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Abstract:    Compression is an intuitive way to boost the performance of a database system. However, compared with other 
physical database design techniques, compression consumes large amount of CPU power. There is a trade-off between the re-
duction of disk access and the overhead of CPU processing. Automatic design and adaptive administration of database systems are 
widely demanded, and the automatic selection of compression schema to compromise the trade-off is very important. In this paper, 
we present a model with novel techniques to integrate a rapidly convergent agent-based evolution framework, i.e. the SWAF 
(SWarm Algorithm Framework), into adaptive attribute compression for relational database. The model evolutionally consults 
statistics of CPU load and IO bandwidth to select compression schemas considering both aspects of the trade-off. We have im-
plemented a prototype model on Oscar RDBMS with experiments highlighting the correctness and efficiency of our techniques. 
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INTRODUCTION 
 

As the Internet develops, the volume of infor-
mation increases sharply. Capacity of storage me-
dium increases exponentially, while the power of 
CPU chips increases under Moore’s Law. However, 
transfer bandwidth of storage medium increases much 
slower. For a large relational database system (with 
capacity between a few giga- to multi-tera-bytes), 
bandwidth of the magnetic disks is always the bot-
tleneck of performance. In traditional database re-
search, researchers studied various physical database 
design methods, including indexes, materialized 
views, vertical/horizontal partitioning (Steve, 1993; 
Jeffrey et al., 2002) and compression (Severance, 
1983) to solve this problem. Database compression 
boosts system performance by saving storage space 
and reducing disk access frequency. Many compres-

sion techniques for databases have been studied (Roth 
and van Horn, 1993; Goldstein et al., 1998), and some 
commercial DBMS introduced compression func-
tions (Bruni and Naidoo, 1998; Oracle, 2002). 

As features of relational database management 
system become more and more diversified and com-
plicated, its management and optimization become 
much more difficult. Many applications require that a 
database system is simple to manage and that its 
performance is predictable. Furthermore, a self- 
managing/autonomic DBMS is very desirable. 
Nowadays, simplifying database management and 
automatically designing physical database schemas 
has become a hotspot in database research (Chaudhuri 
and Weikum, 2000; Agrawal et al., 2000; 2003; 
2004a; 2004b; Zhang et al., 2001; Yu et al., 2003; 
Zilio et al., 2004). Database compression, distinct 
from techniques in those researches, demands addi-
tional CPU overhead, which means it will sharply 
increase CPU load while decreasing the data scale 
during the compressing process. The trade-off must 
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be taken into account to decide which compression 
schema provides the highest throughput. 

The rest of this paper is organized as follows. We 
first review related work, and then formalize the 
“adaptive database attribute compression” problem. 
An evolution model based on SWAF (Xie and Zhang, 
2004) is proposed to solve this problem, and we dis-
cuss two key algorithms in the model. We use a pro-
totype of the model to compare results on different 
workloads. In the last section, we conclude the paper. 
 
 
RELATED WORK 
 

There are two advantages in compressing data in 
database systems: one is reduced database scale, and 
the other is improved performance. Due to inexpen-
sive and popularization of mass storage devices, we 
only focus on the performance issue. Cormack (1985) 
presented a database compression method based on 
revised Huffman code. Graefe and Shapiro (1991) 
studied performance improvement when data are kept 
compressed as long as possible in query execution. 
Chen et al.(2001) and Hoque et al.(2002) continued 
the work by discussing the query optimization algo-
rithms for compressed data. Roth and van Horn (1993) 
summarized various compression methods, and ana-
lyzed advantages and disadvantages of compression. 
Goldstein et al.(1998) divided database compression 
into two levels, page-level and file-level, and intro-
duced a compression algorithm based on frames of 
reference. In the commercial world, Oracle 9i Release 
2 introduced table compression features based on 
extracting same-value attributes in a data page (Ora-
cle, 2002). IBM DB2 exploited hardware-based com-
pression function in its OS/390 version (Bruni and 
Naidoo, 1998). The compression method discussed in 
this paper selects compression method for each 
attribute in each relation adaptively according to its 
type and value. The technique integrates the above 
compression algorithms’ merits, and can be seam-
lessly integrated with the table compression feature 
provided by Oracle to offer better overall perform-
ance. 

