
Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 95

A flexible architecture for job management in a grid environment*

LUAN Cui-ju†1,2, SONG Guang-hua2, ZHENG Yao2, ZHANG Ji-fa2

(1College of Information Engineering, Shanghai Maritime University, Shanghai 200135, China)
(2School of Computer Science and Center for Engineering and Scientific Computation, Zhejiang University, Hangzhou 310027, China)

†E-mail: cjluan@cie.shmtu.edu.cn
Received Apr. 24, 2006; revision accepted Sept. 28, 2006

Abstract: Job management is a key issue in computational grids, and normally involves job definition, scheduling, executing
and monitoring. However, job management in the existing grid middleware needs to be improved in terms of efficiency and
flexibility. This paper addresses a flexible architecture for job management with detailed design and implementation. Frameworks
for job scheduling and monitoring, as two important aspects, are also presented. The proposed job management has the advantages
of reusability of job definition, flexible and automatic file operation, visual steering of file transfer and job execution, and adaptive
application job scheduler. A job management wizard is designed to implement each step. Therefore, what the grid user needs to do
is only to define the job by constructing necessary information at runtime. In addition, the job space is adopted to ensure the
security of the job management. Experimental results showed that this approach is user-friendly and system efficient.

Key words: Grid, Job management, Job definition reuse, Steering of job transfer, Job space
doi:10.1631/jzus.2007.A0095 Document code: A CLC number: TP393

INTRODUCTION

The Grid is capable of coordinated resource
sharing and problem solving in dynamic and
multi-institutional virtual organizations (Foster et al.,
2001). As a kind of grid, the computational grid pro-
vides a new method to deal with engineering and
scientific computation, and by using it we launch the
Multidisciplinary ApplicationS-oriented SImulation
and Visualization Environment (MASSIVE) project
(Zheng et al., 2004). The aims of the MASSIVE
project are to use Grid technology to establish an
enabling environment for distributed simulation and
visualization of large-scale scientific and engineering
research.

The MASSIVE provides a problem solving en-
vironment. It integrates the grid-enabled services,
which hide the complexity of the computational grid

so that scientists can concentrate on the problems to
be solved, and need not be concerned with the details
of the grid. As concerning the grid, what the scientists
need to do is to define, submit, and monitor jobs,
which shows that most of their work is dealing with
the jobs in the grid. Hence a mechanism is required to
help the user managing the jobs to make the
grid-enabled services easy-to-use, and consequently
to improve efficiency.

In this paper we present a flexible architecture of
job management adopted in the MASSIVE project.
The job management system is job-centric. It pro-
vides a mechanism of job definition reusability.
Moreover, the system provides a set of flexible file
operations, which can be described in the job defini-
tion and be performed automatically. Furthermore,
the system provides frameworks for job monitoring
and job scheduling. With this job management, the
users can manage and perform their jobs conveniently
and efficiently.

The rest of this paper is arranged as follows.
Section 2 introduces the MASSIVE project briefly,

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (No. 90412014), the National Science Foundation of China for
Distinguished Young Scholars (No. 60225009), and the China Next
Generation Internet (CNGI) Project (No. CNGI-04-15-7A)

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 96

while Section 3 details the architecture of the job
management. Section 4 discusses a few problems in
the implementation of the job management in detail.
Section 5 presents an experiment to illustrate the
characteristics of the job management. Finally, we
conclude with a summary of our work and an outline
of our plans for continuing research in Section 6.

ANALYSIS OF THE JOB MANAGEMENT IN THE
MASSIVE ENVIRONMENT

Outline of the MASSIVE project

The MASSIVE Environment is developed and
deployed at the Center for Engineering and Scientific
Computation (CESC), Zhejiang University. It pro-
vides a grid-based platform for geometrical modeling,
discretization, scientific computing and visualization.
Its advanced services can be accessed easily in a
visual manner. The integration of services as a part of
a workflow process enables the creation of services
that can be easily reused by the community. Scientists
are then in a position to concentrate on the science,
while platform developers can focus on the delivery
of services that can be assembled as building blocks
to create more elaborate services.

The grid created for the MASSIVE project util-
izes resources located at Zhejiang University. The
grid currently uses the Globus Toolkit 2.4.3 (GT2)
(Foster and Kesselman, 1997) as the middleware to
enable the resources at each site to be accessed in a
secure and uniform manner.

