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Abstract:    In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems 
with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ 
model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the 
time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal 
residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying 
robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown 
inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design 
example is used to demonstrate the validity and applicability of the proposed approach. 
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INTRODUCTION 
 

Due to increasing demand for higher perform-
ance, as well as for higher safety and reliability 
standards, the model-based approaches to fault de-
tection and isolation (FDI) for dynamic systems have 
received more and more attention during the last two 
decades (Chen and Patton, 1999; Chen and Saif, 2006; 
Frank and Ding, 1997; Gao and Wang, 2006; Jiang 
and Zhou, 2005; Zhou et al., 1998). Among these 
model-based approaches, the most common way is 
the observer-based approach (Chen and Patton, 1999), 
i.e., using state observers or filters to generate re-
siduals and using these residuals to set a threshold to 
detect the fault. Recently, with the rapid development 
of robust control theory and H∞ optimization control 
technique, more and more methods have been pre-
sented to solve robust fault detection and isolation 

(RFDI) problems (Chen and Patton, 1999; Ding et al., 
2000; Frank and Ding, 1997; Zhong et al., 2003). 
Different from robust control, the goal of robust fault 
detection is to distinguish between the faults effects 
and the effects of uncertain signals and perturbations. 
Therefore the performance of RFDI systems should 
be measured by a suitable trade-off between robust-
ness and sensitivity. 

As is well known, time delays are inherent in 
many real physical systems, such as chemical proc-
esses, long transmission lines in pneumatic systems, 
power and water distribution networks, air pollution 
systems, econometric systems, etc. Since the delayed 
state very often causes instability and poor perform-
ance of systems (Richard, 2003), increasing attention 
has recently been devoted to the robust fault detection 
filter (RFDF) design problems of the linear state de-
layed systems. Ding et al.(2001) studied the RFDF 
problems for time-delay LTI systems via introducing 
an idealized reference residual model. However, it 
only considered the sensitivity of the residual to the 
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faults when the reference residual model was de-
signed. In addition, the existing results achieved in 
delay-free systems are not suitable for time-delay 
systems because of existence of the state delay. To 
our knowledge, for the FDI case, relevant literature is 
relatively few for nonlinear time-delay systems, and 
so far, little attention has been paid to the RFDF de-
sign problems in the simultaneous presence of time 
delay, nonlinear parts and exogenous disturbance 
input. This motivates the present research on de-
signing H∞ RFDF for nonlinear time-delay systems 
with exogenous disturbance inputs. 

This paper deals with the problem of H∞ RFDF 
design for a class of state-delay nonlinear systems 
with exogenous disturbance inputs. This problem 
aims at designing the RFDF such that, for exogenous 
disturbances, the RFDF system is stable and has a 
prescribed H∞ performance, independently of the time 
delay. The class of systems under consideration is 
described by a linear delayed state space model with 
the addition of known nonlinearities, which depend 
on state as well as delayed state and satisfy the global 
Lipschitz conditions. In this paper, a reference re-
sidual model is used to reduce the RFDF design 
problem to a standard H∞ model-matching problem. 
The performance index used to design the reference 
residual model considers both the robustness against 
disturbances and the sensitivity to faults. In addition, 
applying the H∞ optimization technique, an delay- 
independent LMI approach to design the RFDF is 
proposed.  
 
 
PROBLEM STATEMENT 
 

Consider the following class of fault nonlinear 
time-delay systems 

 
( )tx =Ax(t)+Ad x(t−h)+Bu(t)+Gg(x(t), x(t−h)) 

+Bf f(t)+Bdd(t),                                      (1) 
y(t) =Cx(t)+Du(t)+Df f(t)+Ddd(t),                   (2) 

x(t)=0  ∀t∈[−h, 0], 
 
where ( ) nt ∈x  is the state vector, ( ) pt ∈u  is the 
control  input  vector, ( ) qt ∈y   is  the  measurement 
output vector, ( ) mt ∈d  is the disturbance input that 
belongs to 2 [0,  ),mL + ∞  ( ) lt ∈f  is the fault to be 

detected, h≥0 is an unknown but constant delay, g(⋅,⋅): 
gnn n× →  is a known nonlinear function. A, Ad, 

B, Bf, Bd, C, D, Df, Dd and G are known matrices with 
appropriate dimensions. 

