
Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1642

Automatic relational database compression scheme design
based on swarm evolution*

HU Tian-lei†, CHEN Gang, LI Xiao-yan, DONG Jin-xiang

(School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)
†E-mail: andy_hu@263.net

Received Dec. 11, 2005; revision accepted Apr. 5, 2006

Abstract: Compression is an intuitive way to boost the performance of a database system. However, compared with other
physical database design techniques, compression consumes large amount of CPU power. There is a trade-off between the re-
duction of disk access and the overhead of CPU processing. Automatic design and adaptive administration of database systems are
widely demanded, and the automatic selection of compression schema to compromise the trade-off is very important. In this paper,
we present a model with novel techniques to integrate a rapidly convergent agent-based evolution framework, i.e. the SWAF
(SWarm Algorithm Framework), into adaptive attribute compression for relational database. The model evolutionally consults
statistics of CPU load and IO bandwidth to select compression schemas considering both aspects of the trade-off. We have im-
plemented a prototype model on Oscar RDBMS with experiments highlighting the correctness and efficiency of our techniques.

Key words: Database compression, Automatic physical database design, Swarm evolution
doi:10.1631/jzus.2006.A1642 Document code: A CLC number: TP273; TP311.13

INTRODUCTION

As the Internet develops, the volume of infor-
mation increases sharply. Capacity of storage me-
dium increases exponentially, while the power of
CPU chips increases under Moore’s Law. However,
transfer bandwidth of storage medium increases much
slower. For a large relational database system (with
capacity between a few giga- to multi-tera-bytes),
bandwidth of the magnetic disks is always the bot-
tleneck of performance. In traditional database re-
search, researchers studied various physical database
design methods, including indexes, materialized
views, vertical/horizontal partitioning (Steve, 1993;
Jeffrey et al., 2002) and compression (Severance,
1983) to solve this problem. Database compression
boosts system performance by saving storage space
and reducing disk access frequency. Many compres-

sion techniques for databases have been studied (Roth
and van Horn, 1993; Goldstein et al., 1998), and some
commercial DBMS introduced compression func-
tions (Bruni and Naidoo, 1998; Oracle, 2002).

As features of relational database management
system become more and more diversified and com-
plicated, its management and optimization become
much more difficult. Many applications require that a
database system is simple to manage and that its
performance is predictable. Furthermore, a self-
managing/autonomic DBMS is very desirable.
Nowadays, simplifying database management and
automatically designing physical database schemas
has become a hotspot in database research (Chaudhuri
and Weikum, 2000; Agrawal et al., 2000; 2003;
2004a; 2004b; Zhang et al., 2001; Yu et al., 2003;
Zilio et al., 2004). Database compression, distinct
from techniques in those researches, demands addi-
tional CPU overhead, which means it will sharply
increase CPU load while decreasing the data scale
during the compressing process. The trade-off must

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project (No. 2004AA4Z3010) supported by the National Hi-Tech
Research and Development Program (863) of China

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1643

be taken into account to decide which compression
schema provides the highest throughput.

The rest of this paper is organized as follows. We
first review related work, and then formalize the
“adaptive database attribute compression” problem.
An evolution model based on SWAF (Xie and Zhang,
2004) is proposed to solve this problem, and we dis-
cuss two key algorithms in the model. We use a pro-
totype of the model to compare results on different
workloads. In the last section, we conclude the paper.

RELATED WORK

There are two advantages in compressing data in
database systems: one is reduced database scale, and
the other is improved performance. Due to inexpen-
sive and popularization of mass storage devices, we
only focus on the performance issue. Cormack (1985)
presented a database compression method based on
revised Huffman code. Graefe and Shapiro (1991)
studied performance improvement when data are kept
compressed as long as possible in query execution.
Chen et al.(2001) and Hoque et al.(2002) continued
the work by discussing the query optimization algo-
rithms for compressed data. Roth and van Horn (1993)
summarized various compression methods, and ana-
lyzed advantages and disadvantages of compression.
Goldstein et al.(1998) divided database compression
into two levels, page-level and file-level, and intro-
duced a compression algorithm based on frames of
reference. In the commercial world, Oracle 9i Release
2 introduced table compression features based on
extracting same-value attributes in a data page (Ora-
cle, 2002). IBM DB2 exploited hardware-based com-
pression function in its OS/390 version (Bruni and
Naidoo, 1998). The compression method discussed in
this paper selects compression method for each
attribute in each relation adaptively according to its
type and value. The technique integrates the above
compression algorithms’ merits, and can be seam-
lessly integrated with the table compression feature
provided by Oracle to offer better overall perform-
ance.

