
Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 119

Fast combination of scheduling chains under
resource and time constraints*

WANG Ji-min†, PAN Xue-zeng, WANG Jie-bing, SUN Kang

(School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)
†E-mail: bigjim@zju.edu.cn

Received May 16, 2006; revision accepted Aug. 9, 2006

Abstract: Scheduling chain combination is the core of chain-based scheduling algorithms, the speed of which determines the
overall performance of corresponding scheduling algorithm. However, backtracking is used in general combination algorithms to
traverse the whole search space which may introduce redundant operations, so performance of the combination algorithm is
generally poor. A fast scheduling chain combination algorithm which avoids redundant operations by skipping “incompatible”
steps of scheduling chains and using a stack to remember the scheduling state is presented in this paper to overcome the problem.
Experimental results showed that it can improve the performance of scheduling algorithms by up to 15 times. By further omitting
unnecessary operations, a fast algorithm of minimum combination length prediction is developed, which can improve the speed by
up to 10 times.

Key words: Fast combination algorithm, Chain-based scheduling algorithm, High-level synthesis (HLS), Minimum length

prediction
doi:10.1631/jzus.2007.A0119 Document code: A CLC number: TP391.7

INTRODUCTION

High-level synthesis (HLS) maps a behavioral
description of a digital system into a register-transfer-
level (RTL) design. Operation scheduling is one of the
major steps in HLS and “perhaps the most important
step during structural synthesis” (Gajski et al., 1986). It
assigns operations in the behavioral description into
control steps. The scheduling problem is known to be
an NP-complete problem (Ullman, 1975). Perform-
ance of the scheduling algorithm is of much impor-
tance to the overall performance of synthesis results.
Generally, a good scheduling algorithm should be able
to find scheduling sequence(s) with low cost (control
steps used, number of registers needed, power con-
sumption) in a relatively short time. As for chain-based
scheduling algorithms (Yuan and Shen, 1998; Memik
et al., 2005), which schedule a number of nodes (a

chain) from the dataflow graph at a time, and combine
it with existing chains under resource and time con-
straints while retaining the dependency of nodes, the
key to find optimal or suboptimal scheduling se-
quence(s) is to combine scheduling chains quickly and
find enough valid combination results. This is because
optimal result may be achieved from any intermediate
chain, so we have to maintain a reasonable number of
intermediate chains, and to process these chains, the
combination speed must be fast enough.

In this paper, a fast combination algorithm is
presented, which can be used to solve resource-con-
strained or time-constrained scheduling problems.
The algorithm takes both time constraint and resource
constraint as input. The extra constraint (time con-
straint for resource-constrained scheduling problems
or resource constraint for time-constrained scheduling
problems) is used to pre-prune the search space so as
not to get too much combination results. To further
speed up the combination process in coping with
resource-constrained problems, a minimum combi-

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project (No. Y105355) supported by the Natural Science Foundation
of Zhejiang Province, China

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 120

nation length prediction algorithm is also presented
for fast prediction of the minimum length of com-
bined chains, thus to avoid unnecessary combination.

RELATED WORK

There are two classes of scheduling problems:
time-constrained scheduling (TCS) and resource-
constrained scheduling (RCS) (Lin, 1997). There are
many scheduling algorithms developed by research-
ers to address TCS and/or RCS problems. According
to optimization of scheduling results, scheduling
algorithms can be classified into two categories: exact
solutions and heuristics. Integer Linear Programming
(ILP) (Hwang et al., 1991), SAT-based scheduling
algorithm (Memik and Fallah, 2002), and Branch and
Bounding algorithm (Narasimhan and Ramanujam,
2001) can find exact (optimal) solutions to the
scheduling problem, but with a high computation
complexity; Force Directed Scheduling (FDS) (Pau-
lin and Knight, 1989) and its variants, list-based
scheduling (Parker et al., 1986) and its improved
version (Sllame and Drabek, 2002) compute subop-
timal solutions with low costs. Chain-based sched-
uling algorithms can be tuned to find optimal or
suboptimal solutions, whose results are found to de-
pend on how partial-scheduled chains are combined.
Yuan and Shen (1998) adopted the simplest method,
which was to match two chains from the very begin-
ning and did not consider the cost of combined
scheduling sequences. Memik et al.(2005) also de-
veloped a chain-based scheduling algorithm, but they
converted it into a “max-weighted k-chain” problem,
and used bipartite matching to solve it. Both of these
two algorithms compute only one combination chain
from two input chains, and thus result in suboptimal
solutions. To compute optimal solutions, more com-
bination results must be found and kept for further
combination until the optimal results are found.

