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Abstract:    In order to further enrich the form of 3D Mandelbrot and Julia sets, this paper first presents two methods of generating 
3D fractal sets by utilizing discrete modifications of the standard quaternion algebra and analyzes the limitations in them. To 
overcome these limitations, a novel method for generating 3D fractal sets based on a 3D number system named ternary algebra is 
proposed. Both theoretical analyses and experimental results demonstrate that the ternary-algebra-based method is superior to any 
one of the quad-algebra-based methods, including the first two methods presented in this paper, because it is more intuitive, less 
time consuming and can completely control the geometric structure of the resulting sets. A ray-casting algorithm based on period 
checking is developed with the goal of obtaining high-quality fractal images and is used to render all the fractal sets generated in 
our experiments. It is hoped that the investigations conducted in this paper would result in new perspectives for the generalization 
of 3D Mandelbrot and Julia sets and for the generation of other deterministic 3D fractals as well. 
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INTRODUCTION 
 

Mandelbrot and Julia sets have been extensively 
investigated in great detail in terms of their aestheti-
cally pleasing geometrical shapes, infinite detail, 
self-similarity, periodicity and many other character-
istics. The beauty and intricacy of these sets in the 
complex plane stimulate the scholars’ enthusiasm for 
viewing sets that occupy more than two dimensions. 
However, investigations on the generalizations of 
fractal sets to higher-dimensional spatial space have 
come up against a series of problems due to the 
limitations of mathematical theory and visualization 
techniques needed to explore such fractals.  

Most of the existing researches in this field were 
conducted using Hamilton quaternion for the genera-
tion of Mandelbrot and Julia sets, and mapping three 

of the four quaternionic components to 3D Cartesian 
space. Norton first discovered Julia sets of quaternion 
functions (Norton, 1982; 1989). He visualized these 
structures using a boundary-tracking algorithm, 
which provided a global view of never-before-seen 
3D fractal sets but required a large amount of memory 
to operate because it required the efficient storage of 
all previously generated points to verify that 
neighboring points had not been previously tested. In 
the meantime, a quaternion inverse iteration algo-
rithm was proposed by Holbrook for generating 
sparse point cloud representations of quaternion Julia 
sets (Holbrook, 1983; 1987), and it was developed by 
Hart for the purpose of achieving interactive visuali-
zation of quaternion Julia sets, which required much 
less memory than boundary tracking and could 
quickly visualize the global shapes of Julia sets, yet 
the resulting images were much less than satisfactory 
(Hart et al., 1990). To obtain a more realistic inspec-
tion of the fractal surfaces, John developed a 
ray-tracing algorithm that could produce high quality 
images of 3D fractals at various levels of detail (Hart 
et al., 1989), which required as little memory as the 
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inverse iteration but produced significantly finer de-
tails of fractal sets. Consequently, it was by far the 
best algorithm when high-quality fractal images were 
desired. Other than the above works devoted to 
computational and graphical aspects of the quater-
nionic quadratic map, Gomatam et al.(1995) system-
atically analyzed the stability of cycles and analyti-
cally characterized the associated, generalized fractal 
sets while Bogush et al.(2000) investigated the alge-
braic and geometrical properties of quaternionic 
analogs of Julia sets by means of theory group 
analysis and argued that the 3D part of quaternionic 
Julia sets could be restored by rotation of some arbi-
trary 2D Julia subsets around certain axis due to the 
intrinsic quaternionic symmetries.  

