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Abstract:    In general, every system is in one of the three states: normal, abnormal, or failure state. When the system is diagnosed 
as abnormal state, it needs predictive maintenance. If the system fails, an identical new one will replace it. The predictive main-
tenance cannot make the system “as good as new”. Under these assumptions, the reliability index and the inspection-replacement 
policy of a system were studied. The explicit expression of the reliability index and the average income rate (i.e., the long-run 
average income per unit time) are derived by using probability analysis and vector Markov process method. The criterion of 
feasibility for the optimal inspection-replacement policy under the maximum average income rate is obtained. The numerical 
example shows the optimal inspection-replacement policy can raise the average income rate when the optimal inspec-
tion-replacement policy is feasible. 
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INTRODUCTION 
 

It was assumed that systems could be repaired as 
good as new in earlier studies on the maintenance of a 
system. Because this assumption is far from actuality, 
some new models have been developed continuously  
(Barlow and Hunter, 1960; Brown and Proschan, 
1983; Yeh, 1988a; 1988b; Stadje and Zuckerman, 
1990). These new models make study of repair close 
to actual situation. Inspecting and diagnosing the 
system to find the omen of failure and to avoid hap-
pening of failure is the newest effective measure to 
raise reliability, safety and economy. The failures of 
any system can be classified to three categories. The 
first one is a slow progressing failure, which can be 

found by inspection equipments and can be remained 
for long time without repairing but just for watching, 
studying and later treatment. The second one is the 
failure that occurs suddenly without any warning 
signs and cannot be found by inspection. The third 
kind of failure is between the above two, which may 
be found by inspection and avoided with proper 
measures. When the system is in developing failure, it 
is in an abnormal state. The repair for an abnormal 
system after it has been inspected and diagnosed is 
called predictive maintenance. In this state, though 
the system is not damaged seriously, it cannot be 
repaired as good as new. Because the system can be 
damaged seriously after it fails, an identical new one 
replaces it. This paper studied the reliability and the 
optimal inspection-replacement policy of the system. 
The optimal inspection-replacement policy is to de-
termine how often a system is inspected and how 
many predictive maintenances a system is replaced 
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such that the average income rate of a system is 
maximized. There are many results about inspection 
and diagnosis technology (Chen, 2003; Liu et al., 
2003), and some results about reliability and inspec-
tion-replacement policy (Su, 1997; Chelbi and 
Ait-kadi, 1999; Biswas et al., 2003; Su, 2003), but 
many important problems are remained to be resolved. 
The aim of this paper is to build a model by prob-
ability analysis and vector Markov process method 
(Shi, 1999) and to study reliability and inspec-
tion-replacement policy. 
 
 
DEFINITION AND CHARACTER DESCRIPTION 
OF SYSTEM 
 
Definition 1    X, Y are random variables, their 
cumulative distribution functions (abbreviated c.d.f.) 
are F(t) and H(t), ( )F t =1−F(t), ( )H t =1−H(t), if for 
all real t≥0, ( ) ( ),F t H t≤  then X is called stochastically 
smaller than Y, denoted by X≤stY; otherwise X is called 
stochastically larger than Y, and denoted by X≥stY. 
Definition 2    Let {Xn, n=1,2,…} be a sequence of 
non-negative and independent random variables. If 
Xn≤stXn+1, n=1,2,…, then {Xn, n=1,2,…} is called a 
monotonously increasing stochastic process. If 
Xn≥stXn+1, n=1,2,…, then {Xn, n=1,2,…} is called a 
monotonously decreasing stochastic process. 

The lifetime sequence of actual repairable sys-
tem is a monotonously decreasing stochastic process, 
but the repair time sequence is a monotonously in-
creasing stochastic process. 

The system has the following characters: 
(1) The system has 3 modes—normal, abnormal 

and failure. The system can transfer from normal to 
failure directly, or from normal to failure via abnor-
mal. Normal and abnormal are the working states of 
the system. Whether the system is in normal or ab-
normal state can be known through exact inspection 
and diagnosis. When the system fails, it can be known 
without inspection and diagnosis.  

 
 

 
 
 
 
 

system is inspected and diagnosed in abnormal, it 
accepts the ith times predictive maintenance. The c.d.f. 
of the Yi of the ith times predictive repair time is Gi(y). 
Density function is gi(y). Repair rate is µi(y). The 
mean is E(Yi)=µi. After the new system begins its ith 
times normal, it transfers from normal to abnormal at 
failure rate λi01 and to failure at λi02. When the new 
system is in abnormal after its ith times normal, it 
transfers to failure at failure rate λi12. λi01≤λi+101, 
λi02≤λi+102, λi12≤ λi+112, i=1,2,3,… {Yi, i=1,2,…} is a 
monotonously increasing stochastic process. If the 
system fails during working, it is replaced by an 
identical new one. The c.d.f. of Y of replacement time 
is G(y). Density function is g(y). Replacement rate is 
µ(y). The mean is E(Y)=µ. 