There are also scheduling algorithms aiming at
multiple objective optimizations. Mohanty and Ran-
ganathan (2005), Mohanty et al.(2006) and Kumar et
al.(2004) developed scheduling algorithms for RCS
and TCS problems that optimized for low power.
Chantana et al.(2004), however, presented an algo-
rithm that made resource and register usage optimi-
zations in architectural synthesis.

PROBLEM FORMULATION

The behavior of the digital system is described in
a data flow graph (DFG), which is in nature a directed
acyclic graph (DAG). We denote DFG G by a 2-tuple
(V, E), in which V={v1,v2,…,vn}, each vi (1≤i≤n) is a
vertex of G, n=|V| is the number of vertices, and
E={e1,e2,…,em}, each ej=(vτ,vφ) (1≤j≤m; vτ, vφ∈V) is
an edge of G, m=|E| is the number of edges. If
(vτ,vφ)∈E, vτ is called a predecessor of vφ; vφ is called a
successor of vτ. Direct and indirect predecessors of vφ
are called ancestors of vφ; direct and indirect succes-
sors of vφ are called descendants of vφ. Component
library is a set of hardware components (such as
multiplier and ALU) which completes the operation
of vertices in the DFG: C={ck|ck=(t,d), 1≤k≤Π, t is the
type of the component, d is delay in steps of this
component, Π is the number of components}. Re-
source constraint Řt (1≤t≤Π) is the number of avail-
able resource of type t (for ease of discussion, we
assume that each operation in V can only be per-
formed on one type of resource). Time constraint Ť
regulates the maximum number of control steps that a
combination chain could distribute its operations into.
A scheduling chain S is a sequence of control steps S1,
S2,…, each is a set that contains one or more opera-
tions S11,S12,…,S21,… scheduled from whole or part
of the DFG that satisfy the dependency and resource
constraints. The chain combination problem under
resource constraint Ř and time constraint Ť is formu-
lated as follows.

To combine two independent chains S1,S2,…,Sα
and T1,T2,…,Tβ, is to find all valid chains U1,U2,…,Uγ
that satisfy:

(1) γ≤Ť. (Time constraint)
(2) ∀j, ∀t, 1≤j≤γ, 1≤t≤Π

|{Ujk|Ujk∈Uj∧type(Ujk)=t}|≤Řt.
(Resource constraint)

(3)
1 1 1

i i i
i i i

S T U
β γα

= = =

+ =∑ ∑ ∑ .

(All operations must be scheduled)

(4) ∀j, 1≤j≤α, ∀k, 1≤k≤|Sj|,
1

(,) 1jk i
i

S U
γ

ψ
=

=∑ ,

and

∀j, 1≤j≤β, ∀k, 1≤k≤|Tj|,
1

(,) 1jk i
i

T U
γ

ψ
=

=∑ ,

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 121

in which
1, if ,

(,)=
0, if .

op S
op S

op S
ψ

∈
 ∉

(Each operation is scheduled only once)
(5) ∀j, 1≤j≤γ, ∀k, 1≤k≤|Uj|

¬∃i that i≥j∧Ui contains an ancestor of Ujk.
(Dependency of DFG)

An example of scheduling chain combination is

depicted in Fig.1. In this example, two chains “Chain
1” and “Chain 2” are to be combined under the re-
source constraint of one multiplier and one ALU, and
the time constraint of 5 control steps. After combina-
tion, two valid chains R1 and R2 are found. Note that
the two chains to be combined are carefully selected
from the DFG, and preprocessed to be independent.

FAST COMBINATION ALGORITHM

A naïve way to combine two scheduling chains
is to use backtracking to enumerate all possible solu-
tions. Implementation of this algorithm is illustrated
below. For ease of discussion, we assume that all
resources in the component library take only one
cycle to complete its operation.

