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Abstract:    Accuracy of a simulation strongly depends on the grid quality. Here, quality means orthogonality at the boundaries 
and quasi-orthogonality within the critical regions, smoothness, bounded aspect ratios and solution adaptive behaviour. It is not 
recommended to refine the parts of the domain where the solution shows little variation. It is desired to concentrate grid points and 
cells in the part of the domain where the solution shows strong gradients or variations. We present a simple, effective and com-
putationally efficient approach for quadrilateral mesh adaptation. Several numerical examples are presented for supporting our 
claim. 
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INTRODUCTION 
 

Adaptive grids are desired for solving partial 
differential equations (PDEs) (Khattri, 2006a; 2007). 
There are various techniques for generating adaptive 
quadrilateral meshes. For example, solution of cou-
pled elliptic system (Khattri, 2006d; Thompson et al., 
1998), minimization of a functional or variational 
approach (Cao et al., 1999; 2003; Huang, 2001), etc. 
In this article, we present a simple and effective 
technique for generating adaptive quadrilateral 
meshes. Several numerical examples are presented 
for validating our approach. We extend the area 
functional for generating adaptive meshes. For a de-
tailed description of the area functional, please refer 
to (Castillo, 1991; Castillo et al., 1987; Thompson et 
al., 1998; Tinoco-Ruiz et al., 2001). 

Let us define some quantities of interest. Fig.1 
shows a quadrilateral cell. In this figure, g1 and g2 are 
the two co-variant vectors at the node o. Other inter-
esting quantities such as the Jacobian matrix (J) and 
the g-tensor at the node o and for the given cell can be 
defined from these two vectors. As can be seen in 
Fig.1, the columns of the Jacobian matrix are the two 
co-variant vectors. 

An outline of the article follows. In Section 2, a 
discrete functional for quadrilateral mesh adaptation 
is presented. Section 3 presents several numerical 
examples. Finally, Section 4 concludes the article. 
 
 
AREA FUNCTIONAL FOR MESH ADAPTATION 
 

The first study of the area functional was done 
by Castillo and Steinberg (Castillo, 1991; Castillo et 
al., 1987). As per author’s information, area func-
tionals have not been used for generating adaptive 
mesh. 

Let a quadrilateral mesh consist of n internal 
nodes, each being surrounded by four quadrilaterals 
(mesh can also be unstructured). According to (Cas-
tillo, 1991; Castillo et al., 1987; Tinoco-Ruiz et al., 
2001) the area functional is given as 
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here, J(ki) is the Jacobian matrix at the node k and for 
the quadrilateral cell i, and |J(ki)| is the determinant of  
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the Jacobian matrix. The Jacobain is a measure of the 
area of the quadrilateral cell. Thus, the optimization 
of the area functional is aimed at producing grids with 
least variation in cell areas (Tinoco-Ruiz et al., 2001). 
Fig.2 shows a 2×2 mesh. The internal node k is sur-
rounded by four cells. The Jacobian matrices for the 
four cells are given in Table 1. Tinoco-Ruiz et 
al.(2001) present some general properties of the area 
functional. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For grid adaptation, the authors propose the 
following form of the area functional 
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here, Φ is called the adaptive function, and Φ(ki) is the 
value of the adaptive function at the center of the cell i 
surrounding the node k. It is assumed that Φ is greater 
than zero. The functional can be optimized by algo-
rithms such as the Newton (Khattri, 2006a). Optimi-
zation of Eq.(2) will equi-distribute the area product 
of each cell and adaptive function. Roughly speaking, 
the cells with larger value of Φ will have smaller area. 
If Φ is the same for each cell then the optimization of 
Eq.(2) is aimed at generating equal area cells. 

Some of the properties of the functional F(x,y) 
are: the critical point of the functional is a grid for 
which the product of cell area and the adaptive func-
tion is the same for every cell, and the Hessian is 
semipositive definite. 

 
 

NUMERICAL EXAMPLES 
 
Example 1 

Let the adaptive functions be given as 
 

Φ(x,y)=1.0+ηsech[20(x−0.5)2+20(y−0.5)2−1.8], (3) 
Φ(x,y)=1.0+1.0sech[α(x+y−1)2],                         (4) 
Φ(x,y)=5.0+κ[sin(2πx)sin(2πy)],                         (5) 
Φ(x,y)=5.0+β |sin(2πx)cos(2πy)|,                         (6) 
Φ(x,y)=5.0+200.0|sin(πx)sin(2πy)|,                      (7) 

   Φ(x,y)=1.0+tanh[(10(x−0.5)2+50(y−0.5)2−1.875)]. 
 (8) 

 
For different value of η, the adapted meshes are 

shown in Fig.3. Fig.4 shows the outcome of our ex-
periments for different values of the parameter α. 
Fig.5 are the adaptive meshes for κ=20.0 and κ=200.0 
respectively. 

For β=20.0 and β=200.0 the adaptive meshes are 
given in Fig.6. Fig.7a is adapted by Eq.(7) and Fig.7b 
is adapted by Eq.(8). 