Due to the diversity of features and scale of data
in a database system, it is increasingly imperative to
automatically administer the database. Brown et
al.(1994) considered automatic resource assignment
algorithm to satisfy performance goals. Chaudhuri

and Weikum (2000) analyzed the increasingly com-
plicated architecture of a database system, and indi-
cated that the architecture should have to be designed
as a self-tunable RISC-style system. Agrawal et
al.(2000; 2003; 2004b) studied automatic physical
database design algorithms on index and materialized
view selection, storage layout and partitioning.
Commercial DBMSs, such as Oracle, Microsoft SQL
Server and IBM DB2, introduced functions to design
index and materialized view automatically (Agrawal
et al., 2004a; Zilio et al., 2004). Zhang et al.(2001)
and Yu et al.(2003) integrated evolution computation
techniques into automatic materialized view selection.
Chen (2002) designed a database system with auto-
matic compression features; and concentrated on
compressing string values using hierarchical diction-
ary-encoding methods, with the proposal providing
very limited compression methods for automatic
selection.

We identify the search for the optimal compres-
sion schema design as a discrete optimization prob-
lem. Evolution computation techniques can solve
various discrete/continuous optimization problems,
and are robust and converge rapidly. They succeed
from three strongly related but independently devel-
oped approaches: Genetic Algorithm, Evolutionary
Programming, and Evolutionary Strategies (Bäck,
1997). Researchers introduced the concept of swarm
evolution (Steve, 1998) based on researches on bio-
logical social evolution. In swarm evolution, each
individual in the society retrieves evolution knowl-
edge in two ways: individual evolution and social
evolution. Dorigo et al introduced ant colony opti-
mization based on observation of the food-seeking
strategy of a colony of ants (Dorigo et al., 1996; 1999;
Dorigo and Gambardella, 1997). Kennedy studied the
movement of a flock of birds and a school of fishes,
and presented the particle swarm optimization
(Kennedy and Eberhart, 1995; Clerc and Kennedy,
2002). Zhang and Xie (2003) introduced a swarm
evolution algorithm based on differential evolution
which exploits a differential vector studied by Storn
and Price (1997). Based on previous research work,
Xie and Zhang (2004) presented the SWAF evolution
framework, which integrates different swarm evolu-
tion algorithms by different generate-and-test rules
and adaptively deploys the rules. It was proved to be a
robust and rapidly convergent evolution framework.

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1644

This paper integrates swarm evolution into
adaptive database attribute compression. The opti-
mization is triggered periodically or by a threshold
value, and according to the statistics collected from
DBMS and underlying OS, the evolution framework
will run for a while. The optimal result, the best
compression schema, will be generated and data in
the database will be compressed directly or indirectly
according to the scheme. Experiments on Oscar
DBMS show that these techniques are valuable and
heuristic for researches on database compression and
automatic physical database design.

ADAPTIVE DATABASE ATTRIBUTE COM-
PRESSION (ADAC)

Various types of data are stored in database, and
different compression algorithms generate different
compression ratios. Even for the same type data, the
compression ratio varies a lot. Moreover, compres-
sion generates high CPU overhead, and, for a system
with high CPU load when nothing is compressed,
compressing all data in the database is not a good idea.
It is important to provide an adaptive way to manage
the compression of database attributes. In database
attribute compression, the database system adaptively
generates compression schema according to current
data schema, current workload and runtime envi-
ronment, to provide the highest database throughput.
We will first clarify some related concepts before
digging into the details.

System Environment (SE) is the environment of
a database system. SE=<W, A, E>, where W describes
the workload, A is the database data schema and en-
vironment parameters E include CPU capability, I/O
bandwidth, etc. Every work w (w∈W) is defined by a
tuple <q, f>, where q is an SQL statement and f is the
occurrence frequency of the statement. Each attribute
a (a∈A) designates a column in a table or an index
key.

Compression Method (CM) is a set of compres-
sion functions. For a given compression algorithm, if
it generates different compress-ratios for the same
data when configured with various arguments, it is
treated as different compression functions. Compres-
sion Schema (CS) is a set of compression policies,
with each compression policy cs∈CS being defined

by a tuple <a, cm>, where a∈SE.A, cm∈CM, and
∀a∈SE.A, ∃cs∈CS:cs.a=a. For generality, we ignore
detailed compression functions when discussing the
framework and optimization algorithms below. In-
stead, the involved compression algorithms will be
mentioned when evaluating the proposed techniques.