In the MASSIVE project, the grid enables the
essential aspects of industrially relevant Computa-
tional Fluid Dynamics (CFD) and Computational
Solid Mechanics (CSM) by using a services-oriented
architecture based on emerging standards such as the
OGSA. Services for geometry preprocessing and
mesh generation, the migration and execution of ap-
plication programs on remote platforms, collaborative
visualization, and data analysis, form the basis of a
globally distributed Virtual Organization (VO) (Fos-
ter et al., 2001), in which security and performance
are key concerns. A typical usage would be genera-
tion of meshes using the meshing service on an SGI
IRIX platform, solution of a CFD/CSM problem on a
PC Cluster with the meshes previously created, and
collaborative visualization of the numerical results

with equipment, such as a display wall and a BARCO
stereo projector, at the CESC, Zhejiang University.

A key issue in the MASSIVE project is the ca-
pability for effectively managing jobs, which in-
volves file operation, job definition, job scheduling,
job execution, job monitoring, and so on. The goal of
the job management in the MASSIVE is to make the
grid environment easy-to-use and efficient.

Requirements for the job management

Generally speaking, in the area of engineering
and scientific computing, one problem needs to be
solved many times in order to get a reasonable result,
while the difference is usually just a few parameters.
To meet this kind of needs, there should be some
mechanism to realize job definition reuse, which
means that once a job is defined it can be reused later
on, and what the user needs to do is only to change
some parameters. Furthermore, the job definition
reuse must be flexible and easy-to-use.

Large-scale CFD and CSM simulations are
computationally intensive, and may involve access to
resources that are intrinsically distributed. For exam-
ple, in the case of an organization in which multiple
partners from industry and academia are cooperating
to design and build a complex system that requires
CFD/CSM simulations, the geometry of the compo-
nent may be created at one location, a mesh con-
forming to this geometry may be generated at a sec-
ond location, and a CFD/CSM simulation based on
the mesh may be performed at a third location. Finally,
the output from the simulation may be analyzed and
visualized at one or more other locations.

There are many data or files to be transferred
among the resources. It will be very fussy, if all the
file operations are carried out manually. And it will
take much time during the interactive operation.
Moreover, the output cannot be transferred to the
destination locations in time with this mode. So, there
must be a mechanism to describe the file operations
prior to and following job execution when defining
the job. And they can be carried out automatically
without the user intervention.

In addition to the file transfer, various types of
file operations are involved in the grid environment,
such as creating directory, deleting file, checking
whether a file exists, determining the file property,
and so on. Sometimes the object is folder, so all the

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 97

corresponding folder operations must be provided. In
order to ensure the integrity of the job definition, the
file/folder operations should be included in it.

The input and output data of large-scale CFD
and CSM simulations are very large. So the quantity
of the data transferred among the resources is very
large. Therefore, the file transferring performance
will affect the whole performance of the job obvi-
ously. Because the grid is dynamic, so is the network
and the performance of the same transfer mode.
Therefore, the file transfer performance needs to be
monitored, so that the file transfer mode can be
modified dynamically to improve the efficiency.

The applications in the computational grid are
not the same type. Different applications have dif-
ferent characteristics, and their demands on the re-
sources may differ greatly. In order to be adaptive to
the applications, the scheduling algorithm must take
the target applications into account and determine the
scheduling policy accordingly.

The grid middleware used in the MASSIVE en-
vironment is GT2. Globus (Foster and Kesselman,
1998) uses the Resource Specification Language
(RSL) to describe the resources when submitting a job.
The RSL is a powerful and flexible language, but it
needs the user to understand the complex details
about the grid. Although the RSL files can be reused,
it is inconvenient to manage them orderly. For ex-
ample, the user cannot use the identifier (job ID or job
name) to search a job with the GUI. Moreover, some
complex files operations, such as creating directory,
third-party or parallel transfer, cannot be described in
the RSL and have to be done manually, and the folder
operations are not supported.

Other grid middlewares, such as Gridsolve
(YarKhan et al., 2006), Condor (Tannenbaum et al.,
2002), SAMGrid (Baranovski et al., 2004) and
CREAM (Andreetto et al., 2006), etc., seem to be
paid more attention to job reusability and flexibility in
file operations.

Characteristics of the job management

Based on the requirements analyzed above, the
job management model we have devised has the fol-
lowing characteristics:

(1) All the operations provided by the job man-
agement system can be accessed easily in a visual
manner.

(2) A flexible, easy-to-use, and effective job
definition reuse mechanism is put forward.

(3) The system provides various types of
file/folder operations.

(4) The file/folder operations can be described in
the job definition, and can be executed automatically.

(5) The file/folder operations can be monitored.
The file transfer performance can be visualized, so the
user can steer the file transfer visually.

(6) The scheduling policy is application adaptive.
(7) Jobs are saved in queues, from which the

scheduler access to the waiting jobs.
(8) Our model is able to distribute a given job on

multiple resources available in the Grid.