Throughout this paper, we make the following 
assumptions: 
Assumption 1    (C, A) is detectable. 
Assumption 2    (Lipschitz condition) 

(1) g(0,0)=0; 
(2) ||g(x1,x2)−g(y1,y2)|| ≤ ||ρ1(x1−y1)||+||ρ2(x2−y2)|| 

for all 1 2 1 2, , , ,n∈x x y y  where ρ1 and ρ2 are known 
real constant matrices. 

We are interested in designing the so-called fault 
detection filter 

 

( ) ( )
dˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ         ( ), ( ) ( ) ( ) ,
t t t h t

g t t h t t
= + − +

+ − + −

x Ax A x Bu
G x x H y y

   (3) 

ˆ ˆ( ) ( ) ( ),t t t= +y Cx Du  ( )ˆ( ) ( ) ( ) ,t t t= −r V y y      (4) 
 
where ˆ ( ) nt ∈x  and ˆ( ) qt ∈y  represent the state 
and output estimation vectors, respectively; r(t) is the 
so-called generated residual signal. The design pa-
rameters of an RFDF are the observer gain matrix H 
and the residual weighting matrix V. Define the error 
state ˆ( ) ( ) ( ).t t t= −e x x  Then it follows from Eqs.(1) 
~(4) that 
 

f f

d d d

( ) ( ) ( ) ( ) ( )
         ( ) ( ) ( ),

t t t
t h t

= − + − +
+ − + −

e A HC e B HD f GΨ
A e B HD d

 (5) 

f d( ) ( ) ( ) ( )t t t t= + +r VCe VD f VD d ,                (6) 
 

where ( ) ( )ˆ ˆ= ( ), ( ) ( ), ( ) .g t t h g t t h− − −Ψ x x x x  
Note that the dynamics of the residual signal 

depends not only on f(t) and d(t), but also on the 
nonlinear part Ψ. The methods mentioned in (Ding et 
al., 2000; Garcia and Frank, 1997; Zhong et al., 2003) 
for delay-free case are not suitable for solving RFDF 
design problem, because there are time delays in 
e(t−h) and Ψ. Here, we propose to use a reference 
residual model describing the desired behavior of the 
residual vector r(t), to formulate the RFDF design 
problem as an H∞ model-matching problem, that is to 
find an idealized reference residual and minimize the 
worst case distance between the generated residual 
and the idealized reference residual. In the idealized 
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case, the observed states ˆ ( )tx  and ˆ( )t h−x  should be 
equal to x(t) and x(t−h) (i.e. Ψ=0). Therefore, ac-
cording to Eqs.(5) and (6) and assuming Ψ=0, the 
corresponding reference residual error model is given 
by 

 

f f d f

f f d d

( ) ( ) ( ) ( )
          ( ) ( ) ( ) ( ),

t t t h
t t

= − + −

+ − + −

e A HC e A e
B HD f B HD d

    (7) 

f f f d( ) ( ) ( ) ( ),t t t t= + +r VCe VD f VD d               (8) 

f ( )   ( 0),t t= ≤e 0  
 

where f ( ) nt ∈e  is the reference model error state 

vector, rf (t) is the reference model residual signal, H  
and V  are the parameters of the reference residual 
model to be designed. 

Thus the overall system can be described by 
 

d( ) ( ) ( ) ( ) ,t t t h t= + − + +η Aη A η Bw GΨ      (9) 

e f( ) : ( ) ( ) ( ) ( ),t t t t t= − = +r r r Cη Dw              (10) 
where 

f

,
 

=  
 

e
η

e
,

 
=  
 

f
w

d
,

− 
=  − 

0
0

A HC
A

A HC

d
d

d

,
 

=  
 

A
A

A
0

0
,

 
=  
 0
G

G [   ],= −C VC VC

f f d d

f f d d

,
− − 

=  − − 

B HD B HD
B

B HD B HD
  f f

d d

( )
.

