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Abstract:    Motivated by the conception of Lee et al.(2005)’s mesh saliency and Chen (2005)’s contextual discontinuities, a novel 
adaptive smoothing approach is proposed for noise removal and feature preservation. Mesh saliency is employed as a multiscale 
measure to detect contextual discontinuity for feature preserving and control of the smoothing speed. The proposed method is 
similar to the bilateral filter method. Comparative results demonstrate the simplicity and efficiency of the presented method, which 
makes it an excellent solution for smoothing 3D noisy meshes. 
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INTRODUCTION 
 

With the proliferation of 3D scanning tools, in-
terest in removing noise from meshes has increased. 
An important problem is how to suppress noise while 
preserving desirable geometric features of the model. 
In general, smoothing algorithms are roughly classi-
fied into two categories: linear and nonlinear 
smoothing (Gonzalez and Woods, 2002). For linear 
smoothing, each mesh point is moved to the bary-
center of its neighbors. Linear smoothing treats fea-
ture (large variations) and noise (small variations) 
identically, so it is not feature preserving. Nonlinear 
smoothing updates each mesh point through local 
weighted averaging of its neighbors. A large weight 
should be assigned to a point that involves low dis-
continuities, and vice versa. In nonlinear smoothing, a 
discontinuity measure critically determines its per-
formance. However, noise corruption can generate 
discontinuities as well. Therefore, how to measure 

significant discontinuities is a nontrivial issue. In 
order to robustly detect salient feature, in this paper 
mesh saliency is employed as a multiscale measure to 
detect contextual discontinuity for feature preserving 
and control of the smoothing speed. Thus, we can 
update each point within a relatively homogeneous 
region and can preserve most sharp features. 

The remainder of this paper is organized as fol-
lows. In Section 2 we review the related works in this 
field. Section 3 discusses the feature-preserving mesh 
denoising method based on contextual discontinuities. 
Section 4 gives some results of our method. We 
summarize our work in Section 5. 
 
 
RELATED WORK 
 

Since Taubin (1995a) presented a signal proc-
essing approach to fair surface design, there has been 
a substantial amount of work on surface faring of 3D 
noisy meshes, resulting in a variety of algorithms 
such as the Laplacian operator (Taubin, 1995a), ani-
sotropic diffusion (Bajaj and Xu, 2001; Hildebrandt 
and Polthier, 2004; Desbrun et al., 1999; 2000), dif-

 

 
 
* Project supported by the National Science Fund for Creative Re-
search Groups (No. 60521002), and the National Natural Science 
Foundation of China (Nos. 60373070 and 60573147) 

Journal of Zhejiang University SCIENCE A 
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online) 
www.zju.edu.cn/jzus; www.springerlink.com 
E-mail: jzus@zju.edu.cn 



Mao et al. / J Zhejiang Univ SCIENCE A   2006 7(9):1603-1608 1604

fusion of the normal field (Tasdizen et al., 2002; 
Ohtake et al., 2002) and bilateral filtering (Jones et al., 
2003; Fleishman et al., 2003; Choudhury and Tum-
blin, 2004). Typically, Most mesh denoising methods 
are based on image denoising approaches. 

The bilateral filter introduced by Tomasi and 
Manduchi (1998) is a nonlinear filter derived from 
Gaussian blur, with a feature preservation term that 
decreased the weight of pixels as a function of inten-
sity difference: 
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where, f(⋅) is a spatial weight function, g(⋅) is an in-
fluence weight function, k(s) is the normalization 
factor 
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Compared to image, 3D surfaces have an in-

herent ambiguity: in images, signal is well separated 
from position in the image; on surfaces, the signal and 
spatial position are closely intertwined. This makes 
the definition of the influence weight function chal-
lenging. Similar to Eq.(1), in 3D mesh, the influence 
weight function decreases as a function of disconti-
nuity, so how to measure significant discontinuities is 
the key feature of the bilateral filter. Chen (2005) 
proposed an adaptive smoothing method via contex-
tual and local discontinuities. In fact Chen’s method 
is a variation of the bilateral filter. He used local 
discontinuities to indicate the details of local struc-
tures and contextual discontinuities to specify where 
important features are in a given image. He combines 
the two discontinuity measures for synergy to pre-
serve nontrivial features. Motivated by Chen’s suc-
cess, we introduces the idea of Lee et al.(2005)’s 
mesh saliency as a measure of important discontinui-
ties for graphics meshes and incorporate it with 
Chen’s adaptive smoothing method to denoise 3D 
noisy mesh. 
 