JOB MANAGEMENT ARCHITECTURE

In this paper, the job is defined as an object run-
ning on the grid in order to solve a certain problem.
This kind of object has many properties, such as ID,
name, type, etc. Furthermore, they designate the re-
sources to be used, the executable file or command to
be executed on the remote resources, the input and
output data or files, and the manner in which to deal
with the results, and so on. The methods operating on
them include defining, scheduling, submitting, exe-
cuting, monitoring, steering, etc.

The job management components include job
creator, job scheduler, job executor, job monitor and
file controller. Its architecture is shown in Fig.1.

Fig.1 Architecture of the job management

GRAM server

User

Job creator

Job monitor

Job scheduler

Job executor

Gate keeper Job manager

Local job manager

File controller
File storage

Remote job execution

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 98

Job creator
Every job has to be described before being

executed on the grid. The job creator is just used to
collect the information on the jobs from the user with
GUI. The job creator provides two modes of defini-
tion, which can meet the different needs of the users.
One is the simplified definition, which can collect the
basic information of the job, such as the job name, job
type, process count, executable file, running pa-
rameters, working directory, etc. It can be used if
there are no files/folders to be transferred automati-
cally. The other is the advanced definition, which can
collect the information about resource filtering,
complicated file/folder operations, and other ad-
vanced information besides the basic one. If there are
files/folders to be transferred automatically or if the
job has special resource requirement, it can be used
to define the jobs. To reuse the job definition, all the
job information will be described in an XML file.
The job creator will assign a job ID to every job,
which uniquely identifies a job at the client side.

Job scheduler

The function of the job scheduler is to allocate
physical resources to the jobs. The available re-
sources come from the VOs, to which the user be-
longs. Resources are discovered and published by the
Extensible Monitory and Discovery Service for the
MASSIVE Grid (MEMDS) (Wang et al., 2005),
filtered by the user’s resources requirement, and then
allocated to the job.

The physical resources are those that locate in
the individual Grid sites and can execute the Grid jobs.
While the logical resources are the virtual resources
that meet the requirement of resource filtering condi-
tions. The logical resources are allocated by the job
creator, and should be converted to physical resources
that exist in VOs by the job scheduler. This conver-
sion procedure comprises two phases: filtering phase
and allocating phase (Liu et al., 2002). In the filtering
phase, the system will remove any resource not
meeting the filtering conditions, and the remainder
constitute the waiting scheduled resources pool. In
the allocating phase, resources in the pool can be
allocated to the jobs.

The job scheduler provides two methods to al-
locate the physical resources: manual and automatic.
That is, to allocate the resources by the user manually

or by the system automatically. According to the
resources information provided by the MEMDS, the
users can designate the appropriate resources to
execute their jobs. The system can also schedule the
resources automatically by the scheduling algorithms
based on the resource information. At present, the
system provides two automatic resource scheduling
algorithms, the heuristic-based stochastic scheduling
algorithm (HSSA) and the heuristic-based greedy
scheduling algorithm (HGSA) (Luan et al., 2006), to
allocate the resources automatically.

The merit of the two-phase resources allocation
is, when the VOs or physical resources changed, the
only thing that needs to be done is to reconstruct the
mapping from the logical resources to the physical
ones.

Job executor

The job executor’s function is to accept the jobs
and execute them. It adopts the first come first served
(FCFS) algorithm to determine the executing order of
the jobs.

The job executor constantly receives messages
sent by the job scheduler. When receiving an exe-
cuting request, it will create a new thread to send the
job designated in the message to the gatekeepers
(Czajkowski et al., 1998) on the remote resources.
After getting a job identifier (i.e. the handle to the job
at the server side) as the response, the job executor
will send it to the corresponding thread of the job
scheduler. The job handle will be used to monitor the
job status and control the job.

Job monitor

Because of the differences between the moni-
toring information of the architecture and the job,
there are two components to be used to monitor them
respectively. MEMDS is responsible for discovering
and monitoring the resources. The job monitor is used
to monitor the jobs.

Except the whole job status, the job monitor can
provide the detailed information on job processes, at
the same time the job can be steered at the process
level. Moreover, it can monitor and steer the file op-
erations. Besides steering the applications, the user
can use the job monitor to change the mode of the file
transfer, such as changing the parallelism to improve
the performance.

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 99

File controller
In the grid environment, except transferring and

deleting files, checking whether the files exist or
whether their properties meet the needs is useful for
the fault tolerance. Therefore, the job management
should provide comprehensive file operations.
Moreover, in the MASSIVE project, there are poten-
tially several related input or output files in a job. To
ease the work, folder operations are required in the
job management.