Given certain SE, applying a CS, the throughput
(TP) is defined as the number of processed SQL
statements per time unit. TP=tpSE(CS), TP∈ú, and
tpSE is the function for computing throughput with SE.
Finally, we define the ADAC problem as:
Definition 1 (Adaptive Database Attribute Compres-
sion Problem) Find a subscript vector X=(x1, …,
xi, …, xD) (D=|SE.A|, 1≤i≤D, ,ix ∈ 1≤xi≤|CM|)
which constructs a compression schema CS={(ai,
cmxi)|cmxi∈CM, ai∈SE.A, 1≤i≤|SE.A|} to let tpSE (CS)
be maximum.

AN ADAC MODEL BASED ON SWARM EVO-
LUTION

Swarm algorithm framework

A framework derived from SWAF (Xie and
Zhang, 2004) is introduced to solve the ADAC prob-
lem.
Definition 2 (Society) The society S is a multi-
dimensional space for all agents to live and commu-
nicate. S is defined by a triple <SS, Eval, IG>, where
SS is the solution space of the problem, Eval is an
evaluation function to evaluate each position in SS
and IG is the shared information in the society. In
ADAC problem, SS={i|0≤i≤|CM|, i∈ }|S.A|, Eval=tpSE
and IG is to store the global optimized solution.
Definition 3 (Agent) Each agent Ag is a cognitive
unit in fast-and-frugal heuristics. Instead of commu-
nicating with each other directly, the agents commu-
nicate by reading or writing the global shared infor-
mation S.IG. Fig.1 is the architecture of the agent, and
formally, Ag is defined by a triple <MP, MD, MW>,
where:

MP is the Procedure Memory, which stores rules
to control the evolution process. It is composed of
three types of rules: {RF} is a set of rules to describe
the constraint of a problem, {RGT} is a set of rules to
generate and evaluate the target position of a move-
ment and RRD is a rule to deploy the above rules se-
lectively.

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1645

MD is the Declarative Memory, which stores
knowledge possessed by an agent. It is divided into
two categories: one is public knowledge DO, and the
other is private knowledge DI. Only information in
DO will be updated to S.IG. For different rules in MP,
the information in MD is different; however, at least,
the current position and the best position of this agent
should exist in MD.

MW is the Work Memory. When an agent is ac-
tivated, according to the deployed rule from MP, it
will compute in MW with information from MD and
S.IG. After new position is generated, the agent will
move to the new position, and may update informa-
tion to S.IG.

Definition 4 (SWAF) We define the swarm algo-
rithm framework as a tuple <S, Q>, where S is the
society and Q={Agi|1≤i≤N, i∈Z} is composed of N

agents.

Descriptions of the ADAC model

The ADAC model based on SWAF framework
is shown in Fig.2. We study key components in
ADAC model as follows:

Workload Miner (WLM) collects necessary
knowledge of the environment. The knowledge
comes from two sources. One is the database man-
agement system, including the workload (SE.W), data
schema (SE.A), average CPU and I/O bandwidth
usage for each attribute in SE.A and average com-
press-ratio and CPU overhead for each compression
function in CM and each attribute in SE.A. The other
one is the underlying operating system, including
overall CPU and I/O bandwidth usage and memory
usage. The collector periodically collects information
from DBMS and OS, and forgets old information
according to its “age”.

Throughput Estimator (TPE) estimates through-
put of a database system at given system environment
SE and compression schema CS. TPE is initialized
with information collected by EIC to generate tpSE,

MD: Declarative memory

DI: Private knowledge

MW: Work memory

DO: Public knowledge

IG DO

MP: Procedure memory

{RGT}: Generate-and-test rules

{RF}: Problem formulation rules

RRD: Rules-deploying rule

Agent

Environment

Fig.1 Architecture of agents in the swarm algorithm
framework

Env. info
collector

(EIC)

Throughput
estimator

(TPE)

Agent

Agent

Society

IG

Agent

Eval function

IG DO

X TP

SE.W

DBMS

Optimizer

Executor

Storage

Catalog STAT

SE.A

SE.A

Compression
schema executor

(CSE)

OS

CPU MEM I/O STAT

SE.W, SE.A, SE.E

Best compression
schema

Fig.2 The ADAC model. Left part is the traditional architecture of a database system, and some irrespective
database modules are omitted. Right part of the figure, in the dashed frame, is the key additional module
appended to the database system by ADAC

SWAF
 optimizer

(OPT)

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1646

and it will evaluate the evaluation request X from the
SWAF optimizer and send the result tpSE(X) back to
the optimizer.

