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Abstract:    This paper presents a novel approach to consider optimal multi-degree reduction of Bézier curve with G1-continuity. 
By minimizing the distances between corresponding control points of the two curves through degree raising, optimal approxima-
tion is achieved. In contrast to traditional methods, which typically consider the components of the curve separately, we use 
geometric information on the curve to generate the degree reduction. So positions and tangents are preserved at the two endpoints. 
For satisfying the solvability condition, we propose another improved algorithm based on regularization terms. Finally, numerical 
examples demonstrate the effectiveness of our algorithms. 
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INTRODUCTION 
 

Degree reduction of polynomial curves and sur-
faces is a common process in Computer Aided Geo-
metric Design (CAGD) and consists of approximating 
a polynomial by another one of a lower degree. This 
process is of great importance in geometric modelling, 
such as data exchange, data compression and data 
comparison. For example, degree reduction is needed 
when data are transferred from one modelling system 
to another, with these systems having different limi-
tations on the maximum degree of polynomials. 
Furthermore, it can also be used to generate a piece-
wise continuous lower degree approximation to a 
given curve or surface so as to simplify some geo-
metric or graphical algorithms like intersection cal-
culation or rendering.  

 
Previous work 

There have been many methods developed for 
degree reduction. Forrest (1972) and Farin (1983) 

considered it as the inverse of degree elevation. Since 
degree reduction is an approximation problem in 
nature, methods in the classical approximation theory 
(Szegö, 1975) can be employed. In particular, the 
optimal approximations with respect to the L∞ or L2 
metric are of interest. Watkins and Worsey (1988) 
used Chebyshev economization to produce the best 
L∞-approximation of degree n−1 to a given degree n 
polynomial. This best approximation, however, does 
not interpolate the given curve at the endpoints. The 
endpoint constraints are frequently required in many 
applications and especially when degree reduction is 
combined with subdivision to generate piecewise 
continuous approximations. 

Recently, Ck-constrained best degree reduction 
problem has been presented. Eck (1995) used con-
strained Legendre polynomials to do this by mini-
mizing the L2-norm between the two curves. Ahn 
(2003) also considered it in L∞-norm. Ahn et al.(2004) 
proved that the best constrained degree reduction of a 
polynomial in L2-norm equals the best weighted 
Euclidean approximation of Bézier coefficients. It is 
an open question whether an optimal approximation 
exists for norms other than Lp. And multi-degree 
reduction at one time avoiding stepwise computing 
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was investigated in (Ahn et al., 2004; Chen and Wang, 
2002). 
 
Motivation and outline of the present paper 

Traditional methods for degree reduction are ap-
plied to parameter curves simply by matching posi-
tion and derivatives at the same parameter values, in 
general  

 
f (i)(t)=g(i)(t), i=0,1,…,k. 

 
Since parametric representations of curves are 

not unique, it will produce different forms for a given 
curve. For example, Fig.1 shows a quartic curve 
(solid): 

 
f(x)=−19x4/2+18x3−15x2+6x+1/2, 
 

and its best cubic approximation with C1-continuity 
(dotted) by the method in (Ahn et al., 2004). However, 
if we reparameterize f(x) by taking 

 
x=ϕ(t)=3t/4+t2/4, 

                                  
the curve f[φ(t)] remains unchanged but with a dif-
ferent approximation (dashed). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Our main motivation is to consider degree re-
duction with geometric continuity, which is inde-
pendent on parameterizations. And such method often 
gives better approximation for degree reduction. 
Geometric continuity was introduced by de Boor et 
al.(1987) to curve interpolation, which is called 
Geometric Hermite Interpolation (GHI). They 
showed that if the curvature at one endpoint is not 

vanished, a planar curve can be interpolated by cubic 
spline with G2-continuity and that the approximation 
order is 6. For more details about GHI, see the recent 
survey by Degen (2005). 

In this paper, we consider multi-degree reduction 
with G1-continuity by minimizing the sum of the 
Euclidean distances between corresponding control 
points of the two curves. Hu et al.(1998; 2001) used 
this method for curve approximation. According to 
G1-continuity, it provides two more additional pa-
rameters. And we optimize these two parameters to 
obtain the optimal approximation. Endpoints infor-
mation, such as positions and tangent directions, is 
also preserved. 
 