Due to the diversity of features and scale of data 
in a database system, it is increasingly imperative to 
automatically administer the database. Brown et 
al.(1994) considered automatic resource assignment 
algorithm to satisfy performance goals. Chaudhuri 

and Weikum (2000) analyzed the increasingly com-
plicated architecture of a database system, and indi-
cated that the architecture should have to be designed 
as a self-tunable RISC-style system. Agrawal et 
al.(2000; 2003; 2004b) studied automatic physical 
database design algorithms on index and materialized 
view selection, storage layout and partitioning. 
Commercial DBMSs, such as Oracle, Microsoft SQL 
Server and IBM DB2, introduced functions to design 
index and materialized view automatically (Agrawal 
et al., 2004a; Zilio et al., 2004). Zhang et al.(2001) 
and Yu et al.(2003) integrated evolution computation 
techniques into automatic materialized view selection. 
Chen (2002) designed a database system with auto-
matic compression features; and concentrated on 
compressing string values using hierarchical diction-
ary-encoding methods, with the proposal providing 
very limited compression methods for automatic 
selection.  

We identify the search for the optimal compres-
sion schema design as a discrete optimization prob-
lem. Evolution computation techniques can solve 
various discrete/continuous optimization problems, 
and are robust and converge rapidly. They succeed 
from three strongly related but independently devel-
oped approaches: Genetic Algorithm, Evolutionary 
Programming, and Evolutionary Strategies (Bäck, 
1997). Researchers introduced the concept of swarm 
evolution (Steve, 1998) based on researches on bio-
logical social evolution. In swarm evolution, each 
individual in the society retrieves evolution knowl-
edge in two ways: individual evolution and social 
evolution. Dorigo et al introduced ant colony opti-
mization based on observation of the food-seeking 
strategy of a colony of ants (Dorigo et al., 1996; 1999; 
Dorigo and Gambardella, 1997). Kennedy studied the 
movement of a flock of birds and a school of fishes, 
and presented the particle swarm optimization 
(Kennedy and Eberhart, 1995; Clerc and Kennedy, 
2002). Zhang and Xie (2003) introduced a swarm 
evolution algorithm based on differential evolution 
which exploits a differential vector studied by Storn 
and Price (1997). Based on previous research work, 
Xie and Zhang (2004) presented the SWAF evolution 
framework, which integrates different swarm evolu-
tion algorithms by different generate-and-test rules 
and adaptively deploys the rules. It was proved to be a 
robust and rapidly convergent evolution framework.  
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This paper integrates swarm evolution into 
adaptive database attribute compression. The opti-
mization is triggered periodically or by a threshold 
value, and according to the statistics collected from 
DBMS and underlying OS, the evolution framework 
will run for a while. The optimal result, the best 
compression schema, will be generated and data in 
the database will be compressed directly or indirectly 
according to the scheme. Experiments on Oscar 
DBMS show that these techniques are valuable and 
heuristic for researches on database compression and 
automatic physical database design. 
 
 
ADAPTIVE DATABASE ATTRIBUTE COM-
PRESSION (ADAC) 
 

Various types of data are stored in database, and 
different compression algorithms generate different 
compression ratios. Even for the same type data, the 
compression ratio varies a lot. Moreover, compres-
sion generates high CPU overhead, and, for a system 
with high CPU load when nothing is compressed, 
compressing all data in the database is not a good idea. 
It is important to provide an adaptive way to manage 
the compression of database attributes. In database 
attribute compression, the database system adaptively 
generates compression schema according to current 
data schema, current workload and runtime envi-
ronment, to provide the highest database throughput. 
We will first clarify some related concepts before 
digging into the details. 

System Environment (SE) is the environment of 
a database system. SE=<W, A, E>, where W describes 
the workload, A is the database data schema and en-
vironment parameters E include CPU capability, I/O 
bandwidth, etc. Every work w (w∈W) is defined by a 
tuple <q, f>, where q is an SQL statement and f is the 
occurrence frequency of the statement. Each attribute 
a (a∈A) designates a column in a table or an index 
key.  

Compression Method (CM) is a set of compres-
sion functions. For a given compression algorithm, if 
it generates different compress-ratios for the same 
data when configured with various arguments, it is 
treated as different compression functions. Compres-
sion Schema (CS) is a set of compression policies, 
with each compression policy cs∈CS being defined 

by a tuple <a, cm>, where a∈SE.A, cm∈CM, and 
∀a∈SE.A, ∃cs∈CS:cs.a=a. For generality, we ignore 
detailed compression functions when discussing the 
framework and optimization algorithms below. In-
stead, the involved compression algorithms will be 
mentioned when evaluating the proposed techniques.  