Optimizer (OPT) is the key component in the
model. Currently, it is implemented exploiting the
SWAF framework. However, other evolution algo-
rithms can simply replace it. OPT is initialized with
knowledge collected by EIC, and activates a number
of agents to start evolution. OPT contacts TPE con-
stantly to evaluate positions in the solution space, and,
after a few iterations, the best result, i.e. the compres-
sion schema with maximal throughput, is sent to
compression schema executor (CSE).

CSE employs optimal compression schema in
the database system. CSE works in two ways, one is
directly compressing, and another is indirectly com-
pressing. For the first, CSE directly accesses storage
module in DBMS to compress data. It only affects
physical structures of an attribute value, but not the
logical semantics, so only page latches other than
transaction level locks (Gray and Reuter, 1993) are
required. For the second way, CSE delegates com-
pression to executor module in DBMS. Whenever
SE.W alters an attribute, the executor will compress it
before storing it according to the compression
schema.

While running, EIC continuously collects envi-
ronment information, and activates optimization
conditionally (for example, a period of time elapses
from last activation, or the system load reaches a
threshold). When optimization starts, first, TPE gen-
erates evaluation function tpSE, and OPT initializes its
inner SWAF framework, setting up the society, the
number of agents and deploying agents at different
positions in the society. Consequently, OPT activates
all agents to let them roam in the solution space ac-
cording to the evolution algorithm. After a few cycles
of optimization, an optimal solution is stored in S.IG,
and OPT stops optimization and submits the solution
to CSE. CSE executes directly or indirectly to com-
press data accordingly.

Compared with traditional database compression
and automatic database administration techniques, the
model presented above has many advantages.

First, the model utilizes an adaptive framework,
and will be activated under certain circumstances. The
compression schema will be dynamically adjusted
when the workload, the data schema or the other en-

vironment factors changes. The procedure will be
automatically performed without administrators.

Second, the model will compress data in the
background, and will not markedly affect the per-
formance and simultaneousness of normal transaction
processing.

Third, components in the model are conceptually
independent and logically decoupled from the DBMS.
Benefiting from the independence, these components
may run on other machines, and communicate with
the database system through network. The competi-
tion for resources between normal transaction proc-
essing and optimization can be alleviated.

Last, the optimization algorithm in the model is
based on the SWAF swarm evolution framework. The
agents live in the society move towards a direction
chosen according to both the optimal solution of the
agent (local optimal solution) and the optimal solu-
tion of the society (global optimal solution). Due to
the RRD rule deploying various generate-and-test rules
in {RGT} adaptively, the model will take advantage of
various swarm optimization algorithms to achieve
faster convergence.

KEY ALGORITHMS

This section will describe two major algorithms

in ADAC model: the evolution algorithm in OPT and
the throughput evaluation algorithm in TPE.

The SWAF evolution algorithm, responsible for
solving the ADAC problem, is the most important
algorithm in the model. The SWAF framework may
utilize various optimization rules, but for convenience,
we only use the rule for particle swarm algorithm
(Kennedy and Eberhart, 1995). In this rule, three
kinds of information, the current position, the last
position in DI and the local optimal position in DO, are
stored in MD of each agent. In addition, the global
optimal position is stored in S.IG.
Algorithm 1 Denote N as the number of agents in
SWAF, T as the maximum iteration count. At the tth
iteration (1≤t≤T, t∈Z), agent Agi (1≤i≤N, i∈Z) is at

position X(t) and the last position is O(t). The local
optimal position is P(t), and the global optimal posi-
tion is G(t).

1. Begin. Initialize the SWAF framework, and

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1647

randomly choose the initial position X(1) of each agent
Agi in SWAF.Q. Let P(1)=O(1)=X(1), and G(1)=max(X(1),
Agi). Set iteration count t=1.

2. While t≤T, set current agent number i=1, and
begin an iteration.

3. While i≤N, process the ith agent Agi.
4. Retrieve and activate the RPS representing the

particle swarm rule from Agi.MP.RGT, and retrieve X(t),
O(t), P(t) from Agi.MD. Get G(t) from S.IG, and put all
the information into MW.