Implementation of a naïve combination algorithm
// res: resource constraint
// time: time constraint
// S1…Sn: scheduling sequence one
//T1…Tm: scheduling sequence two
// pfx: prefix of combination result
// i and j: current indexs of S and T
procedure Combine(res, time, pfx, S, T, i, j)

if (i=n+1 and m–j+1≤time)
Output(pfx+Tj…Tm); // concat and output

else if (j=m+1 and n–i+1≤time)
Output(pfx+Si…Sn); // concat and output

else
bak←pfx; // back up pfx
pfx←pfx+Si; // add Si to the end of pfx
Combine(res, time−1, pfx, S, T, i+1, j);
pfx←bak; // restore pfx
pfx←pfx+Tj; // add Tj to the end of pfx
Combine(res, time−1, pfx, S, T, i, j+1);
pfx←bak; // restore pfx
(cur, len)←comb_cycle(res, Si, Tj)

// combine current cycle
pfx←pfx+cur; // concat with pfx
Combine(res, time−len, pfx, S, T, i+1, j+1);

endif
end procedure

// top module
procedure top_combine(res, time, S, T)

Combine(res, time, NULL, S, T, 1, 1);
end procedure

Because this algorithm does not perform any

pruning on the search space, both worst case and
average time complexity of the algorithm are expo-
nential. Basically, the chain combination process is to
make a traversal on the search tree, performance of
the algorithm can be improved by pruning unrea-
sonable branch of the search tree. As can be seen from
the pseudocode, the kernel of the algorithm is
comb_cycle procedure, which combines two control
steps from two chains into one. The procedure is
executed without any constraints; that is to say, it is
executed without considering whether it is necessary.
In fact, if some comb_cycle(res, Si, Tj) procedure call
can produce no more results than Si…Tj and Tj…Si,
this procedure call and the following recursive call to
Combine are both unnecessary, because these two
cases will be covered by other Combine calls. An
example in Fig.2 illustrates one of the two cases.

There are several cases in which comb_cycle(res,
Si, Tj) procedure call produces only two results Si…Tj
and Tj…Si, with each case being called a combination
failure. In the following cases, a combination failure
will occur: (1) Si (or Tj) consumes all available re-
sources, so Tj (or Si) must be scheduled in the fol-
lowing control step. (2) Suppose Si (or Tj) consumes
more or at least the same number of types of resources
than Tj (or Si), for each type of resource that Tj (or Si)
consumes at least one unit, Si (or Tj) needs all avail-
able resources of that type. Combination failures are
illustrated in Fig.3. In this example, two chains

Fig.1 Example of chain combination. (a) Two chains
to be combined; (b) Valid chains after combination

(b) (a)

+1 +3

*2

*1

+2

+4

1

2

3

4

Chain 1 Chain 2
+1

+3

*2

*1

+2

+4

1

2

3

4

5

+3

*2

+4

+1

*1

+2

Chain R1 Chain R2

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 122

“Chain 1” and “Chain 2” are to be combined under the
resource constraint of one multiplier and two ALUs.
In the first control step, “Chain 1” consumes all
available resources, so whatever the corresponding
control step in “Chain 2” is, a combination failure will
occur. In control steps 2 and 3 of the example, al-
though none of the two control steps consumes all
available resources, no significant “new” results can
be generated from combination of the two control
steps [Note that although (+3,+4)…+9 and
(+3,+9)…+4 are two different sequences, there is no
significant difference between them in the view of
operation pattern]. Two cases of successful combina-
tion are also shown in the figure. In control step 4,
total resource requirements of Chain 1 and Chain 2

are just the amount of available resources, so it is a
perfect match. In control step 5, total resource re-
quirements of Chain 1 and Chain 2 exceed the amount
of available resources, but significantly different
results can also be generated [for example,
(+7,*5)…(+11,*7) and (+7,*5,+11)…(*7) are two
different sequences]. Two control steps are said to be
compatible if they can be successfully combined.

Knowing in which cases a Combine call is nec-
essary and in which cases it is redundant, we can
revise the program to remove redundant function calls
and improve its performance. The revised algorithm
is listed as follows.