( )

ΤΤ

Τ

 −
=  − 

VD VD
D

VD VD
 

 
Here we can see that in the design of RFDF, one 

main objective of this work is formulated as an H∞ 
model-matching design problem, i.e. applying robust 
H∞ optimization control technique, for all exogenous 
disturbance inputs and nonlinear parts, the generated 
residual r(t) will be designed as closely as possible to 
the reference model residual rf (t), independently of 
the unknown time-delay h. Thus, the problem of de-
signing an observer-based RFDF can be described as 
designing observer gain matrix H and residual 
weighting matrix V such that 

(1) System of Eqs.(9) and (10) is robustly as-
ymptotically stable; 

(2) Under zero initial condition, for given con-
stant γ>0 and any non-zero w(t)∈L2[0, ∞), system of  
 

Eqs.(9) and (10) satisfies the following inequality 
 

||re(t)||2<γ ||w(t)||2.                        (11) 
 

After designing RFDF, the remaining important 
task of this paper is the evaluation of the generated 
residual. One of the widely adopted approaches is to 
choose a so-called threshold Jth>0 and, based on this, 
use the following logical relationship for fault detec-
tion 
 

th2,

th2,

( ) a fault has occurred a alarm,

( ) no fault has occurred,

t J

t J
τ

τ

> ⇒ ⇒ 


≤ ⇒ 

r

r
(12) 

 

where 2

1

1/ 2 T
2,  

( ) = ( ) ( )d ,
t

t
t t t t

τ
 
  ∫r r r  τ=t1−t2, t∈[t1, t2]. 

Note that the length of the time window is finite 
(i.e. τ instead of ∞). Since in practice it is desired that 
the faults will be detected as early as possible, an 
evaluation of residual signal over the whole time 
range makes little sense (Ding et al., 2001; Zhong et 
al., 2003). 
 
 
MAIN RESULTS AND PROOFS 
 

As mentioned earlier, the design of RFDF for 
nonlinear time-delay systems can be formulated as an 
H∞ model-matching problem. We should design the 
reference residual model first; the RFDF design 
problems for nonlinear time-delay systems can then 
be solved. 

The following lemmas will be useful in design-
ing the RFDF for nonlinear time-delay systems. 
Lemma 1 (Wang et al., 2002)    Given constant ma-
trices χ1, χ2, χ3, where χ1 = T

1χ  and 0 < χ2 = T
2χ , then 

T 1
1 3 2 3+ <χ χ χ χ 0-  if and only if 

 

1 3

3 2

Τ 
< − 

0
χ χ
χ χ

 or equivalently 2 3

3 1

.Τ

− 
< 

 

χ χ
χ χ

0  

 
Lemma 2 (Lien, 2004)    Let A and B be real matrices 
of appropriate dimensions. For any scalar ε>0 and 
vectors , ,n∈x y  then 
 

2xTABy≤ε−1xTAATx+εyTBTBy. 
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Choice of reference residual model 
The selection of a suitable reference residual 

model is one of the key steps for designing an RFDF 
for nonlinear time-delay systems. If the reference 
residual model is not selected suitably, miss alarms or 
false alarms may occur. In order to select a suitable 
reference residual model, we first consider the fol-
lowing performance index 

 

f ff ( ) ( ) ,J s s
∞ ∞

= −r d r fT T                 (13) 

 
where 

fr fT  and 
fr dT  are the transfer functions from f 

and d to reference model residual rf, respectively. 
It is interesting to notice that setting Jf →min 

yields 
f

max
∞
→r fT  and  

f
min.

∞
→r dT  

Therefore the reference residual model can be 
designed according to the performance index Eq.(13), 
which takes into account the robustness of the refer-
ence model residual against disturbance and sensitiv-
ity to faults simultaneously. 

For the sake of simplicity, we assume that l=m. 
In fact, if l>m (or l<m), by extending 

fr dT  (or 
fr fT ) 

and d (or f) to 
f f l m− =  r d r dT T φ  (or 

f f m l− =  r f r fT T φ ) and 
l m−

 
=  
 

d
d

φ
 (or 

m l−

 
=  
 

f
f

φ
), 

we can have the same results, where φ denotes null 
matrix with appropriate dimensions. 

Consider the following transfer function 
 

f f f
, =  r ω r f r dT MT N M T T N          (14) 

 

where the matrices q q×∈M  and 2l l×∈N  select 
the appropriate input/output channels or channels 
combinations. 

T admits the following realization 
 

f f d f 1

f f 1

( ) ( ) ( ) ( ) ( ),
:

( ) ( ) ( ),

t t t h t

t t t

 = − + − +


= +

e A HC e A e B Nω
T

r MVCe MD Nω
(15) 

where 

1 f f d d[    ],= − −B B HD B HD 1 f d[   ]=D VD VD  and 
ω=d−f. 

