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Abstract:    Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the 
overall performance of corresponding scheduling algorithm. However, backtracking is used in general combination algorithms to 
traverse the whole search space which may introduce redundant operations, so performance of the combination algorithm is 
generally poor. A fast scheduling chain combination algorithm which avoids redundant operations by skipping “incompatible” 
steps of scheduling chains and using a stack to remember the scheduling state is presented in this paper to overcome the problem. 
Experimental results showed that it can improve the performance of scheduling algorithms by up to 15 times. By further omitting 
unnecessary operations, a fast algorithm of minimum combination length prediction is developed, which can improve the speed by 
up to 10 times. 
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INTRODUCTION 
 

High-level synthesis (HLS) maps a behavioral 
description of a digital system into a register-transfer- 
level (RTL) design. Operation scheduling is one of the 
major steps in HLS and “perhaps the most important 
step during structural synthesis” (Gajski et al., 1986). It 
assigns operations in the behavioral description into 
control steps. The scheduling problem is known to be 
an NP-complete problem (Ullman, 1975). Perform-
ance of the scheduling algorithm is of much impor-
tance to the overall performance of synthesis results. 
Generally, a good scheduling algorithm should be able 
to find scheduling sequence(s) with low cost (control 
steps used, number of registers needed, power con-
sumption) in a relatively short time. As for chain-based 
scheduling algorithms (Yuan and Shen, 1998; Memik 
et al., 2005), which schedule a number of nodes (a 

chain) from the dataflow graph at a time, and combine 
it with existing chains under resource and time con-
straints while retaining the dependency of nodes, the 
key to find optimal or suboptimal scheduling se-
quence(s) is to combine scheduling chains quickly and 
find enough valid combination results. This is because 
optimal result may be achieved from any intermediate 
chain, so we have to maintain a reasonable number of 
intermediate chains, and to process these chains, the 
combination speed must be fast enough. 

In this paper, a fast combination algorithm is 
presented, which can be used to solve resource-con- 
strained or time-constrained scheduling problems. 
The algorithm takes both time constraint and resource 
constraint as input. The extra constraint (time con-
straint for resource-constrained scheduling problems 
or resource constraint for time-constrained scheduling 
problems) is used to pre-prune the search space so as 
not to get too much combination results. To further 
speed up the combination process in coping with 
resource-constrained problems, a minimum combi-
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nation length prediction algorithm is also presented 
for fast prediction of the minimum length of com-
bined chains, thus to avoid unnecessary combination.  
 
 
RELATED WORK 
 

There are two classes of scheduling problems: 
time-constrained scheduling (TCS) and resource- 
constrained scheduling (RCS) (Lin, 1997). There are 
many scheduling algorithms developed by research-
ers to address TCS and/or RCS problems. According 
to optimization of scheduling results, scheduling 
algorithms can be classified into two categories: exact 
solutions and heuristics. Integer Linear Programming 
(ILP) (Hwang et al., 1991), SAT-based scheduling 
algorithm (Memik and Fallah, 2002), and Branch and 
Bounding algorithm (Narasimhan and Ramanujam, 
2001) can find exact (optimal) solutions to the 
scheduling problem, but with a high computation 
complexity; Force Directed Scheduling (FDS) (Pau-
lin and Knight, 1989) and its variants, list-based 
scheduling (Parker et al., 1986) and its improved 
version (Sllame and Drabek, 2002) compute subop-
timal solutions with low costs. Chain-based sched-
uling algorithms can be tuned to find optimal or 
suboptimal solutions, whose results are found to de-
pend on how partial-scheduled chains are combined. 
Yuan and Shen (1998) adopted the simplest method, 
which was to match two chains from the very begin-
ning and did not consider the cost of combined 
scheduling sequences. Memik et al.(2005) also de-
veloped a chain-based scheduling algorithm, but they 
converted it into a “max-weighted k-chain” problem, 
and used bipartite matching to solve it. Both of these 
two algorithms compute only one combination chain 
from two input chains, and thus result in suboptimal 
solutions. To compute optimal solutions, more com-
bination results must be found and kept for further 
combination until the optimal results are found.  

There are also scheduling algorithms aiming at 
multiple objective optimizations. Mohanty and Ran-
ganathan (2005), Mohanty et al.(2006) and Kumar et 
al.(2004) developed scheduling algorithms for RCS 
and TCS problems that optimized for low power. 
Chantana et al.(2004), however, presented an algo-
rithm that made resource and register usage optimi-
zations in architectural synthesis. 