Fast chain combination algorithm
// res: resource constraint
// time: time constraint
// S1…Sn: scheduling sequence one
// T1…Tm: scheduling sequence two
procedure Combine(res, time, S, T)
 init stack s;
 link up available control steps of S, T;
 i←first_avail(S); // get index of first available step in S
 j←first_avail(T); // get index of first available step in T
 k←match(Si,Tj,1,res); // try to find a match of Tj in S from Si
 push(s, k, j, NULL, S1...Sk–1, T1...Tj–1, time–(k+j–2));
 ... // omit code for searching along T
 while (not empty(s))
 (i, j, pfx, pa, pb, time)←pop(s);
 while (i≠–1 and j≠–1)
 back up pfx, pa;
 k←match(Snext_avail(S,i), Tj, 1, res);
 if (k=–1 and time>=(n–i+m–j))
 Output(pa, pb, pfx, Si+1, Tj+1);
 else
 if (pfx=NULL)
 pa←pa+(Si...Sk–1);
 else
 pfx←pfx+(Si...Sk–1);
 endif
 push(s, k, j, pfx, pa, pb, time–(k–i–1));
 endif
 restore pfx, pa;
 ... // omit code for searching along T
 (cur, len)←comb_cycle(Si, Tj); // combine current step
 pfx←pfx+cur; // concat with pfx
 time←time–len; // adjust time limit
 i←next_avail(S, i); // seek to next available step of Si
 j←next_avail(T, j); // seek to next available step of Tj
 ... // omit code for searching along S and T. If one match

// is found, related variables are updated; if two
// matches are found, the second one is pushed onto
// the stack. If any attempt fails, try to output the results.

 endwhile
 endwhile
end procedure

*7

+10

+9

*6

5

4

3

2

1

+6

+5

+7

+2

Chain 2Chain 1

*1 +1 +8

+4+3

*3

*4

+11*5

Fig.3 Various combination cases

Fig.2 Example that shows the case of redundant
Combine and comb_cycle calls. (a) Situation reached
through comb_cycle call; (b) The same situation
reached without comb_cycle call

(a)

Combine(res, time, pfx, S, T, i, j)
pfx=p

(cur, len)=comb_cycle(res, Si, Tj);
// here cur=p...Si...Tj, len=2

Combine(res, time, pfx, S, T, i+1, j+1)

 Skip one node from S

 Skip one node from T

 (b)

Combine(res, time, pfx, S, T, i, j)
pfx=p

pfx=p+Si; // pfx=p...Si
Combine(res, time, pfx, S, T, i+1, j)

pfx=p+Tj; // pfx=p...Si...Tj
Combine(res, time, pfx, S, T, i, j+1)

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 123

Due to space limitation, some codes of the al-
gorithm are omitted, however, the readability of the
algorithm is not affected since the algorithm is sym-
metrical in general and omitted codes can be easily
deduced. The algorithm uses stack instead of recur-
sive function call to decrease overhead. To avoid
unnecessary processing of control steps that have
already consumed all available resources, “available”
steps (those that consume fewer resources than
available) are linked up in a linked list, and can be
traversed by first_avail and next_avail function calls.
The match(Si, Tj, 1, res) function call is used to find
the next compatible step of Tj in chain S from step Si
by calling function next_avail repeatedly. Firstly the
initial match along each chain is detected and pushed
onto the stack. Then for each record in the stack, the
algorithm tries along each chain to find a match and
push any match onto the stack. Partial combined
chains are stored as prefix in “pa”, “pb” or “pfx”
member and when any chain reaches its end, the pre-
fix is used to construct final results to output. This
version of Output function is also different from the
one listed in “the implementation of naïve combina-
tion algorithm” where it has more arguments. Among
these arguments, pa and pb are uncombined parts of
chains S and T respectively, pfx is the combined prefix,
Si+1…Sn and Tj+1…Tm are the remainder of chains S
and T respectively. An example run of Output is de-
picted in Fig.4. In this example, none of Si+1,Si+2,…,Sn

is compatible with Tj+1.

MINIMUM COMBINATION LENGTH PREDIC-
TION

In scheduling algorithms based on chain com-

bination, the combination operation will be iterated
several times, and in each iteration there may be a
large number of intermediate chains. Combining such
intermediate chains is time-consuming. However, its
performance can be improved by rapidly predicting
the minimum combination length and avoiding un-
necessary combinations (If the minimum length of
combination results is still greater than the time con-
straint, the combination is unnecessary).

The fast minimum combination length predic-
tion algorithm is listed below. It is similar to the fast
chain combination algorithm, but it runs much faster.
Firstly, it does not need to maintain the prefix chain
any more; only its length is needed. Secondly, no
backtracking is needed: once a match is found, both
chains move forward to the next available step. A new
function compatible is introduced in the algorithm,
which is used to judge whether current steps of the
two chains can be combined into one. The algorithm
also uses double-linked list to speed up available node
search and uses a stack to remember intermediate
matches. Firstly initial matches are detected and
pushed onto stack. Then each item in the stack is
tested for feasibility, and feasible matches are pushed
onto stack again. Each time an infeasible chain is
found, length of the final chain is computed and
minimum length is updated if necessary.