The file controller provides all kinds of
file/folder operations needed in the grid environment,
which are implemented on top of the GridFTP and
GASS in the Globus toolkit. The file controller pro-
vides capabilities for the job management to transfer
files/folders securely, conveniently, efficiently and
flexibly. The files/folders can be transferred by
multi-channels or in third-party style. Partial file
transfer has also been implemented.

Whenever a job deals with file/folder operations,
the file controller will be invoked. The job creator
provides an interface to define file/folder operations
before and after job execution. With the functions
provided by the job management, it is easy to share
the data, software, storage and computing resources
located at different sites.

IMPLEMENTATION OF THE JOB MANAGE-
MENT

Job reusability

From the analysis in Section 2, the job definition
reuse is important in the engineering and scientific
computing. In order to reuse the jobs, the system
constructs a history job list, which contains all the
defined jobs, including the running jobs, the finished
jobs, and the to-be-scheduled jobs.

Thus, there may be many jobs in the memory,
but only a few jobs to be reused. To save the memory,
the job management adopts a two-level storage
structure. The first level stores the necessary and
index information on the jobs in random file, while
the second level stores the detailed information in
XML format, which is shown in Fig.2. The history
job list in the memory contains the information stored
in the first level storage. Only when a job in the list is
called, its detailed information is read in the memory.
If a job needs to be reused, what the user should do is
to select the job in the history job list by the job ID or
the job name, and submit it after editing it or not.

To ease the work, the operations of job man-
agement are organized as a workflow. The job in-
formation is carried on from the first operation to

Fig.2 An example XML file for a job

<?xml version=“1.0”?>
<vjob>
 <basic>
 <id></id>
 <name></name>
 <type></type>
 <process></process>
 <status></status>
 <deftime></deftime>
 <starttime></starttime>
 <finishtime></finishtime>
 …
 </basic>
 <rsl>
 <clause>
 <resourceManagerContact qmark=“1”>
 </resourceManagerContact>
 <count></count>
 <jobType qmark=“1”></jobType>
 <lable qmark=“1”></lable>
 <environment></environment>

<srcRM></srcRM>
<desRM></desRM>
<srcpath></srcpath>
<despath></despath>

 </transfer>
</send>

 …
 </files>
 <folders>
 …
 </folders>
 <resource>

<item>
 <vo></vo>
 <id></id>
 <processcount></processcount>
 …
</item>
…

 </resource>
 …
</vjob>

 <arguments></arguments>
 <directory qmark=“1”></directory>
 <executable qmark=“1”></executable>

…
</clause>

 …
 </rsl>
 <filter>
 <ostype></ostype>
 <cpucount></cpucount>
 <cpuspeed></cpuspeed>
 <cpufreerate></cpufreerate>
 <memtotal></memtotal>
 <memfree></memfree>
 <filesystemtotal></filesystemtotal>
 <filesystemfree></filesystemfree>
 …
 </filter>
 <files>
 <send>
 <transfer>

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 100

the last one. Within the workflow the job definition
can be saved, closed or deleted at any time. Hence the
job can be halted and restarted later.

In the workflow, jobs are saved in one of the
three job queues, the waiting, scheduled and finished
queues, according to their status. The waiting queue
keeps the un-submitted jobs. The scheduled queue
saves the running jobs. And the finished queue con-
tains the jobs that have been executed successfully or
failed. The workflow diagram of the job management
is illustrated in Fig.3.

After getting adequate information from the job
creator, the job will be put in the Waiting Queue. As
long as it is allocated with physical resources and sent
to the job executor, the status of the job becomes
running and it will be put in the Scheduled Queue.
When the job monitor finds it finished, it will be
moved to the Finished Queue. At this point of time the
entire process is completed, and the renewed infor-
mation about the job will be saved. There are three
approaches that a job can enter this workflow. The
first is to create a new job completely, the second is to
reuse a historical job listed in the history job list, and
the last is to import a job from outside of the system.
The second one is to just adapt to the job reuse.

At the client side, multiple jobs can be defined at
the same time, so there may exist more than one job
flow in the system. They are independent of each
other and identified by the job ID, hence the jobs are
manipulated in their own flows. Using the workflow
to conduct the whole process makes the complicated
operations easy to perform, and the creating and re-
using of jobs are unified in the same flow.

Adaptive job scheduler for various types of ap-
plications

In the present environment, an adaptive job

scheduler is utilized. The corresponding scheduling
framework of the job management is in a distributed
fashion, as illustrated in Fig.4.