 
MESH DENOISING BASED ON CONTEXTUAL 
DISCONTINUITIES 
 

In this section, we first discuss Chen (2005)’s 

adaptive smoothing method, then modify Lee et 
al.(2005)’s mesh saliency to capture important dis-
continuities of 3D mesh. At last, we incorporate mesh 
saliency with Chen (2005)’s adaptive smoothing 
method to denoise 3D noisy mesh. 
 
Adaptive smoothing by combining discontinuity 
measures for image 

Chen (2005) first defined inhomogeneity H(x,y) as 
a robust multiscale measure computed by an ensem-
ble of coupled pixels. Inhomogeneity tends to reveal 
the intrinsic disconnectedness or incoherence be-
tween a pixel and its surrounding by means of a 
scale-based or image-dependent property. Then an 
adaptive smoothing scheme is proposed by combin-
ing both inhomogeneity and spatial gradient: 
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where, B(x,y)(1) is the 1-neighborhood of pixel (x,y), 

( , )
t
x yI is the intensity of pixel (x,y) at iteration t, α  and 

β are weight functions and defined as 
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here, g(⋅) is a nonnegative monotonically decreasing 
function. h and S are two parameters. The α term 
encodes the effect of intrinsic contextual discontinui-
ties while the β term encodes the instantaneous effect 
of local discontinuities during smoothing. In fact, 
Eq.(3) is similar to Eq.(1). 
 
Mesh saliency 

Mesh saliency method (Lee et al., 2005) merges 
perceptual criteria inspired by low-level human visual 
system cues with geometric properties based on dis-
crete differential geometry for 3D mesh, so it can 
successfully capture salient regions in meshes. For 3D 
objects, we feel that a sphere is a canonical zero-saliency 
feature. The invariant property of a sphere is the 
curvature. So as a robust multi-scale measure defined 
by the curvatures, the mesh saliency ϕ(p) can capture 
the interesting features at all perceptually meaningful 
scales and reveal the difference between the vertex 
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and its surrounding context. That is, the value of ϕ(p) 
would be high if the point is a perceptually salient 
feature point. Otherwise, the value tends to be low 
(Fig.1). In this section we modify Lee et al.(2005)’s 
method to compute mesh saliency as shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First, we define the boundary region of a 

neighborhood of each mesh point p by 
 

( , ) ( , ) ( , 1),B p K N p K N p K= − −  
 

where N(p,K) denotes the K-neighborhood of vertex p. 
For convenience in notation, we stipulate that B(p,0) 
is the vertex itself and B(p,1) is the 1-neighborhood of 
the vertex p. 

Second, we should compute surface curvatures. 
There are many excellent approaches to estimate 
surface curvatures accurately (Taubin, 1995b; 
Hameiri and Shimshoni, 2003). Let k(p) denote the 
largest absolute value of the principal curvatures: 

 

max min( ) max(| ( ) |,| ( ) |).k p k p k p=  
 

Third, an ensemble of surrounding vertices is 
computed by the center-surround mechanism (Itti et 
al., 1998). Let G(k(p),K) denote the Gaussian-weighted 
average of k(x), computed as shown below: 

 
2 2

( , )
2 2

( , )

( ) exp[ | | /(2 )]
( ( ), ) .

exp[ | | /(2 )]
x Β p K

x Β p K

k x x p
G k p K

x p

σ

σ
∈

∈

− −
=

− −

∑
∑

 (5) 

 
Define G(k(p),0)=k(p). Assume that the average 

length of edges of the mesh is ,e  we set .eσ λ=  
Here, λ=1 is a good selection in our algorithm. 