 
PRELIMINARIES 
 
Definitions and notations 

In this paper, ∏n denotes the space of all real 
curves of degree n and ||⋅|| denotes the Euclidean 
vector norm = ,< >v v v . 

A planar Bézier curve of degree n is given by the 
control points pi∈ú

2 in the form 
 

0

( ) ( ) ,   
n

n
i i

i
t B t

=

= ∑P p 0≤t≤1,                  (1) 

 
where ( )n

iB t  are the Bernstein polynomials given by 

( ) ( )(1 )n n n i i
i iB t t t−= − . Denoting Bn=( 0 ( )nB t ,…, ( )n

nB t ) 
and Pn=(p0,…,pn)T, we may express Eq.(1) in vec-
tor-vector form as 
 

P(t)=BnPn.                              (2) 
 

For raising the degree of Bézier curve by one 
without changing the shape of the curve, we can show 
that new points ˆ ip are obtained from the old ones by 
piecewise linear interpolation at the parameter values 
i/(n+1) (Farin, 2001), 
 

1ˆ 1 ,
1 1i i i

i i
n n−

 = + − + + 
p p p   i=0,1,…,n+1.    (3) 

 
We can rewrite Eq.(3) as a linear system 

1,
ˆ =n n n n+P T P , where 
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Fig.1  An example of C1-constrained degree reduction 
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is the degree raising operator. Obviously, it has col-
umn full rank and can be viewed as an (n+2)×(n+1) 
matrix. 
 
Problem formulation 

Given a degree n Bézier curve P(t)=BnPn, the 
problem of muti-degree reduction is to find control 
points Qm, which define the approximating curve       
Q(t)=BmQm of lower degree m (3≤m<n), such that  

(1) P(t) and Q(t) are G1-continuous at t=0,1, i.e., 
 
  ( ) ( ), ( ) ( ) ( ) ( )t t t t t t′ ′ ′ ′= =P Q P P Q Q , t=0,1;   (4) 
 

(2) Q(t) minimizes a suitable distance function 
d(P(t),Q(t)) for all possible curves in ∏m that satisfy 
the endpoint constraints Eq.(4).  

In order to compare the control points of the two 
curves, we first raise Q(t) to degree n, i.e., 
 

,
ˆ( ) n m n n m mt = =Q B Q B T Q . 

 
The degree raising operator Tn,m can be decomposed 
into a sequence of elementary degree-raising steps, 
 

Tn,m=Tn,n−1Tn−1,n−2…Tm+1,m.                     
 
Then, we use the “discrete” coefficient norm, that is,  
 

d(P(t),Q(t)) 2
,

0

ˆ .
n

n n m m i i
i=

= − = −∑P T Q p q    (5) 

 
The minimum of Eq.(5) will result in the least dif-
ference between the corresponding control points of 
the two curves. 

Note that previous methods consider degree re-
duction of Bézier curves with Ck-continuity, which 
fixes the first and last (k+1) control points of the ap-
proximating curve. In contrast, G1-constrained degree 

reduction is much looser and provides two more ad-
ditional parameters. By using these parameters, we 
can optimize the approximation. 
 
 
G1-CONSTRAINED DEGREE REDUCTION 
  
G1 condition 

Clearly, for G0-cotinuity, the endpoints of Q(t) 
should coincide with the endpoints of P(t). And for 
G1-cotinuity, the coincidence of the oriented tan-
gents is additionally needed. Therefore, we can eas-
ily relate G1 condition with the control points, more 
precisely, 
 

0 0 1 0 0 1 0

1 1 1

, ( ),

, ( ).m n m n n n

n
m
n
m

δ

δ− −

= = + −

= = − −

q p q p p p

q p q p p p
         (6) 

 
Note that geometric boundary conditions do not 

depend on the chosen parameterization, the control 
point q1 can thus move along the direction p0p1 
without violating the G1 condition (see Fig.2), and so 
is qm−1. Thus it provides two additional parameters to 
optimize the shape of the degree reduced curve. 
However, δ0 and δ1 should obey the following rule, 
 

0, 0,1v vδ > = .                          (7) 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
When replacing G1-cotinuity with C1, q1 and qm−1 

are uniquely determined by δv=1. Therefore, C1 ap-
proximation is a special case of G1 approximation. 
We can also imagine that G1 approximation will lead 

δ0=1 

δ0>0 

δ0<0 

p1 pn−1 

q0=p0 
qm=pn 

Fig.2  G1 condition for degree reduction 
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to a smaller error between the original curve and the 
approximating one. We will propose the algorithms 
for G1-constrained degree reduction. 
 