The Job Scheduler (JS) is distributed. It sched-
ules all the available resources in the computational
grid and selects the best resources for the job by
consulting the resources information. The JS chooses
the proper resources by utilizing the scheduling al-
gorithms. The Local Scheduler (LS) is a job scheduler
provided by the local host system, such as OpenPBS,
condor or LSF, etc. It decides how to schedule the
allocated jobs according to its local resources. Once a
job is submitted to a particular site, which is deter-
mined by the JS, it will be managed by the LS.

The heuristic-based greedy scheduling algorithm
is one of the algorithms used to schedule the resources.
Selecting the optimized resources and adapting to
different applications is the goal of the HGSA. Mul-
tiple available resource metrics are considered to rank
the resources, but they have different effects on dif-
ferent applications. The algorithm uses the weights
and the impact factors of workload to reflect the spe-
cial resource requirements of the applications, in
terms of the metrics given. The metric weight is used
to distinguish the effect of the metric on the applica-
tion, while workload impact factor is used to identify
the impact of the assigned workload of the job on the
metrics. Their values can be customized.

The idea of the HGSA is simple, that is, by cus-
tomizing the metric weights and workload impact
factors to rank the filtered resources and select the
resource set with the best performance, where the best
performance may be the lowest resource utilization,
the lowest resource cost, the fastest speed, or the best
synthetical performance, etc.

Fig.3 Workflow of the job management

Historical
job

New job
Job

schedulerJob creator Job
executor

Finished
queue

Job monitor

Scheduled
queue

Waiting
queue

XML file 1

2

n

Job file

Import

.

.

.

Storage

Storage Storage

Information
provider

Waiting
queue

Job manager

Local
scheduler

Local
scheduler

Job Scheduler

Scheduled
 queue

File
controller

Job manager

Local
scheduler

Legend
File control
File transfer
Job transfer

Fig.4 Framework of the job scheduling

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 101

Assume that ResList is the filtered available re-
sources list; PROCESSCOUNT is the process count of
the job, which is defined by the user; SelectedList is the
selected resources list, i.e., the result. The data type of
ResList is the list of the resource classes. There are two
important properties in the resource class: process-
count and cpucount. processcount is the allocated
process count of the job to the resource, and its initial
value is zero. Therefore, if the processcount of a re-
source is bigger than zero at the end of the HGSA, the
resource is selected. cpucount is the CPU count of the
resource. If the PROCESSCOUNT value is more than
one, the job is parallel. ResList and PROCESSCOUNT
are the input, while SelectedList is the output of the
algorithm. The HGSA is described in Fig.5.

A ranking mechanism sorts filtered resources

based on the formula

1 1

0 0

() , 1, 0 1,
k k

i i i i i
i i

Rank a nf w w w
− −

= =

= + = ≤ ≤∑ ∑

where k is the count of metrics, n is the allocated
process count of the current job, ai is a metric value, fi
is workload impact factor and wi is metric weight. In
this formula, ai is normalized. If the effect of metric i

on selecting resources is negative, ai should be −ai,
such as the metric of network latency.

The MASSIVE monitoring system

In order to monitor the running jobs, the
MASSIVE Monitoring System (MMS) (Luan et al.,
2005) was developed. Its architecture is based on the
Grid Monitoring Architecture (Tierney et al., 2002)
proposed by the Global Grid Forum. Due to the large
scale and distributed feature of the grid application,
the MMS adopts the distributed and hierarchy struc-
ture as shown in Fig.6. The main components of the
MMS are Local Monitors (LM), Site Monitors (SM),
Node Monitors (NM), and Job Register Tables (JRT).

An NM runs on each node where there are ap-

plication processes to be monitored. It collects in-
formation from processes running on the node and
transfers them back to the SM on the same site. And it
can steer the processes according to the commands
obtained from the SM. In this context, the SM is the
consumer and the NM is the producer.

There is an SM on each site to which the job is
submitted. The SM accepts the requests from the LMs
and distributes them to appropriate NMs on the same
site. After receiving the information from the NMs, it
forwards them to the LMs. In this context, the LM is
the consumer while the SM is the producer.

The LM resides on the client side to monitor the
running jobs. It can query or subscribe to the SMs for
monitoring information about the jobs, and it can

maxvalue=0;
SelectedList=NULL;
for (i=0; i<PROCESSCOUNT; ++i) {
 for (resit=ResList->begin(); resit!=ResList->end();

++resit) {
 if ((*resit).processcount<(*resit).cpucount) {
 curvalue=Rank(resit);
 if (maxvalue<curvalue) {
 maxvalue=curvalue;
 selectedit=resit;
 }
 }
 }
 if (maxvalue==0)

return NULL;
 (*selectedit).processcount=(*selectedit).processcount+1;
 maxvalue=0;
}
for (resit=ResList->begin(); resit!=ResList->end();

++resit) {
 if ((*resit).processcount>0)
 SelectedList.append(*resit);
}
return SelectedList;

Fig.5 The heuristic-based greedy scheduling algorithm

Site 1 Tools

File
controller

AP ...