Choosing M=Iq×q, N=[–Il×l  Il×l]T and giving α>0, 
we have 

f f f f∞ ∞ ∞ ∞
= − > −r d r f r d r fT T T T T , 

f f
.α α

∞ ∞ ∞
< ⇒ − <r d r fT T T  

 
Then the reference residual model can be designed by 
the following optimization problem: 

 

,
minα
H V

  s. t. Eq.(13) and Eq.(15).           (16) 

 
The following theorem provides us a sufficient 

condition ensuring that for a given α>0, the reference 
RFDF satisfies Eq.(16). 
Theorem 1    Given α>0 and reference residual 
model of Eqs.(7) and (8), if there exist symmetric 
positive-definite matrices P>0, Q>0 and Z>0 as well 
as matrix Y such that 
 

1 2 d

3:
 
 = ∗ < 
 ∗ ∗ − 

Ξ Ξ PA
Ξ Ξ

Q
0 0                 (17) 

 
holds, then system of Eqs.(7) and (8) is stable and 
satisfies 

f f
( ) ( ) ,s s α

∞ ∞
− <r d r fT T  moreover 1 ,−=H P Y  

1/ 2=V Z . Here 
 

1 ,Τ Τ Τ Τ= + − − + +Ξ A P PA C Y YC C ZC Q  

2 d f f d d f( ) ( ) ( ),Τ= − + − + −Ξ P B B Y D D C Z D D
       2

3 d f d f( ) ( ) ,αΤ= − − −Ξ D D Z D D I  
 

Z1/2 denotes the square root factorization of the matrix 
Z. 
Proof    Define Lyapunov-Krasovskii function can-
didate 

 
 T T

1 f f f f f 
( ( ), )= ( ) ( )+ ( ) ( )d ,

t

t h
V t t t t τ τ τ

−∫e e Pe e Qe    (18) 

 
where P>0 and Q>0. 
Consider the following index 
 

2
1 f f0 0

2
f f 1 f0

1 f 1 f 0

: d d

   ( , ) d

       ( , ) ( , ) .t t

J t t

V t t

V t V t

α

α

∞ ∞Τ Τ

∞ Τ Τ

=

= −

 = − + 
− +

∫ ∫
∫

r r ω ω

r r ω ω e

e e

        (19) 
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Denote ,=Y PH  ,Τ=Z V V  set M=Iq×q, N=[–Il×l 
Il×l]T. Because V1(ef, t)|t=0=0 under zero initial condi-
tion and V1(ef, t)>0 unless ef (t)=0, substituting the 
time derivative of V1(ef, t) along Eq.(15) into J1 leads 
to 
 

2
1 f f 1 f0

f f

0

f f

[ ( , )]d

( ) ( )
   ( ) ( ) d .

( ) ( )

J V t t

t t
t t t

t h t h

α
∞ Τ Τ

Τ

∞

< − +

   
   =    
   − −   

∫

∫

r r ω ω e

e e
ω Ξ ω

e e

 

 
< 0Ξ  implies that J1<0. According to Eq.(17), 

f f
( ) ( )s s α

∞
− <r d r fT T holds. Because 

f
( )s

∞
−r dT  

f f f
( ) ( ) ( ) ,s s s

∞ ∞
< −r f r d r fT T T so 

f
( )s

∞
−r dT  

f
( )s α

∞
<r fT  holds. 

Consider the following inequality 
 

d

d

,
Τ Τ Τ

Τ

 + − − +
< − 

A P PA YC C Y Q PA
A P Q

0      (20) 

 
which guarantees 1 f( , )<0V te  in case ω=0. If the LMI 
Eq.(17) is feasible, then the LMI Eq.(20) is also fea-
sible. Thus the system of Eqs.(7) and (8) is stable. 
This completes the proof. 
Remark    In Theorem 1, the reference residual model 
has two parameters (i.e. H  and V ) to be designed. 
But in (Ding et al., 2001), the reference residual 
model is only determined by the matrix .H  Ding et 
al.(2001) did not consider the matrix ,V  which is 
only a special case. In fact, if the residual weighting 
matrix V  is made to identity matrix I, the form in the 
present reference residual model is equal to the one in 
(Ding et al., 2001). In addition, the method presented 
in (Ding et al., 2001) requires that the coefficient 
matrix of fault Df has to be of full column rank; in fact, 
when considering the faults appearing in state and 
output equations, the matrix Df cannot possibly have 
full column rank. Therefore, the applications of the 
approach proposed in (Ding et al., 2001) to fault di-
agnosis are very limited. Yet in this paper, the matrix 
Df that is of full column rank is not required, which 
will be seen later in Section 4. 