Implementation of minimum combination length
prediction algorithm
// res: resource constraint
// S1…Sn: scheduling sequence one
// T1…Tm: scheduling sequence two
procedure MinLen(res, S, T)
 min_len←∞;
 init stack s;
 link up available control steps of S, T;
 i←first_avail(S); // first available step in S
 j←first_avail(T); // first available step in T
 k←match(Si, Tj, 1, res); // try to find a match of Tj in S from Si
 push(s, k, j, k–1);
 k←match(Si, Tj, 2, res); // try to find a match of Si in T from Tj
 push(s, i, k, i–1);
 while (not empty(s))
 (i, j, pfx_len)←pop(s);
 while (i≠–1 and j≠–1)
 if (compatible(res, Si, Tj)==1)
 k←next_avail(S, i);
 j←next_avail(T, j);
 if (k≠–1 and j≠–1)
 pfx_len←pfx_len+(k–i–1);
 i←k;

Output("a...b","c...d","e...f","g...h","i...j...k")
The output is:

a...b...c...d...e...f...g...h...i...j...k
a...b...c...d...e...f...g...i...j...k...h
a...b...c...d...e...f...i...j...k...g...h
c...d...a...b...e...f...g...h...i...j...k
c...d...a...b...e...f...g...i...j...k...h
c...d...a...b...e...f...i...j...k...g...h

Fig.4 Example run of Output function
pa and pb are independent and either one can be put on
the first position. pfx follows pa and pb. The last two
arguments, “g…h” and “i…j…k”, are treated differ-
ently: “i…j…k” is treated as a whole, while “g…h” can
be separated

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 124

 else
 min_len←min(min_len, m+pfx_len+n–i);
 endif
 else
 k←match(Si, Tj, 1, res);

// try to find a match of Tj in S from Si
 if (k>0)
 push(s, k, j, pfx_len+k–i–1);
 else
 min_len←min(min_len, m+pfx_len+n–i+1);
 endif
 ... // omit code for searching along T
 endif
 endwhile
 endwhile
 return min_len;
end procedure

ADAPTING THE ALGORITHMS TO REAL-LIFE
APPLICATIONS

When presenting the algorithms, an assumption
is made that each type of resource takes only one
cycle to run. However, in real-life applications, there
are many types of hardware components that are of
multiple-cycle. For example, a multiplier generally
takes two cycles to perform a multiplication. The fast
combination algorithm and fast minimum combina-
tion length prediction algorithm must be modified to
accommodate this situation. To represent multiple-
cycle operation, multiple nodes can be used, with
each representing one stage of the operation. For
example, a 2-stage multiplier can be represented by
an original multiplier node followed by a node of new
type “dummy”. Here a “dummy” node performs the
second stage of multiplication. According to the
definition of dummy operation, each dummy node
must follow a multiplier node and no other node can
be inserted in-between; also each multiplier node
must be followed by a dummy node. When schedul-
ing nodes in chains, extra care must be taken so as not
to split a multiplier-dummy node pair.

An example of combining two chains that con-
tain 2-stage multipliers is shown in Fig.5. Fig.5b is a
snapshot of running combination algorithm with input
“Chain 1” and “Chain 2” shown in Fig.5a. At this
time, nodes “dummy” and “+4” are a match, and the
algorithm searches along Chain 2, trying to find a new
match and putting it onto stack. Of course “dummy”

and “+5” are also a match. However, it is not a fea-
sible solution, since node “+4” will be inserted be-
tween “(*1,+3)” and “dummy”, and “*1-dummy”
node pair will be broken.

EXPERIMENTAL RESULTS

To test the performance of the two algorithms,
we implement them with Visual C++ 6.0, and apply
them to standard benchmarks EWF and FDCT. For
comparison, running times of fast combination algo-
rithm with and without fast minimum combination
length prediction are collected respectively. The na-
ïve version of combination algorithm is also imple-
mented and its running times on EWF and FDCT with
and without fast minimum combination length pre-
diction are collected. Experimental results are shown
in Tables 1~2. All data are collected on a machine
with 1.6 GHz Intel Pentium IV CPU, 512 M memory
machine running Windows XP SP2.