Given certain SE, applying a CS, the throughput 
(TP) is defined as the number of processed SQL 
statements per time unit. TP=tpSE(CS), TP∈ú, and 
tpSE is the function for computing throughput with SE. 
Finally, we define the ADAC problem as: 
Definition 1 (Adaptive Database Attribute Compres-
sion Problem)    Find a subscript vector X=(x1, …, 
xi, …, xD) (D=|SE.A|, 1≤i≤D, ,ix ∈  1≤xi≤|CM|) 
which constructs a compression schema CS={(ai, 
cmxi)|cmxi∈CM, ai∈SE.A, 1≤i≤|SE.A|} to let tpSE (CS) 
be maximum. 
 
 
AN ADAC MODEL BASED ON SWARM EVO-
LUTION 
 
Swarm algorithm framework 

A framework derived from SWAF (Xie and 
Zhang, 2004) is introduced to solve the ADAC prob-
lem. 
Definition 2 (Society)    The society S is a multi-  
dimensional space for all agents to live and commu-
nicate. S is defined by a triple <SS, Eval, IG>, where 
SS is the solution space of the problem, Eval is an 
evaluation function to evaluate each position in SS 
and IG is the shared information in the society. In 
ADAC problem, SS={i|0≤i≤|CM|, i∈ }|S.A|, Eval=tpSE 
and IG is to store the global optimized solution. 
Definition 3 (Agent)    Each agent Ag is a cognitive 
unit in fast-and-frugal heuristics. Instead of commu-
nicating with each other directly, the agents commu-
nicate by reading or writing the global shared infor-
mation S.IG. Fig.1 is the architecture of the agent, and 
formally, Ag is defined by a triple <MP, MD, MW>, 
where:   

MP is the Procedure Memory, which stores rules 
to control the evolution process. It is composed of 
three types of rules: {RF} is a set of rules to describe 
the constraint of a problem, {RGT} is a set of rules to 
generate and evaluate the target position of a move-
ment and RRD is a rule to deploy the above rules se-
lectively. 
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MD is the Declarative Memory, which stores 
knowledge possessed by an agent. It is divided into 
two categories: one is public knowledge DO, and the 
other is private knowledge DI. Only information in 
DO will be updated to S.IG. For different rules in MP, 
the information in MD is different; however, at least, 
the current position and the best position of this agent 
should exist in MD. 

MW is the Work Memory. When an agent is ac-
tivated, according to the deployed rule from MP, it 
will compute in MW with information from MD and 
S.IG. After new position is generated, the agent will 
move to the new position, and may update informa-
tion to S.IG. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Definition 4 (SWAF)    We define the swarm algo-
rithm framework as a tuple <S, Q>, where S is the 
society and Q={Agi|1≤i≤N, i∈Z} is composed of N 

agents. 
 
Descriptions of the ADAC model 

The ADAC model based on SWAF framework 
is shown in Fig.2. We study key components in 
ADAC model as follows: 

Workload Miner (WLM) collects necessary 
knowledge of the environment. The knowledge 
comes from two sources. One is the database man-
agement system, including the workload (SE.W), data 
schema (SE.A), average CPU and I/O bandwidth 
usage for each attribute in SE.A and average com-
press-ratio and CPU overhead for each compression 
function in CM and each attribute in SE.A. The other 
one is the underlying operating system, including 
overall CPU and I/O bandwidth usage and memory 
usage. The collector periodically collects information 
from DBMS and OS, and forgets old information 
according to its “age”. 

Throughput Estimator (TPE) estimates through- 
put of a database system at given system environment 
SE and compression schema CS. TPE is initialized 
with information collected by EIC to generate tpSE, 
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Fig.1  Architecture of agents in the swarm algorithm
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and it will evaluate the evaluation request X from the 
SWAF optimizer and send the result tpSE(X) back to 
the optimizer. 