PROBLEM FORMULATION 
 

The behavior of the digital system is described in 
a data flow graph (DFG), which is in nature a directed 
acyclic graph (DAG). We denote DFG G by a 2-tuple 
(V, E), in which V={v1,v2,…,vn}, each vi (1≤i≤n) is a 
vertex of G, n=|V| is the number of vertices, and 
E={e1,e2,…,em}, each ej=(vτ,vφ) (1≤j≤m; vτ, vφ∈V) is 
an edge of G, m=|E| is the number of edges. If 
(vτ,vφ)∈E, vτ is called a predecessor of vφ; vφ is called a 
successor of vτ. Direct and indirect predecessors of vφ 
are called ancestors of vφ; direct and indirect succes-
sors of vφ are called descendants of vφ. Component 
library is a set of hardware components (such as 
multiplier and ALU) which completes the operation 
of vertices in the DFG: C={ck|ck=(t,d), 1≤k≤Π, t is the 
type of the component, d is delay in steps of this 
component, Π is the number of components}. Re-
source constraint Řt (1≤t≤Π) is the number of avail-
able resource of type t (for ease of discussion, we 
assume that each operation in V can only be per-
formed on one type of resource). Time constraint Ť 
regulates the maximum number of control steps that a 
combination chain could distribute its operations into. 
A scheduling chain S is a sequence of control steps S1, 
S2,…, each is a set that contains one or more opera-
tions S11,S12,…,S21,… scheduled from whole or part 
of the DFG that satisfy the dependency and resource 
constraints. The chain combination problem under 
resource constraint Ř and time constraint Ť is formu-
lated as follows. 

To combine two independent chains S1,S2,…,Sα 
and T1,T2,…,Tβ, is to find all valid chains U1,U2,…,Uγ 
that satisfy: 

 
(1) γ≤Ť.                (Time constraint) 
(2) ∀j, ∀t, 1≤j≤γ, 1≤t≤Π 

|{Ujk|Ujk∈Uj∧type(Ujk)=t}|≤Řt. 
(Resource constraint) 

(3) 
1 1 1

i i i
i i i
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(Each operation is scheduled only once) 
(5) ∀j, 1≤j≤γ, ∀k, 1≤k≤|Uj| 

¬∃i that i≥j∧Ui contains an ancestor of Ujk. 
(Dependency of DFG) 

 
An example of scheduling chain combination is 

depicted in Fig.1. In this example, two chains “Chain 
1” and “Chain 2” are to be combined under the re-
source constraint of one multiplier and one ALU, and 
the time constraint of 5 control steps. After combina-
tion, two valid chains R1 and R2 are found. Note that 
the two chains to be combined are carefully selected 
from the DFG, and preprocessed to be independent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FAST COMBINATION ALGORITHM 
 

A naïve way to combine two scheduling chains 
is to use backtracking to enumerate all possible solu-
tions. Implementation of this algorithm is illustrated 
below. For ease of discussion, we assume that all 
resources in the component library take only one 
cycle to complete its operation. 

 
Implementation of a naïve combination algorithm 
// res: resource constraint 
// time: time constraint 
// S1…Sn: scheduling sequence one 
//T1…Tm: scheduling sequence two 
// pfx: prefix of combination result 
// i and j: current indexs of S and T 
procedure Combine(res, time, pfx, S, T, i, j) 

if (i=n+1 and m–j+1≤time) 
Output(pfx+Tj…Tm);      // concat and output 

else if (j=m+1 and n–i+1≤time) 
Output(pfx+Si…Sn);      // concat and output 

else 
bak←pfx;           // back up pfx 
pfx←pfx+Si;       // add Si to the end of pfx 
Combine(res, time−1, pfx, S, T, i+1, j); 
pfx←bak;           // restore pfx 
pfx←pfx+Tj;       // add Tj to the end of pfx 
Combine(res, time−1, pfx, S, T, i, j+1); 
pfx←bak;           // restore pfx 
(cur, len)←comb_cycle(res, Si, Tj)  

// combine current cycle 
pfx←pfx+cur;     // concat with pfx 
Combine(res, time−len, pfx, S, T, i+1, j+1); 

endif 
end procedure  
 

// top module 
procedure top_combine(res, time, S, T) 