Design of RFDF 
The next thing to be solved is to design the 

RFDF for nonlinear time-delay systems, which is 
formulated as an H∞ model-matching problem and 
solved via an LMI formulation. The following theo-
rem presents a sufficient condition to guarantee that 
the RFDF system is stable and has a prescribed H∞ 
performance, independently of time delay. 
Theorem 2    Consider the nonlinear time-delay sys-
tem 
 

( )d( ) ( ) ( ) ( ), ( ) ( ),t t t h g t t h t= + − + − +x Ax A x G x x Bw (21) 

( ) ( ),t t= +z Cx Dw                         (22) 
( ) ,  [ ,  0].t t h= ∀ ∈ −x 0  

 

For a given positive constant γ>0, if there exist scalars 
ε>0 ( 2 22ε Τ <ρ ρ Q ) such that LMI 
 

d

2 2
2

* 2
* *
* * *
* * * *

ε
γ

ε

Τ

Τ

Τ

 
 − 
  <−
 

− 
 − 

Γ PA PB C PG
ρ ρ Q

I D
I

I

0 0 0
00

0
    (23) 

 
has symmetric positive-definite matrices P and Q, 
then the system is robustly asymptotically stable and 
satisfies ||z||2<γ||w||2, where 
 

1 12 .εΤ Τ= + + +Γ A P PA ρ ρ Q  
 

Proof    Define the following Lyapunov-Krasovskii 
function candidate 
 

( )
 

2  
( ), ( ) ( ) ( ) ( )d .

t

t h
V t t t t τ τ τΤ Τ

−
= + ∫x x Px x Qx  (24) 

 
The time-derivative of V2(x(t), t) along the solution of 
Eq.(21) is then given by 
 

2 d( ( ), )=2 ( ) [ ( ) ( )
                  ( ( ), ( )) ( )]
                 ( ) ( ) ( ) ( ).

V t t t t t h
g t t h t

t t t h t h

Τ

Τ Τ

+ −

+ − +

+ − − −

x x P Ax A x
G x x Bw
x Qx x Qx

  (25) 

 

Using Assumption 2, we have 
 

1 2

2 2 2
1 2

( ( ), ( )) ( ) ( ) ,

( ( ), ( )) 2 ( ) 2 ( ) ,

g t t h t t h

g t t h t t h

− ≤ + − 


− ≤ + − 

x x ρ x ρ x

x x ρ x ρ x
(26) 
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Considering this and using Lemma 2, we can deduce 
that for any scalar ε>0 
 

T

1

1 1 2 2

1

2 ( ) ( ( ), ( ))
   ( ( ), ( )) ( ( ), ( ))
      ( ) ( )

   2 ( ) ( ) ( ) ( )

      ( ) ( ).

t g t t h
g t t h g t t h

t t

t t t h t h

t t

ε

ε

ε

ε

Τ

− Τ Τ

Τ Τ Τ Τ

− Τ Τ

−

≤ − −

+

 ≤ + − − 
+

x PG x x
x x x x
x PGG Px

x ρ ρ x x ρ ρ x

x PGG Px

    

Thus 
( )2 d

1

1 1 2 2

( ), 2 ( ) [ ( ) ( ) ( )]

          ( ) ( ) ( ) ( )
          ( ) ( )

          2 ( ) ( ) ( ) ( ) .

V t t t t t h t

t t t h t h
t t

t t t h t h

ε

ε

Τ

Τ Τ

− Τ Τ

Τ Τ Τ Τ

≤ + − +

+ − − −

+

 + + − − 

x x P Ax A x Bw

x Qx x Qx
x PGG Px

x ρ ρ x x ρ ρ x

 

 
Consider the following index 
 

2
2 0

( ) ( ) ( ) ( ) d ,J t t t t tγ
∞ Τ Τ = − ∫ z z w w         (27) 

 
because V2(x(t), t)|t=0=0 under zero initial condition 
and V2(x(t), t)>0 unless x(t)=0, substitute the time 
derivative of V2(ef, t) into J2, then we have 
 

2
2 20

0

( ) ( ) ( ) ( ) ( ( ), ) d

   d ,

J t t t t V t t t

t

γ
∞ Τ Τ

∞ Τ

 ≤ − + 

=

∫
∫

x x w w x

X ΩX
   

where 
   ( )
( )

   ( )

t
t h

t

 
 = − 
  

x
X x

w
,

d

d 2 2
2

 2ε
γ

Τ

Τ Τ

Τ Τ Τ

+
= − 
 + − 

U PA PB C D
Ω A P ρ ρ Q

B P D C D D I
0

0
, 

1
1 12ε εΤ − Τ Τ Τ= + + + + +U A P PA PGG P ρ ρ C C Q. 