Optimizer (OPT) is the key component in the 
model. Currently, it is implemented exploiting the 
SWAF framework. However, other evolution algo-
rithms can simply replace it. OPT is initialized with 
knowledge collected by EIC, and activates a number 
of agents to start evolution. OPT contacts TPE con-
stantly to evaluate positions in the solution space, and, 
after a few iterations, the best result, i.e. the compres-
sion schema with maximal throughput, is sent to 
compression schema executor (CSE).  

CSE employs optimal compression schema in 
the database system. CSE works in two ways, one is 
directly compressing, and another is indirectly com-
pressing. For the first, CSE directly accesses storage 
module in DBMS to compress data. It only affects 
physical structures of an attribute value, but not the 
logical semantics, so only page latches other than 
transaction level locks (Gray and Reuter, 1993) are 
required. For the second way, CSE delegates com-
pression to executor module in DBMS. Whenever 
SE.W alters an attribute, the executor will compress it 
before storing it according to the compression 
schema.  

While running, EIC continuously collects envi-
ronment information, and activates optimization 
conditionally (for example, a period of time elapses 
from last activation, or the system load reaches a 
threshold). When optimization starts, first, TPE gen-
erates evaluation function tpSE, and OPT initializes its 
inner SWAF framework, setting up the society, the 
number of agents and deploying agents at different 
positions in the society. Consequently, OPT activates 
all agents to let them roam in the solution space ac-
cording to the evolution algorithm. After a few cycles 
of optimization, an optimal solution is stored in S.IG, 
and OPT stops optimization and submits the solution 
to CSE. CSE executes directly or indirectly to com-
press data accordingly.  

Compared with traditional database compression 
and automatic database administration techniques, the 
model presented above has many advantages. 

First, the model utilizes an adaptive framework, 
and will be activated under certain circumstances. The 
compression schema will be dynamically adjusted 
when the workload, the data schema or the other en-

vironment factors changes. The procedure will be 
automatically performed without administrators.  

Second, the model will compress data in the 
background, and will not markedly affect the per-
formance and simultaneousness of normal transaction 
processing.  

Third, components in the model are conceptually 
independent and logically decoupled from the DBMS. 
Benefiting from the independence, these components 
may run on other machines, and communicate with 
the database system through network. The competi-
tion for resources between normal transaction proc-
essing and optimization can be alleviated. 

Last, the optimization algorithm in the model is 
based on the SWAF swarm evolution framework. The 
agents live in the society move towards a direction 
chosen according to both the optimal solution of the 
agent (local optimal solution) and the optimal solu-
tion of the society (global optimal solution). Due to 
the RRD rule deploying various generate-and-test rules 
in {RGT} adaptively, the model will take advantage of 
various swarm optimization algorithms to achieve 
faster convergence.  
 
 
KEY ALGORITHMS 

 
This section will describe two major algorithms 

in ADAC model: the evolution algorithm in OPT and 
the throughput evaluation algorithm in TPE.  

The SWAF evolution algorithm, responsible for 
solving the ADAC problem, is the most important 
algorithm in the model. The SWAF framework may 
utilize various optimization rules, but for convenience, 
we only use the rule for particle swarm algorithm 
(Kennedy and Eberhart, 1995). In this rule, three 
kinds of information, the current position, the last 
position in DI and the local optimal position in DO, are 
stored in MD of each agent. In addition, the global 
optimal position is stored in S.IG. 
Algorithm 1    Denote N as the number of agents in 
SWAF, T as the maximum iteration count. At the tth 
iteration (1≤t≤T, t∈Z), agent Agi (1≤i≤N, i∈Z) is at 

position X(t) and the last position is O(t). The local 
optimal position is P(t), and the global optimal posi-
tion is G(t).  

1. Begin. Initialize the SWAF framework, and 
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randomly choose the initial position X(1) of each agent 
Agi in SWAF.Q. Let P(1)=O(1)=X(1), and G(1)=max(X(1), 
Agi). Set iteration count t=1. 

2. While t≤T, set current agent number i=1, and 
begin an iteration. 

3. While i≤N, process the ith agent Agi. 
4. Retrieve and activate the RPS representing the 

particle swarm rule from Agi.MP.RGT, and retrieve X(t), 
O(t), P(t) from Agi.MD. Get G(t) from S.IG, and put all 
the information into MW. 