At last, we compute the saliency ϕK(p) as the 
absolute difference between the Gaussian-weighted 
averages computed at the two neighboring bounda-
ries: 
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In order to capture the saliency at multiple scales, we 
calculate an average value ϕ(p) as: 
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Adaptive mesh denoising based on contextual dis-
continuities 

From Section 3.2 we know that the mesh sali-
ency ϕ(p) can capture the important features at all 
perceptually meaningful scales and reveal the dif-
ference between the vertex and its surrounding con-
text. Denote Saliencymax is the maximal saliency 
value and Saliencymin is the minimal saliency value in 
the mesh. To facilitate the use of saliency for adaptive 
mesh smoothing, we normalize ϕ(p) as 
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Similar to Eq.(3), we get: 
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α and β are weight functions defined as 
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where, σα and σβ determine the smoothing scales. In 
order to enhance the ϕ(p) value, we introduce a 
nonlinear sine transformation (Chen, 2005) (Fig.2).  

(a) (b) (c) 

Fig.1  Saliency computed by an ensemble of the
boundary region vertices specifies where important
features are in a given mesh. (a) Original model; (b)
Visualize the principal curvature of each mesh vertex
with color; (c) Visualize the saliency value of each mesh
vertex with color 
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Usually high saliency values correspond to the 
sharp features. The higher its ϕ(p) value is, the better 
are sharp features preserved during smoothing. So we 
amplify the saliency values using a threshold β and an 
amplification factor λ: 
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RESULTS 
 

We have implemented our adaptive smoothing 
algorithm as described in the previous sections and 
compared our results to Lapalacian smoothing, bi-
laplacian and bilateral filtering algorithm. The com-
parison demonstrated that our method can preserve 
most detailed features during smoothing of a noisy 
mesh. In order to give a visual comparison, we cor-
rupted some model by Gaussian noise with 
σ(n)=k⋅average(S) in some tests, where k=0.15 and 
average(S) is the mean edge length of the surface S. 
Fig.3 shows a 3D mesh data of a man’s head. We give 
the origin model, the noisy model with σ(n)=0.15 of 
the mean edge length and the smoothed model by our 
method. We present this comparison to demonstrate 
the effectiveness of our approach. Fig.4 gives a 
comparison to bilateral filtering algorithm. In our 
method we set λ=2.0, β=80th percentile saliency 
value. Fig.5 gives a comparison to classical Laplacian 

smoothing algorithm. After 2 iterations, the image in 
Fig.5b is blurred and our algorithm (2 iterations, 
λ=2.0, β=80th percentile saliency value.) still pre-
serves most sharp features (Fig.5c). Notice the details 
such as the eyes and stomach. Usually high saliency 
values correspond to the sharp features. In order to 
preserve the sharp features effectively, we amplify the 
saliency values using a threshold β and an amplifica-
tion factor λ. Fig.6 gives some results for different λ. 
The higher its λ value is, the better are the sharp 
features preserved. Notice the details such as the letter 
on the stomach. Usually we set β=60th~80th percen-
tile saliency value and 1≤λ≤3. The big λ can preserve 
the sharp features during denoising of 3D noisy model, 
but if we arbitrarily amplify λ, it will make the result 
worse. Fig.7 compares our method with bilaplacian 
method. After 2 iterations, the surface smoothness in 
the flat area in our method (Fig.7c) is better than the 
smoothness in bilaplacian methods (Fig.7d). 
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Fig.2  Enhance the ϕ(p) value by nonlinear sine trans-
formation 

(a) (b) (c) 

Fig.3  Denoising a man head model. (a) The initial
model; (b) The noisy model; (c) The smoothed model
by our method (2 iteration) 

(a) (b) (c) 

Fig.4  Comparison with Jones et al.(2003)’s method. (a)
The noisy model; (b) The smoothed model by our
method (1 iteration); (c) The smoothed model by Jones
et al.(2003)’s method (1 iteration) 
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CONCLUSION AND FUTURE WORK 
 

Motivated by the concept of Lee et al.(2005)’s 
mesh saliency and Chen (2005)’s contextual discon-
tinuities, a novel adaptive smoothing approach is 
proposed for noise removal and feature preservation. 
A good saliency map can capture the interesting sharp 
features effectively. So a number of tasks in graphics 
can benefit from the computational model of mesh 
saliency. In this paper mesh saliency is employed as a 
multiscale measure to detect contextual discontinuity 
for feature preserving and control of the smoothing 
speed. The proposed method is similar to the bilateral 
filter method. Comparative results demonstrate the 
simplicity and efficiency of the presented method, 
which makes it an excellent solution for smoothing 
3D noisy meshes. 
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