5. Generate the next position of X(t), and calcu-
late its dth dimension as in (Clerc and Kennedy,
2002):

Xd
(t+1)=|Xd

(t)+CF⋅[Vd
(t)+(c1+c2)⋅UR⋅(Pd

(t)−Xd
(t))]|, (1)

where CF=2/{[φ⋅(φ−4)]1/2+φ−2}, φ=c1+c2>4, V(t)=
X(t)−O(t), and UR is a random real value between 0 and
1. The default values for utilities are c1=c2=2.05.

6. Set O(t+1)=X(t) to save the original position.
7. P(t+1)=max(P(t), X(t+1)), Store X(t+1), O(t+1), P(t+1)

back into Agi.MD.
8. G(t+1)=max(G(t), X(t+1)), set G(t+1) back to S.IG.
9. i++. End While (for i)
10. t++. End While (for t)
11. Return G(t) in S.IG, End.
The throughput estimate algorithm is used to

evaluate solutions during the evolution procedure. It
is difficult to estimate the throughput of a database
system directly. The optimizers of traditional DBMS
can only assess the cost for a single statement, but
cannot estimate the impact of concurrent transactions,
randomly or sequentially IOs, etc. The adopted esti-
mate algorithm in ADAC model is according to his-
torical information of a database system. Although
there are limitations of this approach, results of ex-
periments proved it is accurate enough for ADAC
model in most applications.
Algorithm 2 For an attribute ai in SE.A, using
function cmj in CM to compress it, the CPU overhead
ratio is fCPU(i, j)≥1, and the IO reduction ratio is fIO(i, j)
≥1. Compute the throughput for a given solution X as
follows:

1. Begin. Initialize TPE. According to the sta-
tistics, for a unit of TP, compute the percentage of
CPU load and I/O amount needed to process each
attribute ai: cpui and ioi. Also, compute the percent-
ages of CPU load and IO caused by other processes:

cpuo and ioo.
2. Applying compression schema CS, the CPU

load needed to process ai is cpui⋅fCPU(i, Xi), and the
needed IO amount is ioi⋅fIO(i, Xi).

3. Estimate percentages of CPU and IO for a unit
of TP as follows:

i CPU i o
1

i IO i o
1

[(,)] ,

[(,)] .

N

x
i

N

x
i

CPU cpu f i X cpu

IO io f i X io

=

=

= ⋅ +

= ⋅ +

∑

∑
 (2)

4. Respectively evaluate TP when CPU or IO is

the bottleneck: TPCPU=α/CPUx and TPIO=β/IOx,
where α and β are the bottleneck percentage parame-
ters for CPU and IO. According to the experiment
results, we let α=β=80% by default.

5. Return min(TPCPU, TPIO), End.
For estimating the CPU load and I/O amount per

attribute in Algorithm 2, we implemented additional
statistics on average length of an attribute in a relation,
average length of a row in a relation, and average
processing count of each attribute in each relation in a
workload.

EXPERIMENTS

Setup

The authors developed a prototype system of
ADAC model on Oscar DBMS. Following experi-
ments were all based on Oscar DBMS V5.5 for
Redhat Linux 9.0. CPU hyper-threading was turned
off, and write cache of disk device was turned off
either. All experiments were done by running the
system for a period, activating the optimization
process for 1000 iterations, and collecting statistics
after compression finished.

Following tables show the experiment configu-
rations. Table 1 is the hardware configurations, while
Table 2 is the experiment workloads.

We provide compression algorithms for most
common types in the DBMS. For instance, attributes
with BPCHAR/VARCHAR types are associated with
Huffman encoding, LZ, bit cutting (i.e., for an all
ASCII value, we transform each character from 8 bits
to 7 bits; and for an all digit value, we apply an 8 to 4

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1648

bits compression), space trimming (removing all
padding blanks from a BPCHAR attribute). For an
INT2/INT4/INT8 attribute, we compress the values to
fewer bytes than it should have (1 byte for 0~27−1, 2
bytes for 27~215−1, etc.). We sort the compression
methods by their data type and their compression ratio
in compression functions set CM.

Evaluate the ADAC model

Figs.3~6 show comparisons of data scales, CPU
loads, IO amount and throughput in three situations.
The first is not to compress at all (NONE), the second
is to compress with ADAC model (ADAC) and the
last is maximally compressing all data in the database
(MAXIMIZE). For conciseness, we omit indexes
created for each workload.