Experimental results show that no matter
whether fast minimum combination length prediction
algorithm is applied, the fast version of combination
algorithm gets a better performance than the naïve
recursive version: it runs 2~15 times faster. Also, both
versions of combination algorithms get better results
when fast minimum combination length prediction is
used than running alone, but due to the limitation we
impose on the number of intermediate results, the
potential of prediction algorithm is not fully brought
into play.

+1 +3

+2

+4

1

2

3

4

Chain 1 Chain 2

*1

+5

+6

dummy

+1

+3

+2

+4

1

2

3

4

Chain 1 Chain 2

*1

+5

+6

pfx

5

dummy

(a) (b)

Fig.5 Example of combination algorithm. (a) Two
chains to be combined; (b) Snapshot of the combina-
tion algorithm

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 125

Table 2 Experimental results for FDCT benchmark
Res Pred Fast Inter Time (s) Results Res Pred Fast Inter Time (s) Results

N N 4000 8.18 101 N N 4000 2.44 90
N Y 4000 4.31 102 N Y 4000 1.78 83
Y Y 4000 3.21 102 Y Y 4000 1.77 83

3*,3+Non-pipelining

Y N 4000 7.06 101

3*,3+Pipelining

Y N 4000 2.43 90
N N 10000 3.53 101 N N 10000 1.47 102
N Y 10000 1.51 101 N Y 10000 1.31 100
Y Y 10000 1.46 101 Y Y 10000 1.27 100

4*,3+Non-pipelining

Y N 10000 3.13 100

4*,3+Pipelining

Y N 10000 1.43 102
N N 10000 2.83 100 N N 10000 1.34 100
N Y 10000 1.66 100 N Y 10000 0.66 100
Y Y 10000 1.50 100 Y Y 10000 0.64 100

4*,4+Non-pipelining

Y N 10000 2.15 100

4*,4+Pipelining

Y N 10000 1.32 100
N N 10000 5.88 101 N N 10000 1.42 101
N Y 10000 1.35 101 N Y 10000 1.25 101
Y Y 10000 0.92 101 Y Y 10000 1.23 101

4*,5+Non-pipelining

Y N 10000 1.40 101

4*,5+Pipelining

Y N 10000 1.37 101
N N 4000 0.32 110 N N 4000 0.05 43
N Y 4000 0.24 100 N Y 4000 0.04 40
Y Y 4000 0.21 100 Y Y 4000 0.04 40

8*,4+Non-pipelining

Y N 4000 0.32 110

8*,4+Pipelining

Y N 4000 0.04 43
Descriptions of “Res”, “*”, “+”, “Pred”, etc. are the same as those in Table 1. Number of the final results is limited to around 100

Table 1 Experimental results for EWF benchmark
Res Pred Fast Inter Time (s) Results Res Pred Fast Inter Time (s) Results

N N 1000 5.17 158 N N 2000 11.40 302
N Y 1000 0.58 249 N Y 2000 0.79 666
Y Y 1000 0.57 249 Y Y 2000 0.75 666

1*,1+Non-pipelining

Y N 1000 5.12 158

1*,1+Pipelining

Y N 2000 6.84 282
N N 2000 40.03 2000 N N 2000 0.60 351
N Y 2000 15.27 2000 N Y 2000 11.33 2000
Y Y 2000 15.99 2000 Y Y 2000 3.51 2000

1*,2+Non-pipelining

Y N 2000 19.30 2001

1*,2+Pipelining

Y N 2000 5.79 351
N N 4000 0.89 12 N N 4000 0.92 18
N Y 4000 0.99 12 N Y 4000 0.99 18
Y Y 4000 0.44 12 Y Y 4000 0.45 18

2*,2+Non-pipelining

Y N 4000 1.10 12

2*,2+Pipelining

Y N 4000 1.07 18
N N 4000 1.90 4000 N N 4000 0.06 78
N Y 4000 1.16 4000 N Y 4000 0.10 81
Y Y 4000 1.01 4000 Y Y 4000 0.05 81

2*,3+Non-pipelining

Y N 4000 1.16 4002

2*,3+Pipelining

Y N 4000 0.23 78
N N 4000 0.23 78 N N 4000 0.27 117
N Y 4000 0.11 81 N Y 4000 0.11 120
Y Y 4000 0.06 81 Y Y 4000 0.06 120