However, it has been established that there is no 
interesting dynamics for the above approach of gen-
erating 3D fractal sets from Hamilton quaternion be-
cause these sets are locally a rotation of classical 
fractals in the complex plane (Bedding and Briggs, 
1995). Hence, researchers began approaching 3D 
fractal sets by new quad algebras. Rochon (2000) 
novelly utilized a commutative bicomplex number to 
explore fractal sets of more than two dimension and 
proved that their 4D Mandelbrot sets are connected. 
He also proposed a bicomplex version of the Fa-
tou-Julia theorem and proved that bicomplex dynam-
ics is an interesting way to generalize the classical 
Mandelbrot sets in 3D (Rochon, 2003). Martineau and 
Rochon (2005) presented several distance estimation 
formulas that can be used to ray trace slices of the 
bicomplex fractal sets in 3D space. Besides bicomplex 
numbers, complexified quaternion algebra (CQUAT) 
(Gintz, 2002) was introduced to iteratively compute 
the boundaries of fractal sets to the effect that fractal 
sets with new structures could be obtained.  

In this paper we present three new approaches to 
generate 3D Mandelbrot and Julia sets based on Ji-
ang’s quaternion, Qu’s quaternion and ternary algebra, 
with the goal of exploring as much as possible the 
extensions of 3D fractal sets. Prior to the description 
of three new methods, a ray-casting algorithm based 
on period checking is outlined. Then, methods of 
creating 3D Mandelbrot sets from Jiang’s quaternion 
and Qu’s quaternion are introduced and the draw-
backs inherent in all quad-algebra-based methods are 
pointed out, to overcome which the method of gen-
erating 3D Mandelbrot sets based on ternary algebra 
is developed. Particular attention of this section is 

paid to the investigation on the properties of the re-
sulting 3D sets and on the advantages of generating 
3D sets from ternary algebra. Application of the third 
method to 3D Julia sets and an analysis of the prop-
erties of resulting sets are also included. 
 
 
RAY-CASTING VOLUME RENDERING ALGO-
RITHM BASED ON PERIOD CHECKING 
 

In order to produce 3D fractal images of high 
quality, we put forward a ray-casting volume ren-
dering algorithm based on period checking, which 
borrows the idea from (Welstead and Cromer, 1989) 
and colors 3D fractal sets according to the peri-
odicities of maps to reveal patterns of finite attracting 
orbits and chaos. The procedure of our algorithm is 
summarized as follows: 

Step 1: Initialize parameters, including maxi-
mum periodicity to be counted, maximum number of 
iteration, threshold of overflow and the region of 
algebra space to be observed. 

Step 2: Compute the periodicity of each point in 
the range of given algebra space, and (1) set the pe-
riodicity of a point to −1 if overflow happens before 
its stable orbit is reached; (2) set the periodicity of a 
point to 0 if we can get its stable orbit but fail to work 
out its periodicity.  

Thus, periodicity is assigned to every point in the 
given space, which also determines whether a point 
belongs to a fractal set or not. It is obvious that those 
points whose periodicities equal −1 do not reside in 
the fractal set while those points whose periodicities 
equal 0 are on the boundary of the fractal set. 

Step 3: Render 3D fractal set by ray-casting al-
gorithm. 

3D fractal surfaces are non-differentiable and 
have no exact normal defined. However, a shading 
model must be used which requires the definition of a 
surface normal so as to realistically render these sur-
faces. In our algorithm, a finite difference technique is 
employed to approximate the gradient of a point (x,y,z) 
on the fractal surface: 
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where per(x,y,z) represents the periodicity at location 
(x,y,z) which has been calculated in Step 2, and dx, dy, 
dz are grid intervals along x, y, z axes respectively 
such that dx=dy=dz. The resulting vector (gx,gy,gz) is 
then used as the surface normal at point (x,y,z) and the 
fractal object can be shaded at this point using a 
standard shading algorithm. 

For convenient observation on the distribution of 
attractive orbits in a fractal set, we define the color 
and opacity of every point according to their peri-
odicities. All the points are assigned the opacity of 1 
except that those having −1 periodicity are assigned 
the opacity of 0.  
 
