method: Dividing interval 
[0.1, 2.7]  in  the  x  axis  by  13000,  we  get  xi=0.1+  
 

P2(−) 
P1(+) 

P0(+) 

P7(−) 
P6(−) 

P5(+) 

P4(+) 

P3(+) 

Fig.3  Multiple point on the implicit curve 

Fig.4  (a) Getting the ladder polyline when plotting the
planar implicit curve by equal step size (dx=dy=0.2);
(b) The result of plotting the curve by equal step size
(dx=dy=0.2); (c) Getting the ladder polyline when plot-
ting the planar implicit curve by equal step size
(dx=dy=0.1); (d) The result of plotting the curve by
equal step size (dx=dy=0.1) 

(a) (b) (c) (d)
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i×(2.7−0.1)/13000 (i=0,1,…,13000). Then mark 
points (xi,sin(1/xi)) (i=0,1,…,13000), so as to plot the 
curve. Fig.5b yields the ladder polyline when plotting 
the planar implicit curve by equal step size 
(dx=dy=0.05), Fig.5c is the result of plotting the curve 
by equal step size (dx=dy=0.05). Fig.5d yields the 
ladder polyline when plotting the planar implicit 
curve by equal step size (dx=dy=0.01). Fig.5e is the 
result of plotting the curve by equal step size 
(dx=dy=0.01). Fig.5f yields the ladder polyline when 
plotting the planar implicit curve by the adaptive step 
size (dx+dy=0.1). Fig.5g is the result of plotting the 
curve by the adaptive step size (dx+dy=0.1). The 
black point in Fig.5 is the starting point or end point 
for plotting the curve.  
Example 3    A planar implicit curve is:  
 

f1(x, y)≡x4−x2y+y3=0, 
 
where −0.5≤x≤0.5, −0.5≤y≤0.5. 

First give the starting point P0, end point P7, and 
the starting direction of the curve. From the starting 
point, according to the starting direction, we move 
forward until get to the multiple point of the curve. 
Then find the starting points or end points of the curve 
around  the  multiple  point.  As  shown  in  Fig.6a,  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
starting points of the curve around the multiple point 
are P3, P5; the end points of the curve around the 
multiple point are P4, P6. From the starting point P3, 
according to the starting direction, we move forward 
until we get to P4. From the starting point P5, ac-
cording to the starting direction, we move forward 
until we get to P6. From the starting point P2, ac-
cording to the starting direction, we move forward 
until get to P7. Fig.6a yields the ladder polyline when 
plotting the planar implicit curve by equal step size 
(dx=dy=0.01). Fig.6b is the result of plotting the curve 
by equal step size (dx=dy=0.01).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Fig.6  (a) Getting the ladder polyline when plotting the 
planar implicit curve by equal step size (dx=dy=0.01); 
(b) The result of plotting the curve by equal step size
(dx=dy=0.01) 

P3

P0

P1

P4

P2

P5
P6

P7

(a) (b) (c) 

(d) 

Fig.5  (a) Original planar implicit curve; (b) Getting the ladder polyline when plotting the planar implicit
curve by equal step size (dx=dy=0.05); (c) The result of plotting the curve by equal step size (dx=dy=0.05); (d)
Getting the ladder polyline when plotting the planar implicit curve by equal step size (dx=dy=0.01); (e) The
result of plotting the curve by equal step size (dx=dy=0.01); (f) Getting the ladder polyline when plotting the
planar implicit curve by adaptive step size (dx+dy=0.1); (g) The result of plotting the curve by adaptive step
size(dx+dy=0.1) 

(e) (f) (g) 
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Example 4    A planar implicit curve is 
 

f (x, y)≡0.004+0.110x−0.177y−0.174x2+0.224xy 
−0.303y2−0.1168x3+0.327x2y−0.087xy2 

−0.013y3+0.235x4−0.667x3y+0.745x2y2 

−0.029xy3+0.072y4=0, 
 
where −2.5≤x≤2.5, −2.5≤y≤2.5. 

Fig.7a is the rendered planar implicit curve using 
our method by equal step size (dx=dy=0.05). Fig.7b is 
the rendered planar implicit curve by geometric 
adaptive polygonal approximation from the paper 
(Lopes et al., 2002), where the spatial tolerance was 
0.05 2,  which means that the bound length of the 
smallest cell is 0.05, equal to the step size in our 
method, and the tolerance for gradient estimates was 
σ=0.99. The run time of Fig.7a is 0.024 s. The run 
time of Fig.7b is 0.124 s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The black points in Fig.7a are the starting points 

or end points for plotting the curve, obtained by the 
lattice method (Barnhill et al., 1987). 

Example 1 is the planar implicit curve which 
maintains C0 continuity. For Example 2, if we plot the 
planar implicit curves by an equal step size, the step 
size is small enough to plot it without losing its truth. 
However, if we plot it by adaptive step size, the effi-
ciency is higher and the result is more satisfactory. 
Example 3 is the application of our method in which 
the planar implicit curve with multiple points can be 
plotted. Example 4 shows our method is efficient. 
 
 

SUMMARY AND FUTURE WORK 
 

In this paper, we present two rules for plotting a 
planar implicit curve. Rule 1 is for plotting a mo-
notony planar implicit curve. Rule 2 is for plotting a 
non-monotony planar implicit curve. We present the 
method for plotting the planar implicit curve by using 
equal step size and adaptive step size. For an irregular 
planar implicit curve, it is better to use adaptive step 
size. When we use the equal step size to plot the curve, 
the result of drawing may be lose its truth if the step 
size is too large and the computation efficiency is 
slower if the step size is too small. Our method can 
plot C0 implicit curves, or curves with multiple points. 

There are several directions for future work. 
How to give dx(dy) according to the shape of a planar 
implicit curve if we use equal step size for plotting the 
curve? How to give d (where d=dx+dy) according to 
the shape of a planar implicit curve if we use adaptive 
step size for plotting the curve? How to use more 
adaptive step size according to curvatures of a planar 
implicit curve for plotting the curve? How to extend 
our method to plot an implicit surface? 
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