Regular case 

For a given degree n Bézier curve P(t), the degree 
reduction problem can be solved through two stages. 

In the first stage, we construct a degree m Bézier 
curve Q(t) interpolating P(t) according to Eq.(6). 
More precisely, it can be written as 
 

2

0 0 1 1
2

1 1
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           ( ) ( ) ,

m
m m m

i i
i

m m
m m m m

t B t B t B t

B t B t

−

=

− −

= + +

+ +

∑Q q q q

q q
         (8) 

 
where q1 and qm−1 contain the unknown variables δ0 
and δ1, respectively. We then solve the interior con-
trol points qi (i=2,…,m−2) by minimizing 
 

E=d2(P(t),Q(t))=
2

,n n m m−P T Q                 (9) 

 
Let ,

c
n mT  be the (n+1)×4 submatrix of the 

(n+1)×(m+1) matrix Tn,m obtained by extracting the 
first and last two columns and letting ,

f
n mT  be the 

(n+1)×(m−3) submatrix of Tn,m obtained by extracting 
columns from 3 to (m−1). We then rewrite Eq.(9) as 
 

2

, ,= ,c c f f
n n m m n m mE − −P T Q T Q                  (10) 

 
where T

0 1 1( , , , )c
m m m−=Q q q q q  and f

mQ  denotes the 
other control points of Qm. 

Denoting =( , )x y
i i iq qq , then for a minimum of 

Eq.(10) it is necessary that the derivatives of E with 
respect to x

iq  and y
iq  (i=2,…,m−2) are zero. And 

we write them in vector-matrix form as 
 

( ) ( ) ( )T T

, , , ,= f c c f f f
n m n n m m n m n m m− − +0 T P T Q T T Q .    (11) 

 
Since (Tn,m)TTn,m is a real symmetric positive 

definite matrix, so ( )T

, ,
f f

n m n mT T  is invertible. There-

fore, the least-squares error Eq.(10) is minimized by 
choosing  
 

0 1

T 1 T
, , , ,

( , )

     [( ) ] ( ) ( ).

f f
m m

f f f c c
n m n m n m n n m m
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= −
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      (12) 

 
Note that q1 and qm−1 contain the variables δ0 and 

δ1 respectively. Therefore, the interior control points 
qi (i=2, …, m−2) are linear function of δv.  

The second stage is to determine the two vari-
ables δv. Recall that our goal is to minimize the 
least-squares Eq.(10) which contains c

mQ  and f
mQ . 

By Eqs.(6) and (12), we can express the control points 
qi (i=1, …, m−1) in linear functions of δv, rather than 
constants. After replacing them into Eq.(10), E forms 
a quadratic function with respect to δv, that is, E=E(δ0, 
δ1). Since E is always nonnegative, it will come to a 
minimum at some values. Thus the degree reduction 
problem can be solved by two linear equations, i.e., 
 

0 1

0

0 1

1

( , )
0,

( , )
0.

E

E

δ δ
δ
δ δ
δ

∂ = ∂
∂ =
 ∂

                       (13) 

 
Unfortunately, because of the complexity of the 

expressions at the right side of Eq.(12), it is cumber-
some to compute explicit formulas for δv. To solve the 
linear system Eq.(13), we refer to the solve procedure 
of MATLAB, an efficient and stable numerical pro-
cedure. After replacing all the variables in Qm with the 
values solved above, we obtain the multiple degree 
reduced approximating curve Q(t) which preserves 
G1-continuity at the endpoints. We summarize the 
degree reduction algorithm as follows. 