5. Generate the next position of X(t), and calcu-
late its dth dimension as in (Clerc and Kennedy, 
2002): 
 

Xd
(t+1)=|Xd

(t)+CF⋅[Vd
(t)+(c1+c2)⋅UR⋅(Pd

(t)−Xd
(t))]|,  (1) 

 
where CF=2/{[φ⋅(φ−4)]1/2+φ−2}, φ=c1+c2>4, V(t)= 
X(t)−O(t), and UR is a random real value between 0 and 
1. The default values for utilities are c1=c2=2.05. 

6. Set O(t+1)=X(t) to save the original position. 
7. P(t+1)=max(P(t), X(t+1)), Store X(t+1), O(t+1), P(t+1) 

back into Agi.MD. 
8. G(t+1)=max(G(t), X(t+1)), set G(t+1) back to S.IG. 
9. i++. End While (for i) 
10. t++. End While (for t) 
11. Return G(t) in S.IG, End. 
The throughput estimate algorithm is used to 

evaluate solutions during the evolution procedure. It 
is difficult to estimate the throughput of a database 
system directly. The optimizers of traditional DBMS 
can only assess the cost for a single statement, but 
cannot estimate the impact of concurrent transactions, 
randomly or sequentially IOs, etc. The adopted esti-
mate algorithm in ADAC model is according to his-
torical information of a database system. Although 
there are limitations of this approach, results of ex-
periments proved it is accurate enough for ADAC 
model in most applications.  
Algorithm 2    For an attribute ai in SE.A, using 
function cmj in CM to compress it, the CPU overhead 
ratio is fCPU(i, j)≥1, and the IO reduction ratio is fIO(i, j) 
≥1. Compute the throughput for a given solution X as 
follows:  

1. Begin. Initialize TPE. According to the sta-
tistics, for a unit of TP, compute the percentage of 
CPU load and I/O amount needed to process each 
attribute ai: cpui and ioi. Also, compute the percent-
ages of CPU load and IO caused by other processes: 

cpuo and ioo. 
2. Applying compression schema CS, the CPU 

load needed to process ai is cpui⋅fCPU(i, Xi), and the 
needed IO amount is ioi⋅fIO(i, Xi). 

3. Estimate percentages of CPU and IO for a unit 
of TP as follows: 
 

i CPU i o
1

i IO i o
1

[ ( , )] ,

[ ( , )] .

N

x
i

N

x
i

CPU cpu f i X cpu

IO io f i X io

=

=


= ⋅ + 


= ⋅ + 

∑

∑
      (2) 

 
4. Respectively evaluate TP when CPU or IO is 

the bottleneck: TPCPU=α/CPUx and TPIO=β/IOx, 
where α and β are the bottleneck percentage parame-
ters for CPU and IO. According to the experiment 
results, we let α=β=80% by default.  

5. Return min(TPCPU, TPIO), End. 
For estimating the CPU load and I/O amount per 

attribute in Algorithm 2, we implemented additional 
statistics on average length of an attribute in a relation, 
average length of a row in a relation, and average 
processing count of each attribute in each relation in a 
workload.  
 
 
EXPERIMENTS 
 
Setup 

The authors developed a prototype system of 
ADAC model on Oscar DBMS. Following experi-
ments were all based on Oscar DBMS V5.5 for 
Redhat Linux 9.0. CPU hyper-threading was turned 
off, and write cache of disk device was turned off 
either. All experiments were done by running the 
system for a period, activating the optimization 
process for 1000 iterations, and collecting statistics 
after compression finished. 

Following tables show the experiment configu-
rations. Table 1 is the hardware configurations, while 
Table 2 is the experiment workloads.  

We provide compression algorithms for most 
common types in the DBMS. For instance, attributes 
with BPCHAR/VARCHAR types are associated with 
Huffman encoding, LZ, bit cutting (i.e., for an all 
ASCII value, we transform each character from 8 bits 
to 7 bits; and for an all digit value, we apply an 8 to 4 
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bits compression), space trimming (removing all 
padding blanks from a BPCHAR attribute). For an 
INT2/INT4/INT8 attribute, we compress the values to 
fewer bytes than it should have (1 byte for 0~27−1, 2 
bytes for 27~215−1, etc.). We sort the compression 
methods by their data type and their compression ratio 
in compression functions set CM. 