Combine(res, time, NULL, S, T, 1, 1); 
end procedure 

 
Because this algorithm does not perform any 

pruning on the search space, both worst case and 
average time complexity of the algorithm are expo-
nential. Basically, the chain combination process is to 
make a traversal on the search tree, performance of 
the algorithm can be improved by pruning unrea-
sonable branch of the search tree. As can be seen from 
the pseudocode, the kernel of the algorithm is 
comb_cycle procedure, which combines two control 
steps from two chains into one. The procedure is 
executed without any constraints; that is to say, it is 
executed without considering whether it is necessary. 
In fact, if some comb_cycle(res, Si, Tj) procedure call 
can produce no more results than Si…Tj and Tj…Si, 
this procedure call and the following recursive call to 
Combine are both unnecessary, because these two 
cases will be covered by other Combine calls. An 
example in Fig.2 illustrates one of the two cases. 

There are several cases in which comb_cycle(res, 
Si, Tj) procedure call produces only two results Si…Tj 
and Tj…Si, with each case being called a combination 
failure. In the following cases, a combination failure 
will occur: (1) Si (or Tj) consumes all available re-
sources, so Tj (or Si) must be scheduled in the fol-
lowing control step. (2) Suppose Si (or Tj) consumes 
more or at least the same number of types of resources 
than Tj (or Si), for each type of resource that Tj (or Si) 
consumes at least one unit, Si (or Tj) needs all avail-
able resources of that type. Combination failures are 
illustrated in Fig.3. In this example, two chains  

Fig.1  Example of chain combination. (a) Two chains
to be combined; (b) Valid chains after combination 
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“Chain 1” and “Chain 2” are to be combined under the 
resource constraint of one multiplier and two ALUs. 
In the first control step, “Chain 1” consumes all 
available resources, so whatever the corresponding 
control step in “Chain 2” is, a combination failure will 
occur. In control steps 2 and 3 of the example, al-
though none of the two control steps consumes all 
available resources, no significant “new” results can 
be generated from combination of the two control 
steps [Note that although (+3,+4)…+9 and 
(+3,+9)…+4 are two different sequences, there is no 
significant difference between them in the view of 
operation pattern]. Two cases of successful combina-
tion are also shown in the figure. In control step 4, 
total resource requirements of Chain 1 and Chain 2 

are just the amount of available resources, so it is a 
perfect match. In control step 5, total resource re-
quirements of Chain 1 and Chain 2 exceed the amount 
of available resources, but significantly different 
results can also be generated [for example, 
(+7,*5)…(+11,*7) and (+7,*5,+11)…(*7) are two 
different sequences]. Two control steps are said to be 
compatible if they can be successfully combined.  

Knowing in which cases a Combine call is nec-
essary and in which cases it is redundant, we can 
revise the program to remove redundant function calls 
and improve its performance. The revised algorithm 
is listed as follows. 
 
Fast chain combination algorithm 
// res: resource constraint 
// time: time constraint 
// S1…Sn: scheduling sequence one 
// T1…Tm: scheduling sequence two 
procedure Combine(res, time, S, T) 
    init stack s; 
    link up available control steps of S, T; 
    i←first_avail(S);    // get index of first available step in S 
    j←first_avail(T);    // get index of first available step in T 
    k←match(Si,Tj,1,res);  // try to find a match of Tj in S from Si 
    push(s, k, j, NULL, S1...Sk–1, T1...Tj–1, time–(k+j–2)); 
    ...     // omit code for searching along T 
    while (not empty(s)) 
        (i, j, pfx, pa, pb, time)←pop(s); 
        while (i≠–1 and j≠–1) 
            back up pfx, pa; 
            k←match(Snext_avail(S,i), Tj, 1, res); 
            if (k=–1 and time>=(n–i+m–j)) 
                Output(pa, pb, pfx, Si+1, Tj+1); 
            else 
                if (pfx=NULL) 
                    pa←pa+(Si...Sk–1); 
                else 
                    pfx←pfx+(Si...Sk–1); 
                endif 
                    push(s, k, j, pfx, pa, pb, time–(k–i–1)); 
            endif 
            restore pfx, pa; 
            ...  // omit code for searching along T 
            (cur, len)←comb_cycle(Si, Tj);  // combine current step 
            pfx←pfx+cur;         // concat with pfx 
            time←time–len;      // adjust time limit 
            i←next_avail(S, i);  // seek to next available step of Si 
            j←next_avail(T, j);  // seek to next available step of Tj 
            ... // omit code for searching along S and T. If one match 