 
3D MANDELBROT SETS ON THE BASIS OF 
TWO NEW QUAD ALGEBRAS 
 

Enlightened by Terry’s discovery of new excit-
ing fractal images with the introduction of CQUAT, it 
is natural for us to explore other possible methods to 
generate 3D fractal sets by utilizing discrete modifi-
cations of the standard quaternion algebra to itera-
tively compute their set boundaries. Considering that 
any quad algebraic system closed under addition and 
multiplication can be employed to generate 3D fractal 
sets since the iterative functions used to generate 
these sets contain only addition and multiplication, 
we exploit two new forms of quad algebra, i.e. Jiang’s 
quaternion (Jiang, 1990) and Qu’s quaternion (Qu and 
Zhou, 2001) to model 3D fractal sets hereinafter. A 
quaternion number q=x+yi+zj+ωk is a four-tuple of 
independent real values (x,y,z,ω) assigned to one real 
axis and three imaginary axes i, j, k. Given two qua-
ternion numbers q1 and q2, then we have q1+q2= 
(x1+x2)+(y1+y2)i+(z1+z2)j+(ω1+ω2)k. 

 
Jiang’s quaternion and its Mandelbrot set  

The product of two Jiang’s quaternion numbers 
q1 and q2 is defined as: 

 

q1⋅q2=(x1x2+y1y2+z1z2+ω1ω2)+(x1y2+y1x2+z1ω2+ω1z2)i    
+(x1z2+z1x2+y1ω2+ω1y2)j+(x1ω2+ω1x2+y1z2+z1y2)k.                     

(2) 
Let q1=q2=q, we get 
 
q2=(x2+y2+z2+ω2)+2(xy+zω)i+2(xz+yω)j+2(xω+yz)k. 

(3) 
 

A collectivity of all Jiang’s quad numbers con-
stitutes Jiang’s quaternion number system, which is 
herein denoted as QJ for short. 
Definition 1    The Mandelbrot sets of Jiang’s quad 
maps f:q→qm+c (q, c∈QJ, m∈ù, m≥2) are defined as 
the sets that comprise all the Jiang’s quaternion values 
c not attracted to infinity when the maps are iterated 
with q0 set to the critical point of maps. Namely, they 
are the sets of Jiang’s quaternion numbers c such that 
 

J J 0 1{ :{ ( )} },n
nM c Q f q ∞
== ∈ →∞/              (4) 

 
where q0=0 is the critical point of maps. However, 
instead of starting with q0=0, it is simpler to start with 
q0=c, which yields the same result. Therefore, the 
computational definition of Jiang’s Mandelbrot set 
can also be expressed as 
 

J J 1{ :{ ( )} }.n
nM c Q f c ∞
== ∈ →∞/             (5) 

 
Qu’s quaternion and its Mandelbrot set  

Multiplication of Qu’s quaternion is defined as 
follows: 
 

q1⋅q2=(x1x2−y1ω2−z1z2−ω1y2)+(x1y2+y1x2−z1ω2−ω1z2)i                         
   +(x1z2+y1y2+ z1x2−ω1ω2)j+(x1ω2+y1z2+ z1y2+ω1x2)k.

                         (6) 
Squaring a Qu’s quaternion number q yields 
 
q2=(x2−2yω−z2)+2(xy−zω)i+(2xz+y2−ω2)j+2(xω+yz)k. 

                          (7) 
 

Qu’s quaternion number system, which consists 
of all Qu’s quaternion numbers, is signified as QQ for 
concise sake. 
Definition 2    The Mandelbrot sets of Qu’s quad 
maps f:q→qm+c (q, c∈QQ, m∈ù, m≥2) can be defined 
as  
 

Q Q 0 1{ :{ ( )} },n
nM c Q f q ∞
== ∈ →∞/             (8) 

 
where q0=0 is the critical point of maps. For the same 
reason as Jiang’s Mandelbrot sets, the computational 
definition of Qu’s Mandelbrot sets practically used in 
our experiments is given by 
 

 Q Q 1{ :{ ( )} }.n
nM c Q f c ∞
== ∈ →∞/              (9) 
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Experimental results and discussions 
For convenience in analysis and comparison, all 

the fractal images given in this paper are rendered by 
the period-checking-based ray-casting algorithm 
within the same region of algebra space, specifically 
speaking, x, y, z∈[−1, 1], and with the same grid in-
terval 0.02. 