(3) All random variables are independent. 
(4) At t=0, a new system is installed and begins 

normal work. When the system is inspected and di-
agnosed in abnormal after it begins the Nth times 
normal, it will not need predictive maintenance and is 
replaced by an identical new one. GN(y) is c.d.f of 
replacement time. GN(y)=G(y). 

(5) The normal working reward, abnormal 
working reward per unit time are K0 and K1 respec-
tively. Average cost for inspection and diagnosis each 
time, replacement each time, predictive repair each 
time are E1, E2, E3, respectively. 

The state of system is defined as follows. State (i, 
0,n) means that a new system is in the ith normal and 
inspected and diagnosed n times. State (i,1) means 
that the system is in abnormal after the ith times 
normal, i=1,2,…,N. State (i,3) means that the system 
is in its ith times predictive repair, i=1,2,…,N−1. State 
(N,3) means that the system is in replacement state 
after inspected and diagnosed in abnormal after the 
Nth times normal. State (i,2) means the system is in 
replacement state after failure during its ith times 
working state, i=1,2,…,N. 

Let S(t) be the state of the system at time t. De-
fine supplementary variables as follows. Xi0n(t) de-
notes the inspection and diagnosis interval time when 
S(t)=(i,0,n). Xi1(t) denotes the inspection and diagno-
sis interval time when S(t)=(i,1), i=1,2,…,N. Yi3(t) 
denotes the predictive repair time of system at time t 
when S(t)=(i,3), i=1,2,…,N−1. Yi2(t) denotes the re-
placement time of system at time t when S(t)=(i,2), 
i=1,2,…,N. YN3(t) denotes the replacement time of 
system at time t when S(t)=(N,3). After supplemen-

(2) After a new system (system at the beginning
of operation or after replacement) begins its ith nor-
mal, it is inspected and diagnosed every random time
period Ti to know whether it is in normal or
abnormal. The c.d.f. of Ti is Hi(x). Density function of
Ti is hi(x). Failure rate of Ti is αi(x). Inspection and
diagnosis can be finished instantaneously. When the
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tary variables are introduced, the process is a vector 
Markov process (Shi, 1999). 

The state probability density of system is defined 
as follows: 
 

Pi0n(t,x)dx=P{S(t)=(i,0,n), x≤Xi0n(t)<x+dx}, 
Pi1(t,x)dx=P{S(t)=(i,1), x≤Xi1(t)<x+dx}, 

i=1,2,…,N; 
Pi3(t,y)dy=P{S(t)=(i,3), y≤Yi3(t)<y+dy}, 

i=1,2,…,N−1; 
PN3(t,y)dy=P{S(t)=(N,3), y≤YN3(t)<y+dy}, 
Pi2(t,y)dy=P{S(t)=(i,2), y≤Yi2(t)<y+dy}, 

i=1,2,…,N. 
 
 
STATE PROBABILITY DENSITY EQUATIONS 
OF THE SYSTEM 
 

By probability analysis, we can get the state 
probability density differential equations as follows: 
 

01 02 0( ) ( , ) 0,
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The boundary conditions are 
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The initial conditions are as follows: 

 

100 (0, ) ( ),P x xδ=                           (11) 
 
the others are 0.  

Let B0(s)=D0(s)=1, 
 

* * *
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1 1
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Using Shi (1999)’s method, we can get the state 

probability density of the system in terms of the 
Laplace transform as follows:  

 

01 02( )*
0 12 01 02

0
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RELIABILITY INDEX AND OPTIMAL 
INSPECTION-REPLACEMENT POLICY OF THE 
SYSTEM 
 

Let 
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Availability 

The probability that the system is working in 
normal is called N-availability, whereas the probabil-
ity that the system is working in abnormal is called 
A-availability. Denoting A0(t) as the instantaneous 
N-availability at time t, we have 
 

0 00
1 0

( ) ( , )d .
N

i n
i n

A t P t x x
∞ ∞

= =

= ∑∑∫            (22) 

 
Using Eq.(17), we can get the Laplace transform 

of A0(t) 
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1
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N
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Denote A0 as the steady N-availability. By ap-

plying the limiting theorem of the Laplace transform, 
we have 
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By applying the same method, we can obtain the 

steady A-availability 
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Inspection and diagnosis frequency 

Denote W1(t) as the instantaneous inspection 
frequency at time t, we have 
 

1 0 10 0
1 0 1
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Using Eqs.(17) and (18), we can get the Laplace 
transform of W1(t) 
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1
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Inspection and diagnosis frequency in (0,t] is 

 

1 10
( ) ( )d .

t
M t W x x= ∫                          (28) 