As shown in Fig.3, for every workload, the
compress-ratio: MAXIMIZE>ADAC>NONE. Fig.4
shows that when nothing is compressed, the experi-
ments for 3 and 4 have relatively high CPU loads. If
these workloads are compressed excessively, CPU
may become the bottleneck of performance, and the
overall performance drops. When applying ADAC,
only a few attributes which have relatively consid-
erable impact on IO will be compressed. The CPU
loads after compression are almost the same as the
original as shown in Fig.4.

In Fig.5, after ADAC compression, the I/O

amount is less than NONE due to reduction in data
scales. However, when applying MAXIMIZE com-
pression, the bottlenecks are no longer I/O, and the
amount of I/O decreased distinctly. In the fifth
workload, there are large numbers of sequential I/O’s,
obviously larger than other workloads. Because of the
incomparability of the workloads, the throughputs in
Fig.6 are normalized before comparison, e.g., the
throughput of each workload is fixed at 1.0 for NONE,
and the computed ratio of ADAC and MAXIMIZE’s
throughput are compared to it. The results in Fig.6
show that ADAC-compression provides better
throughput compared with NONE and MAXIMIZE.

Parameter selection

Tunable parameters in ADAC model are α and β
in the throughput estimator algorithm.

In Fig.7, fix β=80% and vary α in [40%, 120%]
in steps of 10%. When α nears 80%, the throughput
reaches the maximum. To let α≤60% leads to under-

Table 1 Hardware configurations used in the experiments
PLM
No. Machine CPU Memory

Storage
device

A
Dawning
S240XP
Server

Xeon 2 G
CPU*4 SMP 2 GB

Dual SCSI
Disk

RAID-0

B PC Work-
station

Pentium IV
2.4 G CPU*1 512 MB IDE Disk

Table 2 Experiment workloads
Group PLM No. Experiment workload

1 A TPC-C 120W
2 B TPC-C 15W
3 A TPC-W 2000 EB
4 B TPC-W 200 EB

 5* A PDM Brute Force
TPC-C (TPC, 2005) and TPC-W (TPC, 2002) are international
benchmarks for database systems. *: based on a PDM application
system developed by us, and the corresponding workload is a group
of SQL statements simulating the daily operations in a brute-force
way

1 2 3 4 5
0

20

40

60

80

100

C
PU

 lo
ad

 (%
)

NONE
ADAC
MAXIMIZE

Fig.4 Comparison of CPU loads
Group

1 2 3 4 5
0

2

4

6

8

10

12

D
at

a
sc

al
e

(G
B

)

NONE
ADAC
MAXIMIZE

Fig.3 Comparison of data scales
Group

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1649

estimating the CPU power, the compression schema
is not optimal, and the performance drops. To let α≥
100% leads to overestimating the CPU power, the
compression schema excessively compressed data,
and CPU becomes the bottleneck to decrease the
performance sharply.

In Fig.8, fix α=80% and vary β in [40%, 120%]
in steps of 10%. When β is larger than 70%, the
throughput tends to be an invariable maximal value.

To let α≤60% leads to underestimating the IO band-
width and to compressing the database excessively.
However when α≥80%, properly or over estimating
the IO bandwidth, the performance estimation is only
related with the CPU power and not related with β. So,
the generated compression schema and the optimal
throughputs are all the same.

Experiments revealed that when α=β=80%, the
ADAC model will mostly boost the overall per-
formance of a database system.

CONCLUSION

In this paper, we introduce the adaptive database
attribute compression (ADAC) problem. A model
which adopts a swarm evolution algorithm based on
the SWAF framework is proposed to solve the prob-
lem. The model is prototyped, with experiments
showing that ADAC is correct and efficient for
automating the selection of compression scheme. The
contribution of our work includes:

(1) Introducing the adaptive database attribute
compression;

(2) Proposing a physical database design frame-
work aiming at solving not only the database com-
pression problem, but also other physical database
design problems;

(3) Integrating swarm evolution to do optimal
search in a huge solution space introduced by the
adaptive database attribute compression problem.

Future researches include a theoretical model to
estimate the performance by mining statistics and
trying to apply our techniques to solve other auto-
matic physical database design problems.