Mandelbrot sets of Jiang’s quaternionic quad-
ratic map with the fourth real value ω being 0.022 and 
0.220 are shown in Fig.1a and Fig.1b respectively 
while those of Qu’s are illustrated in Fig.2a and 
Fig.2b accordingly. It can be observed from Figs.1 
and 2 that the structures of 3D Mandelbrot sets cre-
ated from either Jiang’s quaternion or Qu’s hardly 
have any comparability with 2D Mandelbrot sets 
generated by complex maps, therefore, it is difficult 
for us to have a good insight into the infinite detail of 
these 3D sets. Furthermore, the maximal dimension 
that can be easily and comprehensively represented 
on a computer screen is commonly 3, hence we have 
to predefine one element of the iterative parameter (ω 
is predefined in our experiments) in order to project 
the 4D fractal sets onto 3D Cartesian space in the 
process of generating 3D fractal sets from these quad 
algebras. Nevertheless, different orientations of pro-
jection might lead to somewhat big diversities among 
resulting 3D fractal subsets, and some subsets in 3D 
space may reveal no fractal characteristic at all. As a 
matter of fact, methods of generating fractal sets by 
exploiting other quad algebras, including Hamilton 
quaternion and bicomplex numbers (see Figs.3 and 4), 
would encounter the same problems mentioned 
hereinabove as well. 

In the final analysis, the intrinsic drawbacks in 
the creation of 3D fractal sets from quad algebras are 
caused by the indispensable projective operation in 
order to visualize 3D subsets of 4D objects obtained 
from quaternion maps, which would inevitably result 
in information loss and ultimately lead to the diffi-
culty in controlling over the structure of resulting 
subsets as well as in achieving expected 3D fractal 
images. To surmount the obstacles in visualizing 3D 
fractal sets generated by quad algebras, we explored 
the possibility of creating 3D sets directly in three 
spatial dimensions so that 3D fractal images could be 
produced with no projective operation involved. This 
motivation led to the third approach of generating 3D 
fractal sets on the basis of ternary algebra. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
3D MANDELBROT SET ON THE BASIS OF 
TERNARY ALGEBRA 
 
Ternary algebra and its Mandelbrot set 

Fundamentals of ternary algebra are briefly in-

(a) (b) 
Fig.1  Mandelbrot sets in Jiang’s quaternion 

(a) ω=0.022; (b) ω=0.220 

(a) (b) 
Fig.2  Mandelbrot sets in Qu’s quaternion 

(a) ω=0.022; (b) ω=0.220 

(a) (b) 
Fig.3  Mandelbrot sets in Hamilton quaternion 

(a) ω=0.022; (b) ω=0.220 

(a) (b)  
Fig.4  Mandelbrot sets in bi-complex numbers 

(a) ω=0.022; (b) ω=0.220 
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troduced in Appendix A (Qu, 1994). A ternary num-
ber is of the form 

 
t=xi+yj+zk,                            (10) 

 
where x, y, z are real numbers and i, j, k are imaginary 
units. Given two ternary numbers t1 and t2, then we 
have 
 

t1+t2=(x1+x2)i+(y1+y2)j+(z1+z2)k,             (11) 
t1⋅t2=(x1x2−y1z2−z1y2)i+(x1y2+y1x2−z1z2)j+ 

  (x1z2+y1y2+z1x2)k.                              (12) 
 
Squaring of a ternary number t yields 
 

t2=(x2−2yz)i+(2xy−z2)j+(2xz+y2)k.          (13) 
 
A total of the ternary numbers of the form Eq.(10) 
constitutes the ternary number system (i.e. ternary 
algebra), which is marked as T. Ternary algebra ex-
tends the concept of number to 3D arithmetic space. 
And we can certainly generate 3D fractal sets from it. 
Definition 3    The Mandelbrot sets of ternary maps f: 
t→tm+c (t, c∈T, m∈ù, m≥2) are defined by 
 