 
 
 
 
 
 
 
 
 
 
 
 

Ω<0 implies that J2<0. After some manipulation us-
ing Lemma 1, the inequality Ω<0 is equivalently 
changed to the condition of Eq.(23), thus ||z||2<γ||w||2 
holds. 

Consider the following inequality 
 

1 1 d

2 2

2
* 2
* *

ε
ε

ε

Τ Τ Τ

Τ

 + + + +
 − < 
 − 

A P PA ρ ρ C C Q PA PG
ρ ρ Q

I
0 0  (28) 

 
which guarantees 2 ( ( ), )<0V t tx  in case w(t)=0. If the 
LMI (23) is feasible, then the LMI Eq.(28) is also 
feasible. Thus the system of Eqs.(21) and (22) is sta-
ble. This completes the proof. 

Using Theorem 2, the RFDF design problem 
formulated earlier can be easily solved. 
Theorem 3    For a given positive constant γ>0, if 
there exist scalar ε>0 ( 2 2 12ε Τ <ρ ρ Q ) and symmetric 
positive-define matrices P1>0, P2>0, Q1>0, Q2>0, 
matrices Y and V such that LMI (29) (see below) 
holds, then the system of Eqs.(9) and (10) is robustly 
asymptotically stable and satisfies ||re||2<γ||w||2. Fur- 
thermore, the observer gain matrix is given by 
 

1
1 ,−=H P Y                              (30) 

where  

1 1 1 1 1 1

2 2 2 2 2 2

2 ,

.

εΤ Τ Τ Τ

Τ Τ Τ

= + − − + +

= + − − +

Ω P A A P YC C Y ρ ρ Q

Ω P A A P P HC C H P Q
     

 
Proof    The proof can be obtained directly by using 
Theorem 2. 

The condition of Eq.(29) is an LMI condition. 
Therefore for fixed γ>0, the observer gain matrix H  
 

 
 
 
 
 
 
 
 
 
 
 

1 1 d 1 f f 1 d d 1

2 2 d 2 f f 2 d d

2 2 1

2
2

f
2

d

( ) ( )
2

  <
[ ]
[ ]

ε

γ
γ

ε

Τ Τ

Τ Τ

Τ

Τ Τ Τ

Τ Τ Τ

− −
 ∗ − − − 
 ∗ ∗ −
 
∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ − − 
∗ ∗ ∗ ∗ ∗ − − 

 ∗ ∗ ∗ ∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 

Ω P A P B YD P B YD C V PG
Ω P A P B HD P B HD C V

ρ ρ Q
Q

I D V V
I D V V

I
I

0 0
0 0

0 0 0 0 0
0 0 0 0

0
0 0

0
0

(29) 
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and the residual weighting matrix V can be easily 
obtained by using some software such as Matlab LMI 
toolbox. In order to achieve an RFDF with minimal γ, 
the Matlab LMI Mincx solver can be used. 

The last step of fault detection is to evaluate the 
residual. Under the assumption of d∈L2, we can fur-
ther have ||d(t)||2=S (S>0). By using Theorem 2, we 
can obtain 

2
2 2=sup(|| || || || ).

L
γ

∈
d

d
r d In the fault-free case, 

the generated residual r(t) is only affected by the 
disturbance input d(t). Therefore, the threshold can be 
determined by 

 
Jth=γd||d(t)||2=γdS.                         (31) 

 
According to the logical relationship (12), we can 
detect the fault. 