 
Evaluate the ADAC model 

Figs.3~6 show comparisons of data scales, CPU 
loads, IO amount and throughput in three situations. 
The first is not to compress at all (NONE), the second 
is to compress with ADAC model (ADAC) and the 
last is maximally compressing all data in the database 
(MAXIMIZE). For conciseness, we omit indexes 
created for each workload. 

As shown in Fig.3, for every workload, the 
compress-ratio: MAXIMIZE>ADAC>NONE. Fig.4 
shows that when nothing is compressed, the experi-
ments for 3 and 4 have relatively high CPU loads. If 
these workloads are compressed excessively, CPU 
may become the bottleneck of performance, and the 
overall performance drops. When applying ADAC, 
only a few attributes which have relatively consid-
erable impact on IO will be compressed. The CPU 
loads after compression are almost the same as the 
original as shown in Fig.4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig.5, after ADAC compression, the I/O 

amount is less than NONE due to reduction in data 
scales. However, when applying MAXIMIZE com-
pression, the bottlenecks are no longer I/O, and the 
amount of I/O decreased distinctly. In the fifth 
workload, there are large numbers of sequential I/O’s, 
obviously larger than other workloads. Because of the 
incomparability of the workloads, the throughputs in 
Fig.6 are normalized before comparison, e.g., the 
throughput of each workload is fixed at 1.0 for NONE, 
and the computed ratio of ADAC and MAXIMIZE’s 
throughput are compared to it. The results in Fig.6 
show that ADAC-compression provides better 
throughput compared with NONE and MAXIMIZE. 
 
Parameter selection 

Tunable parameters in ADAC model are α and β 
in the throughput estimator algorithm.  

In Fig.7, fix β=80% and vary α in [40%, 120%] 
in steps of 10%. When α nears 80%, the throughput 
reaches the maximum. To let α≤60% leads to under- 
 

Table 1   Hardware configurations used in the experiments
PLM 
No. Machine  CPU Memory 

Storage  
device 

 

A 
Dawning 
S240XP 
Server 

 

Xeon 2 G 
CPU*4 SMP 2 GB 

Dual SCSI 
Disk 

RAID-0 

B PC Work-
station 

Pentium IV  
2.4 G CPU*1 512 MB IDE Disk 

 

Table 2  Experiment workloads 
Group PLM No. Experiment workload 

1 A TPC-C 120W 
2 B TPC-C 15W 
3 A TPC-W 2000 EB 
4 B TPC-W 200 EB 

 5* A PDM Brute Force 
TPC-C (TPC, 2005) and TPC-W (TPC, 2002) are international 
benchmarks for database systems. *: based on a PDM application 
system developed by us, and the corresponding workload is a group 
of SQL statements simulating the daily operations in a brute-force 
way 
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estimating the CPU power, the compression schema 
is not optimal, and the performance drops. To let α≥ 
100% leads to overestimating the CPU power, the 
compression schema excessively compressed data, 
and CPU becomes the bottleneck to decrease the 
performance sharply. 

In Fig.8, fix α=80% and vary β in [40%, 120%] 
in steps of 10%. When β is larger than 70%, the 
throughput tends to be an invariable maximal value. 

To let α≤60% leads to underestimating the IO band-
width and to compressing the database excessively. 
However when α≥80%, properly or over estimating 
the IO bandwidth, the performance estimation is only 
related with the CPU power and not related with β. So, 
the generated compression schema and the optimal 
throughputs are all the same.  

Experiments revealed that when α=β=80%, the 
ADAC model will mostly boost the overall per-
formance of a database system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CONCLUSION 
 

In this paper, we introduce the adaptive database 
attribute compression (ADAC) problem. A model 
which adopts a swarm evolution algorithm based on 
the SWAF framework is proposed to solve the prob-
lem. The model is prototyped, with experiments 
showing that ADAC is correct and efficient for 
automating the selection of compression scheme. The 
contribution of our work includes:  

(1) Introducing the adaptive database attribute 
compression; 

(2) Proposing a physical database design frame- 
work aiming at solving not only the database com-
pression problem, but also other physical database 
design problems; 

(3) Integrating swarm evolution to do optimal 
search in a huge solution space introduced by the 
adaptive database attribute compression problem. 

Future researches include a theoretical model to 
estimate the performance by mining statistics and 
trying to apply our techniques to solve other auto-
matic physical database design problems. 
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Fig.8  Impacts on throughput by different β’s 
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