0 1{ :{ ( )} },n
T nM c T f t ∞

== ∈ →∞/              (14) 
 
where t0=0 is the critical point of ternary maps. 
Similar to the Mandelbrot sets of quaternion algebras, 
we can also rewrite Eq.(14) as 
 

1{ :{ ( )} }.n
T nM c T f c ∞

== ∈ →∞/               (15) 
 

The following properties of MT can be deduced 
according to the fundamentals of ternary algebra. 
Property 1    MT is symmetrical about the plane de-
fined by y+z=0, which is proved in Appendix B. 
Property 2    The projection of MT on the plane x− 
y+z=0 is identical to the Mandelbrot set of complex 
mapping z→zm+c ( ,  )z c∈  with corresponding ex-
ponent m, where ÷ denotes the complex number 
system. 
Property 3    MT may be reconstructed by moving 
some arbitrary 2D Mandelbrot subset in the plane 
x−y+z=l along the line x=−y=z, where l is a real num-
ber. 

Based on Properties 2, 3 as well as the charac-
teristics of 2D Mandelbrot sets in the complex plane, 
we can deduce another property of MT, that is, 

Property 4    The bottom surface of MT parallel to the 
plane x−y+z=0 consists of m−1 integral petals. 
 
Experimental results and discussion 

The 3D Mandelbrot sets of ternary maps t→tm+c 
(t, c∈T) with exponents being 2, 5, 6 and 7 are illus-
trated in Figs.5a~5d. It can be observed from these 
images that the Mandelbrot sets are all symmetrical 
about a plane perpendicular to the screen, which is 
defined by equation y+z=0 in the light of Property 1. 
The 3D Mandelbrot sets in Figs.5a~5d also manifest 
somewhat columnar shapes with the most irregular 
and sophisticated lateral surfaces. And in accordance 
with Properties 2, 3, all the bottom surfaces (see Fig.6) 
of these fractal shapes are parallel with the plane 
x−y+z=0 while their generatrices are oriented along 
the same direction defined by x=−y=z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is shown in Figs.6a~6d that the bottom sur-
faces of the 3D Mandelbrot sets generated by ternary 
maps with the exponents being 2, 5, 6, 7 are made up 
of 1, 4, 5, 6 integral petals correspondingly, which 
fully justifies the above-claimed Property 4. 

To sum up, the ternary-algebra-based method of 
generating 3D fractal sets has several advantages over 
quad-algebra-based ones. Firstly, we could get a bet-
ter understanding of the complicated structures of 
these 3D fractal sets by referring to their counterparts 
in the complex plane. Secondly, fractal sets on the  

(a) (b) 

 (c) (d) 
Fig.5  3D Mandelbrot sets in ternary algebra 

(a) m=2; (b) m=5; (c) m=6; (d) m=7 
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basis of ternary algebra could be rendered directly in 
3D space without any projective operation due to the 
fact that the three components of a ternary number 
can be exactly mapped to 3D Cartesian space. As a 
result, both information loss and randomness in the 
structures of resulting objects could be completely 
avoided. Finally, creating 3D fractal sets from ternary 
algebra is more efficient than from quaternion alge-
bras, in respect that the iterative operations involved 
in calculating the periodicities of discrete points 
during the process of generating 3D sets can be 
greatly reduced. Specifically speaking, the imple-
mentation frequency of the key operation in the pe-
riod-checking procedure has been decreased from 
n⋅4m to n⋅3m by substituting quaternion algebras with 
ternary algebra, where n is the number of iteration 
needed to distinguish whether a point in 3D space 
belongs to a fractal set and m is the exponent of the 
map. And it is evident that the larger the map’s ex-
ponent is, the more predominant the ternary-algebra- 
based method is. 
 