// is found, related variables are updated; if two 
// matches are found, the second one is pushed onto 
// the stack. If any attempt fails, try to output the results.  

        endwhile 
    endwhile 
end procedure 
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Fig.3  Various combination cases 

Fig.2  Example that shows the case of redundant
Combine and comb_cycle calls. (a) Situation reached
through comb_cycle call; (b) The same situation
reached without comb_cycle call 

(a) 

Combine(res, time, pfx, S, T, i, j) 
pfx=p 

(cur, len)=comb_cycle(res, Si, Tj); 
// here cur=p...Si...Tj,  len=2 

Combine(res, time, pfx, S, T, i+1, j+1)

     Skip one node from S 

     Skip one node from T 

 (b) 

Combine(res, time, pfx, S, T, i, j) 
pfx=p 

pfx=p+Si;    // pfx=p...Si 
Combine(res, time, pfx, S, T, i+1, j) 

pfx=p+Tj;    // pfx=p...Si...Tj 
Combine(res, time, pfx, S, T, i, j+1) 
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Due to space limitation, some codes of the al-
gorithm are omitted, however, the readability of the 
algorithm is not affected since the algorithm is sym-
metrical in general and omitted codes can be easily 
deduced. The algorithm uses stack instead of recur-
sive function call to decrease overhead. To avoid 
unnecessary processing of control steps that have 
already consumed all available resources, “available” 
steps (those that consume fewer resources than 
available) are linked up in a linked list, and can be 
traversed by first_avail and next_avail function calls. 
The match(Si, Tj, 1, res) function call is used to find 
the next compatible step of Tj in chain S from step Si 
by calling function next_avail repeatedly. Firstly the 
initial match along each chain is detected and pushed 
onto the stack. Then for each record in the stack, the 
algorithm tries along each chain to find a match and 
push any match onto the stack. Partial combined 
chains are stored as prefix in “pa”, “pb” or “pfx” 
member and when any chain reaches its end, the pre-
fix is used to construct final results to output. This 
version of Output function is also different from the 
one listed in “the implementation of naïve combina-
tion algorithm” where it has more arguments. Among 
these arguments, pa and pb are uncombined parts of 
chains S and T respectively, pfx is the combined prefix, 
Si+1…Sn and Tj+1…Tm are the remainder of chains S 
and T respectively. An example run of Output is de-
picted in Fig.4. In this example, none of Si+1,Si+2,…,Sn 

is compatible with Tj+1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MINIMUM COMBINATION LENGTH PREDIC-
TION 

 
In scheduling algorithms based on chain com-

bination, the combination operation will be iterated 
several times, and in each iteration there may be a 
large number of intermediate chains. Combining such 
intermediate chains is time-consuming. However, its 
performance can be improved by rapidly predicting 
the minimum combination length and avoiding un-
necessary combinations (If the minimum length of 
combination results is still greater than the time con-
straint, the combination is unnecessary). 

The fast minimum combination length predic-
tion algorithm is listed below. It is similar to the fast 
chain combination algorithm, but it runs much faster. 
Firstly, it does not need to maintain the prefix chain 
any more; only its length is needed. Secondly, no 
backtracking is needed: once a match is found, both 
chains move forward to the next available step. A new 
function compatible is introduced in the algorithm, 
which is used to judge whether current steps of the 
two chains can be combined into one. The algorithm 
also uses double-linked list to speed up available node 
search and uses a stack to remember intermediate 
matches. Firstly initial matches are detected and 
pushed onto stack. Then each item in the stack is 
tested for feasibility, and feasible matches are pushed 
onto stack again. Each time an infeasible chain is 
found, length of the final chain is computed and 
minimum length is updated if necessary. 

 
Implementation of minimum combination length 
prediction algorithm 
// res: resource constraint 
// S1…Sn: scheduling sequence one 
// T1…Tm: scheduling sequence two 
procedure MinLen(res, S, T) 
  min_len←∞; 
  init stack s; 
  link up available control steps of S, T; 
  i←first_avail(S);            // first available step in S 
  j←first_avail(T);            // first available step in T 
  k←match(Si, Tj, 1, res);  // try to find a match of Tj in S from Si 
  push(s, k, j, k–1); 
  k←match(Si, Tj, 2, res);  // try to find a match of Si in T from Tj 
  push(s, i, k, i–1); 
  while (not empty(s)) 
    (i, j, pfx_len)←pop(s); 
    while (i≠–1 and j≠–1) 
      if (compatible(res, Si, Tj)==1) 
        k←next_avail(S, i); 
        j←next_avail(T, j); 
        if (k≠–1 and j≠–1) 
             pfx_len←pfx_len+(k–i–1); 
             i←k; 