40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut

α (%)

 1
 2
 3
 4
 5

Fig.7 Impacts on throughput by different α’s

40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut

β (%)

 1
 2
 3
 4
 5

Fig.8 Impacts on throughput by different β’s

1 2 3 4 5
0

2

4

6

8

IO
 a

m
ou

nt
 (M

b/
s)

NONE
ADAC
MAXIMIZE

Fig.5 Comparison of I/O amount
Group

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut

Fig.6 Comparison of normalized throughput

NONE
ADAC
MAXIMIZE

Group

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1650

References
Agrawal, S., Chaudhuri, S., Narasayya, V., 2000. Automated

Selection of Materialized Views and Indexes for SQL
Databases. 26th International Conference on Very Large
Databases. Morgan Kaufmann, Cairo, p.496-505.

Agrawal, S., Chaudhuri, S., Das, A., Narasayya, V., 2003.
Automating Layout of Relational Databases. 19th Inter-
national Conference on Data Engineering. IEEE Com-
puter Society, Bangalore, p.607-618.

Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya,
V., Syamala, M., 2004a. Database Tuning Advisor for
Microsoft SQL Server 2005. 30th International Confer-
ence on Very Large Databases. Morgan Kaufmann, To-
ronto, p.1110-1121.

Agrawal, S., Narasayya, V., Yang, B., 2004b. Integrating
Vertical and Horizontal Partitioning into Automated
Physical Database Design. ACM SIGMOD International
Conference on Management of Data. ACM, Paris,
p.359-370. [doi:10.1145/1007568.1007609]

Bäck, T., 1997. Evolutionary computation: comments on the
history and current state. IEEE Transactions on Evolu-
tionary Computation, 1(1):3-17. [doi:10.1109/4235.58
5888]

Brown, K.P., Mehta, M., Carey, N.J., Livny, M., 1994. To-
wards Automated Performance Tuning for Complex
Workloads. 20th International Conference on Very Large
Databases. Morgan Kaufmann, Santiago de Chile, p.72-84.

Bruni, P., Naidoo, R., 1998. DB2 for OS/390 and Data Com-
pression. IBM Redbook.

Chaudhuri, S., Weikum, G., 2000. Rethinking Database Sys-
tem Architecture: Towards a Self-tuning RISC-style Da-
tabase System. 26th International Conference on Very
Large Databases. Morgan Kaufmann, Cairo, p.1-10.

Chen, Z.Y., 2002. Building Compressed Database Systems.
Ph.D Dissertation, Cornell University.

Chen, Z.Y., Gehrke, J., Korn, F., 2001. Query Optimization in
Compressed Database Systems. ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, Santa
Barbara, p.271-282.

Clerc, M., Kennedy, J., 2002. The particle swarm—explosion,
stability, and convergence in a multidimensional complex
space. IEEE Transactions on Evolutionary Computation,
6(1):58-73. [doi:10.1109/4235.985692]

Cormack, G.V., 1985. Data compression on a database system.
Communications of ACM, 28(12):1336-1342. [doi:10.
1145/214956.214963]

Dorigo, M., Gambardella, L.M., 1997. Ant colonies for the
traveling salesman problem. Biosystems, 43(2):73-81.
[doi:10.1016/S0303-2647(97)01708-5]

Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant system:
optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Csybernetics, Part B,
26(1):29-41. [doi:10.1109/3477.484436]

Dorigo, M., Gianni, D.C., Gambardella, L.M., 1999. Ant
algorithms for discrete optimization. Artificial Life,
5(2):137-172. [doi:10.1162/106454699568728]

Goldstein, J., Ramakrishnan, R., Shaft, U., 1998. Compressing

Relations and Indexes. 14th International Conference on
Data Engineering. IEEE Computer Society, Orlando,
p.370-379. [doi:10.1109/ICDE.1998.655800]

Graefe, G., Shapiro, L.D., 1991. Data Compression and Da-
tabase Performance. Symposium on Applied Computing.
IEEE Computer Society, Kansas, p.22-27.

Gray, J., Reuter, A., 1993. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann.

Hoque, A.S.M.L., McGregor, D.R., Wilson, J., 2002. Database
Compression Using an Offline Dictionary Method. 2nd
International Conference on Advance in Information
Systems. Springer-Verlag Heidelberg, Izmir, p.11-20.

Jeffrey, A.H., Mary, P., Fred, R.M., 2002. Modern Database
Management (6th Ed.). Prentice Hall.

Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization.
International Conference on Neural Network. Institute of
Electrical and Electronics Engineers, Perth, p.1942-1948.