 
APPLICATION TO 3D JULIA SETS 
 

As we can see, the method of creating 3D fractal 
sets by utilizing ternary algebra has many advantages 
such as intuition, good controllability, expeditious-
ness and so on. Consequently, we should like to dis-

cuss in this section the application of ternary algebra 
to the generation of 3D Julia sets. 
Definition 4    The general Julia sets of ternary maps f: 
t→tm+c (t, c∈T, m∈ù, m≥2) contain all the initial 
points t0 whose orbits under these maps remain 
bounded, which can be simplified as 
 

0 0 1{ :{ ( )} }.n
T c nJ t T f t ∞

== ∈ →∞/             (16) 
 

The following properties of JT in Eq.(16) can be 
derived from the fundamentals of ternary algebra: 
Property 5    The projection of JT on the plane 
x−y+z=0 is consistent with the 2D Julia set of com-
plex map z→zm+c (z, c∈÷) with the same exponent m, 
where ÷ indicates the complex number system. 
Property 6    JT can be reconstructed through the 
movement of 2D Julia subset in the plane x−y+z=l 
along the direction defined by x=−y=z, where l is a 
real number. 

Based on Properties 5, 6 as well as the properties 
of the Julia sets generated by complex maps z→zm+c 
( ,  ,z c∈  m∈ù), we can deduce another property of 
JT, namely, 
Property 7    The bottom surface of JT, parallel to the 
plane x−y+z=0, consists of m major leaves situated 
symmetrically around the center of the surface. 

Illustrated in Figs.7 and 8 are some examples of 
3D general Julia sets in ternary algebra, which have  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
Fig.6  The bottom surfaces of Mandelbrot sets dis-
played in Fig.5. (a) m=2; (b) m=5; (c) m=6; (d) m=7

Fig.7  Julia sets of quadric ternary map. (a) c=(−0.84,
−0.42, 0.42); (b) c=(0.07354, −0.35027, −0.42381); (c)
c=(−0.12933, 0.24924, 0.50791); (d) c=(−0.39054,
−0.48679, 0.0) 

(a) (b) 

(c) (d) 



Cheng et al. / J Zhejiang Univ Sci A   2007 8(1):134-141 140

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
been oriented for the convenience of observation on 
their bottom surfaces. It can be observed from these 
figures that all the Julia sets reveal some kind of co-
lumnar shapes with extraordinary rough lateral sur-
faces. The bottom surfaces of the Julia sets in 
Figs.7a~7d obtained by setting parameter c in ternary 
map t→t2+c to four different values are all made up of 
two centro-symmetrical leaves. And the bottom sur-
faces of the four Julia sets in Figs.8a~8d generated 
from ternary maps with exponents being four differ-
ent integers are made up of corresponding number of 
major leaves symmetrical about their centers. These 
experimental results agree well with Properties 5~7. 
 
 
CONCLUSION 
 

The research on this project began as an en-
deavor to explore as much as possible the extensions 
of 3D Mandelbrot and Julia sets. Three new ap-
proaches for generating 3D fractal sets by utilizing 
new forms of algebra were put forward. A ray-casting 
algorithm based on period checking was summarized 
before the presentation of these new methods.  

The first attempt, i.e., two methods based on 
discrete modifications of standard quaternion algebra, 
was motivated by Terry’s work. However, both ex-
perimental results and theoretical analyses indicated 
that the methods of generating 3D fractal sets from 

quad algebras inevitably experienced problems such 
as difficulty in perceiving the infinite detail of re-
sulting sets and incapability of completely controlling 
their geometrical structures.  