Node 1

JRT
Site

monitor

Node
monitor Node

monitor

AP AP AP

Site 2

Node i
...

...

JRT

Node
monitor Node

monitor

Site
monitor

AP AP AP AP

Site n

Node 1 Node j
... ...

. . .

Fig.6 Architecture of the MASSIVE monitoring system

...

Local
monitor

MMS component

Non-MMS component

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 102

send the commands to the SMs to steer the jobs. In
addition, it can communicate with the file controller
to get information about file operations and create the
performance views, according to which the user can
change the mode of file transfer, such as changing the
parallelism. The monitor described in Section 3 is
just the LM.

The JRT stores the information of mappings
between the JRC and the JVT, where JRC is the job
register code provided by the client to register the jobs,
and the JVT is the job vector table storing information
about the jobs running on which nodes and what their
processes IDs are. It is used for the consumers to find
the producers. The JRC can be used to judge whether
the user is the owner of the job. When the user uses the
JRC, of which the format is userID@hostname:jobID,
to query the monitoring information or send the con-
trol commands, the SM will check whether the con-
nection comes from the host of the hostname and his
ID is userID. Only the passed user can access the in-
formation or steer the job.

There are two types of sensors in the MMS,
which are responsible for collecting the monitoring
information and steering the jobs, respectively. Ac-
cording to the monitoring information received from
the former kind of sensors, the job can be controlled
by the latter.

The MMS adopted top-down start-up to start the
monitoring components, which can ensure that the
components are at their place whenever needed. That
is, even if the SMs or NMs abort abnormally the
monitoring can be carried out for the subsequent jobs.

In the MASSIVE environment, there may be
many files to be moved in a typical job. In addition,
there are a few applications that involve plenty of data
to be transferred. Therefore, the file transfer can affect
the efficiency of the job enormously. In most systems,
the mode of file transfer is fixed. But because the grid
is dynamic, no file transfer mode can maintain the
high efficiency all the time. Therefore, it is reasonable
to adjust the file transfer mode during the process.
The file controller provides the function of adjusting
file operations dynamically.

Job security

The MASSIVE project uses the Grid security
infrastructure (GSI) (Welch et al., 2003) to deal with
the security problems. The GSI provides the system

with the advantages of single sign-on for all resources,
no need for user to keep track of accounts and pass-
words at multiple sites, and no plaintext passwords.

The job management system is a multi-user
system. To prevent malicious users from manipulat-
ing other users’ jobs, and to ensure the integrity of the
jobs, we adopt the Job Space (JS). Every user can
have an exclusive JS, to which other users do not have
access to. All the information and data related to the
jobs are saved in the JS, and all the operations are
carried out in the JS. On the other hand, there may be
some jobs that are shared by the users. We provide the
mechanism of job importing, by which the jobs out-
side can be imported into the JS. So that the JS can
ensure the security and integrity of the jobs, at the
same time the jobs can be shared among the users.

EXAMPLE AND EVALUATION

A prototype of the job management system has
been implemented to validate the job management
architecture and its requirements. The system has
been deployed on the CESC grid and used to manage
engineering jobs.

Example

In this subsection, we use the job management
system to deal with a job, which was defined before
and is reused again in this example. Its description is
illustrated in Fig.7.

The application is a structural analysis of a gear.
As presented in Fig.7, the job name is gear, job type is
multiple, schedule type is automatic, processes count
is 16, executable file is “/home/CESC32/TGcc/pasis”,
the job parameter is “-f gear.in”, the work directory is
“./GEAR-B”, and so on. The resource filtering con-
ditions include: the OS type is Linux, CPU count is 16,
etc. The file operations mainly relate to the file
moving. Before the job execution, the parameter file
“gear.in” edited at the local machine and the data file
“gear.geom” generated by the supercomputer should
all be transferred to the executed host. After the job
execution, the resulting data file “gear.io0.
ps0000.dat” and “gear.out” will be transferred from
the executed host to local machine.

Fig.8 presents the job management operations.
Fig.8a shows the GUI environment, in which the

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 103

historical job list is presented left and the highlighted
item is the job of gear. The workspace form is used to
get the job description information. When the item is
double clicked in the job list, the detailed job infor-
mation will be present in the workspace form, by
which the current job information can be edited.
Figs.8b and 8c show the information on the file
transferring related to the job. Because the schedule

type is automatic, the job can be submitted once the
corresponding information is edited. The system will
use the job scheduler to allocate the resources to the
job automatically by using the HGSA, and after that
the job will be sent to the job executor, to which the
job will be submitted to the allocated resources. The
running jobs can be monitored and steered by the job
monitor as shown in Fig.8d.