 
Let M1 be the steady inspection frequency. Ap-

plying the limiting theorem of the Laplace transform, 
we have 
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Replacement frequency of the system 

Denoting W2(t) as the instantaneous replacement 
frequency at time t, we have 
 

2 02 00
1 0

12 1 10 0
1
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N

i i n
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N
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i
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λ
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    (30) 

 
Using Eqs.(17) and (18), we can obtain the 

Laplace transform of W2(t) 
 

* * *
2 01 01 02 12

1

( ) ( )[ ( ) ( )]

             ( ) ( ).                                        (31)

N N N N N N N
N

i i
i

W s C s h s h s

f s C s

λ λ λ λ

=

= + + − +

+ ∑
                                                                  

Denoting M2(t) as replacement frequency in (0,t], 
then we have 
 

2 20
( ) ( )d .

t
M t W x x= ∫                     (32) 

 
Denote M as the steady replacement frequency. 

By applying the limiting theorem of the Laplace 
transform, we get 
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*2
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Frequency of predictive repair 

Denoting W3(t) as the instantaneous predictive 
repair frequency at time t, then we have 
 

1

3 10
1

( ) ( ) ( , )d .
N

i i
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=
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Using Eq.(18) we can obtain the Laplace trans-

form of W3(t) 
 

1
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Predictive repair frequency in (0,t] is 
 

3 30
( ) ( )d .

t
M t W x x= ∫                       (36) 

 
Denote M3 as the steady predictive repair fre-

quency. By applying the limiting theorem of the 
Laplace transform, we get 
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Optimal inspection-replacing policy for the system 

We can obtain the average income rate of the 
system by using the results obtained above. The ex-
pected total income generated by the system during 
(0,t] is 
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We can obtain the average income rate: 
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Obviously, D(N,H1,H2,…,HN) is an explicit ex-

pression of N and H1,H2,…,HN. We can find the op-
timal inspection-replacing policy * * *

1 2( , , , ,N H H  
* )NH to make D(N,H1,H2,…,HN) maximized. 

By using the method in this paper, we can also 
obtain the average income rate without inspection and 
diagnosis: 
 

112 0 101 1 2 101 102 112

112 101 101 102 112

( )
.

( )
k k ERW λ λ λ λ λ
λ λ µ λ λ λ

+ − +
=

+ + +
      (40) 

 
Comparing * * *

1( , , , )ND N H H  and RW, we can 
obtain the criterion for feasibility of optimal inspec-
tion-replacement policy. 

If * * *
1( , , , )ND N H H >RW, then optimal inspec-

tion-replacing policy is feasible. 
It is difficult to search out the optimal inspec-

tion-replacement policy from all (H1,H2,…,HN). In 
practice, the inspection time interval is often taken as 
a constant for sake of conveniences. When the in-
spection time interval is a constant of u, 

* ( ) (1 e ) / ,u
iH λλ λ−= − * ( ) e .u

ih λλ −= Substituting them 
into D(N,H1,H2,…,HN), D(N,H1,H2,…,HN) would be 
expressed as a function of variables u and N, which is 
denoted as L(N,u). Using the analytical or numerical 
method, we can get the optimal inspection-replacing 
policy (N*,u*). The largest average income rate is 
L(N*,u*). 

If L(N*,u*)>RW, the optimal inspec-
tion-replacement policy is feasible. 
 
 
NUMERICAL EXAMPLE 
 

Assume the data of some electrical products as 
follows: λi01=0.00069×1.05i−1; λi02=0.00002×1.05i−1; 
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λi12=0.004×1.01i−1 h−1; µi=26×1.06i−1, i=1,2,…,N−1; 
µ=6 h; k0=2900, k1=2050 ¥/h (¥: RMB); E1=4000, 
E2=1220000, E3= 73000 ¥/once. 

With a microcomputer, we can obtain the opti-
mal inspection-replacing policy N*=12, u*=20.7446 h, 
and the maximum average income rate of the system 
L(N*,u*)=2620.36 ¥/h, RW=2028.81 ¥/h. Obviously, 
the optimal inspection-replacing policy in this exam-
ple is feasible. 

 
 

CONCLUSION 
 
Two hot topics are concerned by scholars. One is 

the reliability and inspection policy of a system with 
perfect maintenance. Another is the reliability and 
replacement policy of a system with no inspection and 
imperfect maintenance. Few research results are re-
ported on the challenging problem of the reliability 
and inspection-replacement policy of a system with 
imperfect maintenance. This paper deals with the 
optimal inspection-replacement policy of a system 
with imperfect predictive maintenance and replace-
ment after failure. The average income rate of the 
system is obtained. Maximizing the average income 
rate can therefore develop the optimal inspec-
tion-replacement policy. We also obtain the criterion 
for feasibility of the optimal inspection-replacement 
policy. The numerical example shows that the in-
spection-replacement policy can raise the average 
income rate when it is feasible. 
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