Output("a...b","c...d","e...f","g...h","i...j...k") 
The output is: 

a...b...c...d...e...f...g...h...i...j...k 
a...b...c...d...e...f...g...i...j...k...h 
a...b...c...d...e...f...i...j...k...g...h 
c...d...a...b...e...f...g...h...i...j...k 
c...d...a...b...e...f...g...i...j...k...h 
c...d...a...b...e...f...i...j...k...g...h 

 

Fig.4  Example run of Output function 
pa and pb are independent and either one can be put on 
the first position. pfx follows pa and pb. The last two 
arguments, “g…h” and “i…j…k”, are treated differ-
ently: “i…j…k” is treated as a whole, while “g…h” can 
be separated 
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        else 
             min_len←min(min_len, m+pfx_len+n–i); 
        endif 
      else 
        k←match(Si, Tj, 1, res);  

// try to find a match of Tj in S from Si 
        if (k>0) 
            push(s, k, j, pfx_len+k–i–1); 
        else 
            min_len←min(min_len, m+pfx_len+n–i+1); 
        endif 
          ...  // omit code for searching along T 
      endif 
    endwhile 
  endwhile 
  return min_len; 
end procedure 

 
 

ADAPTING THE ALGORITHMS TO REAL-LIFE 
APPLICATIONS 
 

When presenting the algorithms, an assumption 
is made that each type of resource takes only one 
cycle to run. However, in real-life applications, there 
are many types of hardware components that are of 
multiple-cycle. For example, a multiplier generally 
takes two cycles to perform a multiplication. The fast 
combination algorithm and fast minimum combina-
tion length prediction algorithm must be modified to 
accommodate this situation. To represent multiple- 
cycle operation, multiple nodes can be used, with 
each representing one stage of the operation. For 
example, a 2-stage multiplier can be represented by 
an original multiplier node followed by a node of new 
type “dummy”. Here a “dummy” node performs the 
second stage of multiplication. According to the 
definition of dummy operation, each dummy node 
must follow a multiplier node and no other node can 
be inserted in-between; also each multiplier node 
must be followed by a dummy node. When schedul-
ing nodes in chains, extra care must be taken so as not 
to split a multiplier-dummy node pair. 

An example of combining two chains that con-
tain 2-stage multipliers is shown in Fig.5. Fig.5b is a 
snapshot of running combination algorithm with input 
“Chain 1” and “Chain 2” shown in Fig.5a. At this 
time, nodes “dummy” and “+4” are a match, and the 
algorithm searches along Chain 2, trying to find a new 
match and putting it onto stack. Of course “dummy” 

and “+5” are also a match. However, it is not a fea-
sible solution, since node “+4” will be inserted be-
tween “(*1,+3)” and “dummy”, and “*1-dummy” 
node pair will be broken. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXPERIMENTAL RESULTS 
 

To test the performance of the two algorithms, 
we implement them with Visual C++ 6.0, and apply 
them to standard benchmarks EWF and FDCT. For 
comparison, running times of fast combination algo-
rithm with and without fast minimum combination 
length prediction are collected respectively. The na-
ïve version of combination algorithm is also imple-
mented and its running times on EWF and FDCT with 
and without fast minimum combination length pre-
diction are collected. Experimental results are shown 
in Tables 1~2. All data are collected on a machine 
with 1.6 GHz Intel Pentium IV CPU, 512 M memory 
machine running Windows XP SP2. 

Experimental results show that no matter 
whether fast minimum combination length prediction 
algorithm is applied, the fast version of combination 
algorithm gets a better performance than the naïve 
recursive version: it runs 2~15 times faster. Also, both 
versions of combination algorithms get better results 
when fast minimum combination length prediction is 
used than running alone, but due to the limitation we 
impose on the number of intermediate results, the 
potential of prediction algorithm is not fully brought 
into play. 
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Fig.5  Example of combination algorithm. (a) Two
chains to be combined; (b) Snapshot of the combina-
tion algorithm 
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Table 2  Experimental results for FDCT benchmark 
Res Pred Fast Inter Time (s) Results Res Pred Fast Inter Time (s) Results