<?xml version=“1.0”?>
<vjob>
 <basic>
 <id>491717324</id>
 <name>gear</name>
 <process>16</process>
 <deftime>2005-9-15T14:24:46</deftime>
 …
 </basic>
 <rsl>
 <clause>

<resourceManagerContact qmark=“1”>
cesc12.zju.edu.cn</resourceManagerContact>

<count>16</count>
<arguments>-f gear.in</arguments>
<directory qmark=“1”>./GEAR-B/</directory>

 <despath>gear.geom</despath>
 </transfer>
 …
 </send>
 <receive>

<transfer>
 <srcRM>cesc12.zju.edu.cn</srcRM>
 <desRM>cesc32.zju.edu.cn</desRM>
 <srcpath>gear.io0.ps0000.dat</srcpath>
 <despath>/home/CESC32/gear.io0.

ps0000.dat</despath>
 </transfer>
 …

</receive>
 </files>
 …
 </vjob>

<directory qmark=“1”>
home/CESC32/TGcc/pasis</directory>

…
 </clause>
 </rsl>
 <filter>
 <ostype>Linux</ostype>
 <cpucount>16</cpucount>
 …
 </filter>
 <files>
 <send>
 <transfer>

<srcRM>cesc11.zju.edu.cn</srcRM>
<desRM>cesc12.zju.edu.cn</desRM>
<srcpath>/u1/yz6/gear/gear.geom</srcpath>

Fig.7 Job description of the ‘gear’

(a) (b)

(c) (d)

Fig.8 Job management operations. (a) Getting the basic information of a job; (b) Specifying files trans-
ferred before job execution; (c) Specifying files transferred after job execution; (d) Monitoring the jobs

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 104

With the job management system, if the com-
puting result is unsatisfactory, the user needs only to
modify the parameter file “gear.in”, and then reuses
the defined job gear once more.

Evaluation

The job management system used in the
MASSIVE environment offers several advantages, as
discussed below.

Job definition reuse. The job description can be
reused easily and orderly in a visual manner, just as
the above example. It is especially applicable to ap-
plications that need to be executed many times to get
a reasonable result.

File operations are described in the job definition.
When defining the job, the involved file operations
can be described in the job file. Therefore, once a job
is defined, the user can leave free, all the operations
can be carried out automatically by the system.
Moreover, the file controller can check the validation
related to the file operations to improve the robustness
of the system.

Application-Adaptive Resource Scheduling. At
present, the resources used in the MASSIVE envi-
ronment consist of an SGI Onyx 3900 supercomputer,
a Dawning PC cluster, 6 SGI workstations and nearly
40 PCs. According to the requirements of the job,
only the cluster has the waiting scheduled resources
pool at the end of the filtering stage. Therefore, only
the cluster can be allocated to the job in the example.

Restricted by the environment, we have crafted a
simulation with the SimGrid (Casanova, 2001)
simulator to evaluate the HGSA. The experimental
results showed that the HGSA is efficient and adap-
tive to different types of application. The detailed
contents on the HGSA are discussed in another paper,
which is under reviewing.

Job monitor steers the file transferring before
and after job execution. It is impossible to presume a
stable trend in the file transferring. The job monitor in
the system can monitor the file operations whose
performance can be presented visually. According to
the performance view, users can steer the process of
the file transferring. Fig.9 presents the performance
figure when changing the parallelism during the file
transferring. Changing the parallelism in Fig.9 can
improve the performance.

CONCLUSION AND FUTURE WORK

In computational grid, job management is an
important issue and efforts can be made to improve its
efficiency, flexibility, convenience and security. In
this paper, an applicable mechanism for job man-
agement is proposed, and the detailed aspects on the
design and implementation are described afterwards.

The main issues solved include: the job definition
reuse, which is easy-to-use and efficient; the flexible
and comprehensive file/folder operations, which can
meet various demands on the file operations; moni-
toring and steering of the job including the file opera-
tions, which provide users with the detailed job in-
formation and flexibility of controlling the jobs; the
adaptive job scheduler, which can fit different types of
applications; the job space, which ensures the security
of the jobs, and so on. Example, evaluation revealed
that this job management system is job-centric and
user-friendly. It hides the details about the grid, which
makes the scientists concentrate on the scientific
problems.

In the future, we plan to study how to manage the
data well for the jobs. In order to analyze the moni-
toring data effectively, we will adopt more advanced
job monitoring instruments to the job management.