 
 

NUMERICAL EXAMPLES AND SIMULATIONS 
 

Consider the nonlinear time-delay system of 
Eqs.(1) and (2) with parameters given by 
 

1.80   0.50 0.50
  0.50 3.00   0.90 ,

0.30   0.70 2.40

− − 
 = − 
 − − 

A  
  0.00
  0.20 ,

0.40

 
 =  
 − 

B  

d

0.40 0.10 0.01
0.10 0.30   0.20 ,
0.10 0.10   0.50

− − 
 = − 
 − 

A  f

  0.70 0
0.50 0 ,

  0.80 0

 
 = − 
  

B   

 d

0   1.00
0   0.20 ,
0 0.30

 
 =  
 − 

B  
0.1 0.2 0.3
0.2 0.5 0.1
0.4 0.1 0.5

 
 =  
  

G , D=0, 

 
1 0 0
0 1 0 ,
0 0 1

 
 =  
  

C  f

0   0.40
0   0.80 ,
0 1.20

 
 =  
 − 

D  d

1.50 0
0.20 0 .
1.00 0

 
 =  
  

D  

 
It is evident that the method presented in (Ding 

et al., 2001) cannot be suitable for diagnosing the 
fault because Df does not have full column rank. Here 
we use a new approach to design observer-based 
RFDF. 

Using Theorem 1, we have the reference residual 
model in the form of Eqs.(7) and (8) with ,H  V  and 
the minimal αmin respectively, as follows 

0.7094 0.2687   0.4178
 0.6860 1.0665 0.3157 ,
0.6911   0.8273   0.0712

− − 
 = − − 
 − 

H            

0.4443 0.4007 0.2321
0   0.5846   0.1717 ,
0 0   0.3552

− − 
 =  
  

V              

αmin=0.5847. 
 

Subject to the constraint 2 2 12ε Τ <ρ ρ Q , we choose 
 

ε=0.1, 1

0.2 0.1 0.3
0.1 0.4 0.5
0.2 0.3 0.6

 
 =  
  

ρ , 2

0.1 0.2 0.4
0.3 0.2 0.5
0.1 0.4 0.1

 
 =  
  

ρ . 

 

By using Theorem 3, we obtain the solutions to 
LMI (29) with H, V and minimal γmin respectively, as 
follows 

 

 0.3998 1.0138 0.0020
1.3579 2.8764   1.3933 ,
0.7825 1.9165   1.1755

− 
 = − 
 − 

H              

0.5495 0.0796 0.3104
0.2197   0.1486 0.0807 ,
0.1170 0.1711   0.2893

− − 
 = − 
 − 

V              

γmin=0.4445. 
 

To demonstrate the effectiveness of the design, 
the nonlinear part is assumed to be g(x(t), x(t–h))= 
(sin 0.2)x(t)+(sin 0.1)x(t–h), the time delay h is as-
sumed to be 0.5 s, an unknown input d(t) is assumed 
to be band-limited white noise with power 0.001 
(zero-order holds with sampling time 0.01 s) and the 
input u(t) is taken as unit step signal. The fault signal 
f(t) is simulated as a square ware of unit amplitude 
that occurred from 5 s to 10 s.  

The fault signal f(t), the output signal y(t) and the 
generated residual signals r(t) (including r1(t) and 
r2(t)) are shown in Fig.1, Fig.2 and Fig.3, respectively. 
Fig.4 shows the evolution of residual evaluation 
function ||r(t)||2,τ, from which we can calculate when 
the fault can be detected. By using Theorem 2, we 
have minimal γd=0.7148. Suppose S=1, then the 
threshold is Jth=γdS≈0.7148. In Fig.4, we can see that 
||r(t)||2,6≈0.73>0.7148 for t1=0 s and t2=6 s. This 
means that the fault f(t) can be detected 1 s after its 
occurrence. 
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CONCLUSION 
 

In this paper, the observer-based RFDF design 
problem is studied for nonlinear time-delay systems 
with unknown inputs. The main contribution of our 
study is the introduction of an optimal reference re-
sidual model (considering both observer gain matrix 
and residual weighting matrix) to formulate the RFDF 
design problem as an H∞ model-matching problem. 
Moreover, we introduce the appropriate input/output 
selection matrices to extend a performance index to 
the time-delay systems in time domain. The reference 
residual model, which can be used to describe the 
robustness against disturbances and sensitivity to 
faults simultaneously, is an optimal solution of the 
RFDF. The existence of the solution is presented in 
terms of LMI formulation, which can be obtained 
conveniently by using Matlab LMI toolbox. An il-
lustrative example has demonstrated the validity and 
applicability of the proposed approach. 
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