N N   4000 8.18 101 N N   4000 2.44   90 
N Y   4000 4.31 102 N Y   4000 1.78   83 
Y Y   4000 3.21 102 Y Y   4000 1.77   83 

3*,3+Non-pipelining 

Y N   4000 7.06 101 

3*,3+Pipelining

Y N   4000 2.43   90 
N N 10000 3.53 101 N N 10000 1.47 102 
N Y 10000 1.51 101 N Y 10000 1.31 100 
Y Y 10000 1.46 101 Y Y 10000 1.27 100 

4*,3+Non-pipelining 

Y N 10000 3.13 100 

4*,3+Pipelining

Y N 10000 1.43 102 
N N 10000 2.83 100 N N 10000 1.34 100 
N Y 10000 1.66 100 N Y 10000 0.66 100 
Y Y 10000 1.50 100 Y Y 10000 0.64 100 

4*,4+Non-pipelining 

Y N 10000 2.15 100 

4*,4+Pipelining

Y N 10000 1.32 100 
N N 10000 5.88 101 N N 10000 1.42 101 
N Y 10000 1.35 101 N Y 10000 1.25 101 
Y Y 10000 0.92 101 Y Y 10000 1.23 101 

4*,5+Non-pipelining 

Y N 10000 1.40 101 

4*,5+Pipelining

Y N 10000 1.37 101 
N N   4000 0.32 110 N N   4000 0.05   43 
N Y   4000 0.24 100 N Y   4000 0.04   40 
Y Y   4000 0.21 100 Y Y   4000 0.04   40 

8*,4+Non-pipelining 

Y N   4000 0.32 110 

8*,4+Pipelining

Y N   4000 0.04   43 
Descriptions of “Res”, “*”, “+”, “Pred”, etc. are the same as those in Table 1. Number of the final results is limited to around 100 

Table 1  Experimental results for EWF benchmark 
Res Pred Fast Inter Time (s) Results Res Pred Fast Inter Time (s) Results

N N 1000   5.17    158 N N 2000 11.40   302 
N Y 1000   0.58    249 N Y 2000   0.79   666 
Y Y 1000   0.57    249 Y Y 2000   0.75   666 

1*,1+Non-pipelining 

Y N 1000   5.12    158

1*,1+Pipelining

Y N 2000   6.84   282 
N N 2000 40.03 2000 N N 2000   0.60   351 
N Y 2000 15.27 2000 N Y 2000 11.33 2000 
Y Y 2000 15.99 2000 Y Y 2000   3.51 2000 

1*,2+Non-pipelining 

Y N 2000 19.30 2001

1*,2+Pipelining

Y N 2000   5.79   351 
N N 4000   0.89      12 N N 4000   0.92    18 
N Y 4000   0.99      12 N Y 4000   0.99    18 
Y Y 4000   0.44      12 Y Y 4000   0.45    18 

2*,2+Non-pipelining 

Y N 4000   1.10      12

2*,2+Pipelining

Y N 4000   1.07    18 
N N 4000   1.90 4000 N N 4000   0.06    78 
N Y 4000   1.16 4000 N Y 4000   0.10    81 
Y Y 4000   1.01 4000 Y Y 4000   0.05    81 

2*,3+Non-pipelining 

Y N 4000   1.16 4002

2*,3+Pipelining

Y N 4000   0.23    78 
N N 4000   0.23     78 N N 4000   0.27  117 
N Y 4000   0.11     81 N Y 4000   0.11  120 
Y Y 4000   0.06     81 Y Y 4000   0.06  120 

3*,3+Non-pipelining 

Y N 4000   0.20     78

3*,3+Pipelining

Y N 4000   0.24  117 
“Res” indicates the number of resources used, in which “*” is multiplier and “+” is ALU. “Pred” indicates whether prediction algorithm is 
used; “Fast” indicates whether the fast version combination algorithm is used; “Inter” indicates the number of intermediate results limit; 
“Results” indicates the number of results found. “Time” is the time in seconds used to find these results 
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CONCLUSION 
 

In this paper, a fast scheduling chain combina-
tion algorithm and a fast algorithm used to predict 
minimum length of chain combination are presented. 
They can be used in chain combination based sched-
uling algorithms with experimental results showing 
that they can greatly improve the performance of 
scheduling algorithms. According to the nature of the 
scheduling algorithm, multiple global optimized re-
sults can be obtained in much shorter time, thus other 
objective functions such as power and register usage 
can be incorporated into the algorithms to achieve 
multi-objective optimization. 
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