ACKNOWLEDGEMENTS

We appreciate the helpful discussions among the
members of the Grid Computing Group at the Center
for Engineering and Scientific Computation, Zhejiang
University, and would like to thank Guiyi Wei,
Chaoyan Zhu, Wei Wang and Xuqing Zhu for their
input in the project.

80
78
76
74
72
70Tr

an
sf

er
 ra

te
 (M

bp
s)

Fig.9 Changing the parallelism from 4 to 8 during
the files transfer

4 4 4 4 4 4 8 8 8 8 8 8

Parallelism

Luan et al. / J Zhejiang Univ Sci A 2007 8(1):95-105 105

References
Andreetto, P., Borgia, S.A., Dorigo, A., et al., 2006. CREAM:

A Simple, GRID-Accessible, Job Management System
for Local Computational Resources. Proceedings of
Computing in High Energy and Nuclear Physics (CHEP
2006). Mumbai, India.

Baranovski, A., Garzoglio, G., Terekhov, I., Roy, A.,
Tannenbaum, T., 2004. Management of Grid Jobs and
Data within SAMGrid. Proceedings of the 2004 IEEE
International Conference on Cluster Computing. IEEE
Computer Society, Washington DC, USA, p.353-359.

Casanova, H., 2001. Simgrid: A Toolkit for the Simulation of
Application Scheduling. Proceedings of the IEEE Sym-
posium on Cluster Computing and the Grid (CCGrid’01).
IEEE Computer Society, p.430-437.

Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin,
S., Smith, W., Tuecke, S., 1998. A Resource Management
Architecture for Metacomputing Systems. Proceedings of
the 4th Workshop on Job Scheduling Strategies for Par-
allel Processing. Springer-Verlag, p.62-82.

Foster, I., Kesselman, C., 1997. Globus: a metacomputing
infrastructure toolkit. International Journal of Super-
computer Applications, 11(2):115-128.

Foster, I., Kesselman, C., 1998. The Globus Project: A Status
Report. Proceedings of IPPS/SPDP’98 Heterogeneous
Computing Workshop. IEEE Press, p.4-18.

Foster, I., Kesselman, C., Tuecke, S., 2001. The anatomy of the
grid: enabling scalable virtual organizations. Interna-
tional Journal of Supercomputer Applications, 15(3):200-
222.

Liu, C., Yang, L.Y., Foster, I., Angulo, D., 2002. Design and
Evaluation of a Resource Selection Framework for Grid
Applications. Proceedings of IEEE International Sympo-
sium on High Performance Distributed Computing
(HPDC-11). IEEE CS Press, p.63-72.

Luan, C.J., Song, G.H., Zheng, Y., 2005. An Infrastructure for
Grid Job Monitoring. Proceedings of the International

Workshop on Grid and Cooperative Computing
(GCC’05). Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, 3795:443-448.

Luan, C.J., Song, G.H., Zheng, Y., 2006. Application-adaptive
resource scheduling in a computational grid. Journal of
Zhejiang University SCIENCE A, 7(10):1634-1641.
[doi:10.1631/jzus.2006.A1634]

Tannenbaum, T., Wright, D., Miller, K., Livny, M., 2002.
Condor—A Distributed Job Scheduler. Beowulf Cluster
Computing with Linux. The MIT Press, Cambridge, MA,
USA, p.307-350.

Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M.,
Taylor, V., Wolski, R., 2002. A Grid Monitoring Archi-
tecture. Http://www.ggf.org/documents/GFD/GFD-I.7.
pdf

Wang, W., Zheng, Y., Song, G.H., 2005. The Design and
Implementation of Scalable Information Services in a
Grid Environment. Proceedings of the 2005 IEEE Inter-
national Conference on Services Computing. IEEE
Computer Society, Los Alamitos, California, 2:265-267.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski,
K., Gawor, J., Kesselman, C., Meder, S., Pearlman, L.,
Tuecke, S., 2003. Security for Grid Services. Proceedings
of the 12th International Symposium on High Perform-
ance Distributed Computing (HPDC-12). IEEE Press,
p.48-57.

YarKhan, A., Seymour, K., Sagi, K., Shi, Z., Dongarra, J.,
2006. Recent developments in gridsolve. International
Journal of High Performance Computing Applications,
20(1):131-141. [doi:10.1177/1094342006061893]

Zheng, Y., Song, G.H., Zhang, J.F., Chen, J.J., 2004. An
Enabling Environment for Distributed Simulation and
Visualization. Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing (Grid 2004).
IEEE Computer Society, Los Alamitos, California,
p.26-33.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276/87952331