 
Algorithm 1 

Input: pi 
Output: qi, ε 
Step 1: Compute qi (i=2, …, m−2) by Eq.(12); 
Step 2: Obtain δv by solving the linear system Eq.(13); 
Step 3: Compute qi by Eqs.(6) and (12) and the ap-

proximating error ε by Eq.(9). 
 
Remark 1  Despite the high effectiveness of Algo-
rithm 1 (see Figs.3a, 5 and 6), it is impossible to 
guarantee the positivity of δv. In some singular cases 
(e.g. Fig.3b), G1 condition is thus violated. 

When solving Eq.(13) we assume that δv∈ú. So 
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the minimum may be reached on the negative 
semi-axis. For avoiding this, some other conditions 
are necessary to be imposed. We will provide an im-
proved heuristic algorithm shown as follows. 
 
Improvement 

We investigate the positive solution existence of 
system Eq.(13) so as to meet the G1 condition 
requirement for degree reduction. And if Algorithm 1 
is valid, i.e., the condition Eq.(7) is satisfied, the fol-
lowing algorithm is not necessarily needed. 

We recall that the free parameters are determined 
by minimizing the approximating error E, a metric 
which measures the difference between correspond-
ing control points of the two curves. As is illustrated 
in Fig.3b, the points p0 and p1 are so close that 

1 1̂−p q  is negligible when compared with the others. 
Therefore, singular case arises potentially during the 
minimization of E. 

Our intention is to penalize this phenomenon by 

introducing some regularization terms that help guide 
the approximation to a positive solution. But then the 
error may not be the global minimum. 

To obtain a positive solution, we add regulariza-
tion terms to E and modify it as follows, 
 

 
2 2

, , 0 0

2
1 1

( )(1 )

      ( )(1 ) ,

c c f f
n n m m n m m

n

E G

G

δ

δ−

= − − + ∆ −

+ ∆ −

P T Q T Q p

p
(14)  

 
where ∆pi=pi+1−pi and G(x)=exp(−x2/2σ2) is the 
standard Gaussian function with the parameter σ [also 
used in (Fleishman et al., 2003)]. The first term 
represents the difference of the control points and the 
last two regulate δ0 and δ1, respectively. 

Note that once δv=1 G1-constrained degree re-
duction degenerates to the C1-constrained case. As 
was described in (Ahn et al., 2004; Hu et al., 1998), 
C1 approximation always exists. Since Gaussian 
function G(x) converges to 1 when x→0 and 0 when 
x→∞, it penalizes the small edge length and forces δv 
to converge to 1 while minimizing Eq.(14). Therefore, 
the condition Eq.(7) will be satisfied. Obviously, the 
approximating error becomes bigger than before. 

The parameter σ in Gaussian function is adjust-
able and different values lead to different minima. 
Since we have no precise explicit representation of 
Eq.(14), we estimate this value by experimenting with 
various singular cases. And we find that it works well 
in practice and in all of the examples provided in this 
paper by setting σ=e/4 with e denoting the average 
edge length of the control polygon Pn. In cases where 
it fails it can be solved by increasing or decreasing 
this value interactively. 

We now modify Algorithm 1 and provide a heu-
ristic algorithm as follows. 

 
Algorithm 2 

Input: pi 
Output: qi, ε 
Step 1: Set σ=τe with initial values τ=∆τ=1/20; 
Step 2: Use Algorithm 1 [just replace Eq.(10) with 

Eq.(14)] to obtain qi and ε; 
Step 3: If δv is invalid or ε decreases, set τ=τ+∆τ and go 

to Step 1. Otherwise, stop; 
Step 4: Output qi according to the minimal ε. 

 
Fig.4 shows the improvement by Algorithm 2. 