 
Example 2 

We solve the Poisson problem −div(gradu)=f(x,y) 
on an adaptive and on a uniform mesh by the method 

 

Table 1  Jacobian matrix at the node k for the four 
surrounding cells (see Fig.2) 
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Fig.1  Quantities of interest for a quadrilateral cell 
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Fig.2  2D structural mesh 
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of Finite Volumes (Khattri, 2006b; 2006c; Khattri and 
Fladmark, 2006; Aavatsmark et al., 1998). Our do-
main is Ω=[0,1]×[0,1]. Let the exact solution be 
u(x,y)=exp{−100[(x−0.5)2+(y−0.5)2]}. The solution 
inside the domain is enforced by the Dirichlet 
boundary condition and source term. Table 2 shows 
the errors in the L2 and L∞ norms on the adapted 
(Fig.8b) and uniform mesh (Fig.8a). The table shows 
that error (in the L2 and  L∞  norms)  on  the  adaptive  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mesh is substantially smaller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Error on the adaptive (Fig.8b) and uniform 
meshes (Fig.8a) 

Mesh 2h|| ||Lp p−  h|| ||Lp p
∞

−  

Uniform 0.0030 0.030 

Adaptive 0.0009 0.008 
 

p is the exact solution, and ph is the computed solution (finite  
volume) 

Fig.3  Adaptive function is given by Eq.(3) 
(a) η=1.0; (b) η=5.0 

(a)                                            (b) 

Fig.4  Adaptive function is given by Eq.(4) 
(a) α=20.0; (b) α=50.0 

(a)                                            (b) 

Fig.5  Adaptive function is given by Eq.(5) 
(a) κ=20.0; (b) κ=200.0 

(a)                                            (b) 

Fig.6  Adaptive function is given by Eq.(6) 
(a) β=20.0; (b) β=200.0 

(a)                                            (b) 

Fig.8  Adapted grid for Example 2. (a) Initial grid; (b)
Grid is generated by Eq.(5) with κ=10.0 

Fig.7  Adapted functional is given by Eq.(7) (a)
and by Eq.(8) (b) 

(a)                                            (b) (a)                                            (b) 
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CONCLUSION 
 

It is not always feasible to blindly refine the 
mesh in the hope of capturing the physics because of 
the computational resources. It is desired to adapt the 
grid to the requirement of the underlying problem. In 
this article, a simple and robust technique for gener-
ating adaptive quadrilateral meshes is presented. We 
have presented various examples for generating 
adaptive meshes. It is shown that the error on the 
adaptive mesh is small. The approach can be useful 
for solving evolutionary problems (parabolic and 
hyperbolic equations) on adaptive meshes. 

 
References 
Aavatsmark, I., Barkve, T., Bøe, O., Mannseth, T., 1998. 

Discretization on unstructured grids for inhomogeneous, 
anisotropic media. II. Discussion and numerical results. 
SIAM J. Sci. Comput., 19(5):1717-1736 (electronic).  
[doi:10.1137/S1064827595293594] 

Cao, W., Huang, W., Russell, R.D., 1999. A study of monitor 
functions for two-dimensional adaptive mesh generation. 
SIAM J. Sci. Comput., 20(6):1978-1994 (electronic).  
[doi:10.1137/S1064827597327656] 

Cao, W., Carretero-González, R., Huang, W., Russell, R.D., 
2003. Variational mesh adaptation methods for axisym-
metrical problems. SIAM J. Numer. Anal., 41(1):235-257 
(electronic).  [doi:10.1137/S0036142902401591] 

Castillo, J.E., 1991. A discrete variational grid generation 
method. SIAM J. Sci. Comput., 12(2):454-468.  
[doi:10.1137/0912025] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Castillo, J.E., Steinberg, S., Roache, P.J., 1987. Mathematical 
Aspects of Variational Grid Generation. II. Proceedings 
of the 2nd International Conference on Computational 
and Applied Mathematics (Leuven, 1986), 20:127-135. 

Huang, W., 2001. Variational mesh adaptation: isotropy and 
equidistribution. J. Comput. Phys., 174(2):903-924.  
[doi:10.1006/jcph.2001.6945] 

Khattri, S.K., 2006a. Newton-Krylov algorithm with adaptive 
error correction for the Poisson-Boltzmann equation. 
MATCH Commun. Math. Comput. Chem., 1:197-208. 

Khattri, S.K., 2006b. Analyzing an adaptive finite volume for 
flow through highly heterogenous porous medium. 
Journal of Transport in Porous Media (Submitted). 

Khattri, S.K., 2006c. Computationally efficient technique for 
nonlinear Poisson Boltzmann equation. Lecture Notes in 
Computer Science, 3991:860-863. 

Khattri, S.K., 2006d. Adaptive Quadrilateral Mesh in Curved 
Domains (Submitted). Available at http://www.mi.uib.no/ 
~sanjay/RESEARCH_/ELLIPTIC_GRID_/Documenta- 
tion_/Main_ MS.pdf. 

Khattri, S.K., 2007. Analyzing finite volume for single phase 
flow in porous media. Journal of Porous Media, 10(2) (in 
Press). 

Khattri, S.K., Fladmark, G., 2006. Which meshes are better 
conditioned: adaptive, uniform, locally refined or locally 
adjusted? Lecture Notes in Computer Science, 
3992:102-105. 

Thompson, J.F., Soni, B.K., Weatheril, N.P., 1998. Handbook 
of Grid Generation. CRC Press. 

Tinoco-Ruiz, J.G., Barrera-Sánchez, P., Cortés-Medina, A., 
2001. Some Properties of Area Functionals in Numerical 
Grid Generation. Proceedings of the 10th Meshing 
Roundtable, Newport Beach, California, USA, p.43-54. 