3*,3+Non-pipelining

Y N 4000 0.20 78

3*,3+Pipelining

Y N 4000 0.24 117
“Res” indicates the number of resources used, in which “*” is multiplier and “+” is ALU. “Pred” indicates whether prediction algorithm is
used; “Fast” indicates whether the fast version combination algorithm is used; “Inter” indicates the number of intermediate results limit;
“Results” indicates the number of results found. “Time” is the time in seconds used to find these results

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):119-126 126

CONCLUSION

In this paper, a fast scheduling chain combina-
tion algorithm and a fast algorithm used to predict
minimum length of chain combination are presented.
They can be used in chain combination based sched-
uling algorithms with experimental results showing
that they can greatly improve the performance of
scheduling algorithms. According to the nature of the
scheduling algorithm, multiple global optimized re-
sults can be obtained in much shorter time, thus other
objective functions such as power and register usage
can be incorporated into the algorithms to achieve
multi-objective optimization.

References
Chantana, C., Wanlop, S., Edwin, S., 2004. Efficient Sched-

uling for Design Exploration with Imprecise Latency and
Register Constraints. Proc. EUC. Aizu-Wakamatsu City,
Japan, p.259-270.

Gajski, D., Dutt, N., Pangrle, B., 1986. Silicon Compilation
(Tutorial). Proceedings of the IEEE Custom Integrated
Circuits Conference. IEEE Computer Society Press, Los
Alamitos, California, p.102-110.

Hwang, C.T., Lee, J.H., Hsu, Y.C., 1991. A formal approach to
the scheduling problem in high level synthesis. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 10(4):464-475. [doi:10.1109/43.
75629]

Kumar, A., Bayoumi, M., Elgamel, M., 2004. A methodology
for low power scheduling with resource operating at
multiple voltages. Integration, the VLSI Journal, 37(1):
29-62. [doi:10.1016/j.vlsi.2003.09.005]

Lin, Y.L., 1997. Recent development in high level synthesis.
ACM Transactions on Design Automation of Electronic
Systems, 2(1):2-21. [doi:10.1145/250243.250245]

Memik, S.O., Fallah, F., 2002. Accelerated SAT-based

Scheduling of Control/Data Flow Graphs. Proceedings of
the 2002 IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD’02).
Washington DC, USA, p.395-400. [doi:10.1109/ICCD.
2002.1106801]

Memik, S.O., Kastner, R., Bozorgzadeh, E., Sarrafzadeh, M.,
2005. A scheduling algorithm for optimization and early
planning in high-level synthesis. ACM Transactions on
Design Automation of Electronic Systems, 10(1):33-57.
[doi:10.1145/1044111.1044115]

Mohanty, S.P., Ranganathan, N., 2005. Energy-efficient
datapath scheduling using multiple boltages and dynamic
clocking. ACM Transactions on Design Automation of
Electronic Systems, 10(2):330-353. [doi:10.1145/105987
6.1059883]

Mohanty, S.P., Ranganathan, N., Chappidi, S.K., 2006. ILP
models for simultaneous energy and transient power
minimization during behavioral synthesis. ACM Trans-
actions on Design Automation of Electronic Systems,
11(1):186-212. [doi:10.1145/1124713.1124725]

Narasimhan, M., Ramanujam, J., 2001. A fast approach to
computing exact solutions to the resource-constrained
scheduling problem. ACM Transactions on Design
Automation of Electronic Systems, 6(4):490-500. [doi:10.
1145/502175.502178]

Parker, A.C., Pizarro, J., Mlinar, M., 1986. Maha: A Program
for Datapath Synthesis. Proc. DAC. Las Vegas, USA,
p.461-466.

Paulin, P.G., Knight, J.P., 1989. Force-directed scheduling for
the behavioral synthesis of ASICs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 8(6):661-679. [doi:10.1109/43.31522]

Sllame, A.M., Drabek, V., 2002. An Efficient List-based
Scheduling Algorithm for High-level Synthesis. Proc.
DSD’02. Dortmund, Germany, p.316-323.

Ullman, J., 1975. NP-complete scheduling problems. Journal
of Computer System Science, 10(3):384-393.

Yuan, X.L., Shen, X.B., 1998. A path-based scheduling
algorithm. Computer Research and Development, 35(3):
279-282 (in Chinese).

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276/87952331