Oracle, 2002. Table Compression in Oracle9i Release2. Oracle
Technical White Paper. Available at http://www.ora-
cle.com/technology/products/bi/pdf/o9ir2_compression_
twp.pdf on 21st Feb., 2006.

Roth, M.A., van Horn, M.J., 1993. Database compression.
ACM SIGMOD Record, 22(3):31-39. [doi:10.1145/
163090.163096]

Severance, D., 1983. A practitioner’s guide to data base com-
pression. Information Systems, 8(1):51-62. [doi:10.1016/
0306-4379(83)90030-3]

Steve, R., 1993. Automating Physical Database Design. Ph.D
Dissertation, Department of Computer Science of the
Graduate School of Arts and Sciences, New York Uni-
versity.

Steve, A.F., 1998. Foundations of Social Evolution. Princeton
University Press.

Storn, R., Price, K., 1997. Differential evolution―a simple
and efficient heuristic for global optimization over con-
tinuous spaces. Journal of Global Optimization, 11(4):
341-359. [doi:10.1023/A:1008202821328]

TPC, 2002. TPC Benchmark W (Web Commerce) Specifica-
tion (Version 1.8). Transaction Processing Performance
Council. Available at http://tpc.org/tpcw/spec/tpcw_
V1.8.pdf on 21st Feb., 2006.

TPC, 2005. TPC Benchmark C Standard Specification (Revi-
sion 5.6). Transaction Processing Performance Council.
Available at http://tpc.org/tpcc/spec/tpcc_current.pdf on
21st Feb., 2006.

Xie, X.F., Zhang, W.J., 2004. SWAF: Swarm Algorithm
Framework for Numerical Optimization. In: Deb, K., Poli,
R., Banzhaf, W., et al. (Eds.), Genetic and Evolutionary
Computation Conference. Springer-Verlag Heidelberg,
Seattle, p.238-250.

Yu, X.J., Yao, X., Choi, C.H., Gou, G., 2003. Materialized
view selection as constrained evolutionary optimization.
IEEE Transaction on System, Man and Cybernetics, Part
C, 33(4):458-467. [doi:10.1109/TSMCC.2003.818494]

Hu et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1642-1651 1651

Zhang, W.J., Xie, X.F., 2003. DEPSO: Hybrid Particle Swarm
with Differential Evolution Operator. IEEE International
Conference on Systems, Man and Cybernetics. IEEE
Computer Society, Washington D.C., p.3816-3821.

Zhang, C., Yao, X., Yang, J., 2001. An evolutionary approach
to materialized view selection in a data warehouse environ-

ment. IEEE Transaction on System, Man and Cybernetics,
Part C, 31(3):282-294. [doi:10.1109/5326.971656]

Zilio, D.C., Zuzarte, C., Lightstone, S., et al., 2004. Recom-
mending Materialized Views and Indexes with IBM DB2
Design Advisor. International Conference on Autonomic
Computing. New York, p.180-188.

JZUS-A focuses on “Applied Physics & Engineering”

 Welcome your contributions to JZUS-A
Journal of Zhejiang University SCIENCE A warmly and sincerely welcomes scientists all over

the world to contribute Reviews, Articles and Science Letters focused on Applied Physics & Engi-
neering. Especially, Science Letters (3−4 pages) would be published as soon as about 30 days (Note:
detailed research articles can still be published in the professional journals in the future after Science
Letters is published by JZUS-A).

 JZUS is linked by (open access):

SpringerLink: http://www.springerlink.com;
CrossRef: http://www.crossref.org; (doi:10.1631/jzus.xxxx.xxxx)
HighWire: http://highwire.stanford.edu/top/journals.dtl;
Princeton University Library: http://libweb5.princeton.edu/ejournals/;
California State University Library: http://fr5je3se5g.search.serialssolutions.com;
PMC: http://www.pubmedcentral.nih.gov/tocrender.fcgi?journal=371&action=archive

Welcome your view or comment on any item in the journal, or related matters to:
Helen Zhang, Managing Editor of JZUS
Email: jzus@zju.edu.cn, Tel/Fax: 86-571-87952276/87952331

SCIENCE A
Journal of Zhejiang University

Editors-in-Chief: Pan Yun-he

ISSN 1009-3095 (Print); ISSN 1862-1775 (Online), monthly

www.zju.edu.cn/jzus; www.springerlink.com
jzus@zju.edu.cn