The approximating curve obtained by Algorithm 2 is 
displayed in dots together with that one obtained by 

0           0.2           0.4           0.6          0.8           1.0 
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0

−0.5

−1.0

(a) 

0           0.2          0.4          0.6          0.8            1.0 

1.0 

0.5

0 

(b) 

Fig.3  Degree reduction by Algorithm 1 (from degree 7 
to degree 4): the original curves and polygons (solid) 
and the approximation curves and associated polygons 
(dashed). (a) G1-continuous approximation; (b) Singu-
lar case: δ0<0 
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Algorithm 1 displayed in dashes. It is clear that the 
approximation effect is reduced and that ε becomes 
bigger. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remark 2    Using regularization terms, a valid G1 
approximation can always be obtained and we in-
crease σ stepwise so as to get the minimal error. In the 
extreme case, it will just lead to C1 approximation. 
And for achieving better result, human interaction is 
recommended. 
Remark 3    Combining Algorithm 1 with curves 
subdivision, we can also obtain a valid G1-constrained 
degree reduction. Usually only one or two subdivi-
sions are needed in practice. However, it will lead to 
piecewise G1 curves (cf. Fig.6b), compared with Al-
gorithm 2. 
 
 
EXAMPLES 
 

This section shows some numerical examples for 
our algorithms discussed in Section 3. 
Example 1 [Example 2 in (Ahn et al., 2004)]    We 
consider a planar quintic Bézier curve with control 
points given by (0, 0), (0.2, 1), (0.4, 4), (0.6, 2), (0.8, 
5), (1, 0). We want to find quartic and cubic Bézier 
curves to approximate it with G1-continuity. 

Fig.5 compares G1-continuity degree reduction 
with C1-continuity (Ahn et al., 2004), with the quartic 
and cubic approximating curves shown in Figs.5a and 
5b respectively. It is clearly seen that our method 
approximates the whole curve better, due to the 
G1-continuity nature. Especially, cubic approxima-
tion by our method is nearly the same as quartic ap-
proximation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example 2    We give a planar Bézier curve of degree 
fifteen which is a part of the out-lines of font “S”. The 
control points are (0, 0), (1.5, −2.0), (4.5, −1.0), (9.0, 
0.0), (4.5, 1.5), (2.5, 3.0), (0.0, 5.0), (−4.0, 8.5), (3.0, 
9.5), (4.4, 10.5), (6.0, 12.0), (8.0, 11.0), (9.0, 10.0), 
(9.5, 5.0), (7.0, 6.0), (5.0, 7.0). 

Fig.6 illustrates multi-degree reduction of a 
complex curve. In Fig.6a, our method represents more 
features of the original curve. To improve the effect, 
we subdivide the curve at t=1/2 and show the ap-
proximation result in Fig.6b. Better approximation 
can be obtained through curves subdivision. And we 
find that after one or two subdivisions, a given curve 
can be well approximated by piecewise curves. 
 
 
CONCLUSION AND FUTURE WORK 
 

In this paper we have introduced a new frame-
work for multi-degree reduction of Bézier curve with 
G1-continuity and obtain the optimal approximation 
by using the two additional parameters.  So  the  posi- 

0           0.2         0.4         0.6         0.8           1 

1 

0.5 

0 

Fig.4  Improvement by Algorithm 2 
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0           0.2          0.4         0.6          0.8            1.0 

3

2

1

0

(b) 

Fig.5  Degree reduction of a quintic Bézier curve (solid)
by our method (Algorithm 1, dashed) and that of Ahn et
al.(2004) (dotted). (a) Degree 5 to degree 4; (b) Degree 5
to degree 3 
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tion and tangent direction are preserved at each end-
point. Due to the geometric continuity, our methods 
approximate curves with a smaller error in contrast to 
traditional methods. For convenience, we present it in 
planar curves, but it can be applied directly to spatial 
curves. 

From our results here it is easy to make a general 
conjecture. If we consider the problem of degree re-
duction with Gk-continuity (k>1), the approximating 
curve will be much closer to the original curve than 
that obtained by considering it with Ck-continuity. 

However, to prove such a conjecture seems to be 
a very difficult task. See G2-constrained degree re-
duction for example, we have to meet the curvature 
requirements at the endpoint, that is, 

 

0 1
0 3

0

1= .n
n

κ
∆ ×∆−

∆

p p

p
 

 
When it comes to degree reduction, it turns out to 

be a nonlinear problem. And experiments show that 
 

not only the existence is hard to prove, but also the 
solvability and uniqueness. The only hope of success 
seems to tackle the problem with other methods. 
Since G2-continuity is the most useful and important 
property for shape designing in CAGD, we hope to 
solve this problem in future work. 
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