Then, the third method based on ternary algebra 
as a substitute for quad algebras in the generation of 
3D Mandelbrot and Julia sets was proposed for the 
purpose of getting over disadvantages intrinsic to the 
quad-algebra-based methods. Properties with regard 
to the structures of the resulting sets, which were of 
great benefit for understanding their beauty and in-
tricacies, were deduced on the basis of the funda-
mentals of ternary algebra. It turned out that not only 
the problems due to projection were completely 
avoided but also the computational costs were con-
siderably reduced. 
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APPENDIX A: FUNDAMENTALS OF TERNARY 
ALGEBRA 
 

The conjugate of a ternary number t=xi+yj+zk is 
 

 i j k.t x z y= − −                          (A1) 
 

Given three ternary numbers t1, t2 and t3, then the 
following equations hold: 
 

t1+t2=t2+t1, (t1+t2)+t3=t1+(t2+t3).            (A2) 
t1⋅t2=t2⋅t1, (t1⋅t2)⋅t3=t1⋅(t2⋅t3), t1⋅(t2+t3)=t1⋅t2+t1⋅t3.  (A3) 

1 2 1 2 ,t t t t± = ± 1 2 1 2.t t t t⋅ = ⋅                  (A4) 
 

For a ternary number t=xi+yj+zk, there is an ei-
genvalue that can be given as 
 

e i j k

1 1 3   i ( ) j ( )k,
2 2 2

t p q r

x y z y z x y z

= + +

 = + − + + + − + 
 

  (A5) 

 

where the binary number pi+qj and the unitary num-
ber r are respectively referred to as binary eigenvalue 
and unitary eigenvalue of the ternary number t. 

In 3D arithmetic space, those points with zero 
binary eigenvalues constitute a line defined by 

 

 x=−y=z,                             (A6) 
 

while those points with zero unitary eigenvalues 
constitute a plane defined by 
 

x−y+z=0.                           (A7) 
 

Assuming p1i+q1j+r1k and p2i+q2j+r2k to be two 
eigenvalues of some ternary numbers, then the fol-
lowing operational formulas hold: 

(p1i+q1j+r1k)±(p2i+q2j+r2k) 
  =(p1±p2)i+(q1±q2)j+(r1±r2)k,             (A8) 

(p1i+q1j+r1k)⋅(p2i+q2j+r2k) 
=(p1p2−q1q2)i+(p1q2+q1p2)j+r1r2k,    (A9) 

(p1i+q1j+r1k)÷(p2i+q2j+r2k) 
2 2

1 2 1 2 1 2 1 2 2 2 1 2[( )i ( )j]/( ) ( / )k.p p q q q p p q p q r r= + + − + +  (A10) 
 

As for an eigenvalue of the form pi+qj+rk, its 
converse is defined as 
 

1/(pi+qj+rk)=(pi−qj)/(p2−q2)+(1/r)k,      (A11) 
and its conjugate is 

 i j k i j k.p q r p q r+ + = − +                 (A12) 
 

Analogous to the absolute value of a complex 
number, the norm of the eigenvalue pi+qj+rk is de-
fined by 
 

 |pi+qj+rk|=r(p2+q2).                 (A13) 
 

As we can see from Eqs.(A5)~(A13) that a ter-
nary number t=xi+yj+zk practically represents one 
binary number pi+qj and one unitary number r si-
multaneously and that the operation of a ternary al-
gebra is equal to the operation of both its binary ei-
genvalue and its unitary eigenvalue. 
 
 
APPENDIX B: PROOF OF PROPERTY 1 
 

Given three functions of ternary number t, 
f(t)=tm+c, ( ) ,  ( ) ,mg t t c h t t= + = according to Eq.(A4), 
we have: 
 

( ) ( ) ,m m mh f t t c t c t c⋅ = + = + = +  
( ) ( ) .mg h t t c⋅ = +  

 

Therefore h⋅f(t)=g⋅h(t). That is, if c∈MT, then .Tc M∈  
Let c=xi+yj+zk, then according to the definition 

of conjugate in Eq.(A1), we get i j k,c x z y= − − so the 
following equations can be obtained: 

 
2 i ( ) j ( )k,c c x y z z y+ = + − + −  

( ) j ( )k.c c y z z y− = + + +  
 

Hence, c and c are symmetrical about the plane 
y+z=0. Consequently, the 3D Mandelbrot sets of the 
ternary maps t→tm+c (t, c∈T, m∈ù, m≥2) are bound 
to be symmetrical about the plane y+z=0. 


